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Motion Doodles: An Interface for Sketching Character Motion
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Figure 1: (a) Motion lines as used in a drawing (b) 2D motion sketch and the resulting animation (step, leap, front-flip, shuffle, hop) (c) 3D
motion sketch and resulting animation (walk, flip through window, walk, leap onto building, walk, leap off building)

Abstract

In this paper we present a novel system for sketching the motion
of a character. The process begins by sketching a character to be
animated. An animated motion is then created for the character by
drawing a continuous sequence of lines, arcs, and loops. These are
parsed and mapped to a parameterized set of output motions that
further reflect the location and timing of the input sketch. The cur-
rent system supports a repertoire of 18 different types of motions in
2D and a subset of these in 3D. The system is unique in its use of a
cursive motion specification, its ability to allow for fast experimen-
tation, and its ease of use for non-experts.

Keywords: Animation, Sketching, Gestural Interfaces, Computer
Puppetry

1 Introduction

Animation has existed as an artform for approximately 80 years
and the technology used to create animations has evolved tremen-
dously. Unfortunately, animation tools usable by non-experts re-
main in short supply. In this paper we develop a cursive motion
notation that can be used to “draw” motions. We present an interac-
tive animation system that interprets the notation as it is drawn. The
system is simple enough to be usable by novice animators, includ-
ing children. With an appropriate tailoring of the motion vocabu-
lary, we expect that motion sketching systems may find applications
in film storyboarding, theatre staging, choreography for dance and
sports, and interactive games.

∗email: mthorne,dburke,van@cs.ubc.ca

1.1 Overview

What does it mean to “sketch a motion” for a character? We pro-
pose one possible answer to this question, inspired in part by mo-
tion illustration techniques, such as the use of loops to indicate a
tumbling motion as shown in Figure 1(a).

To begin using our system, the user draws the character they wish
to animate. This is accomplished by drawing the body, head, arms,
legs, and feet, from which a character armature is inferred. Anima-
tions can then be created by drawing motion sketches, which are
interpreted on the fly to yield interactive animated motions. Fig-
ures 1(b) shows an example 2D motion sketch and the resulting an-
imation. A subset of the motion sketch gestures can also be drawn
on top of a 3D image to obtain a 3D character animation, as illus-
trated in Figure 1(c). Significantly, our gestures are highly visual
in nature and thus serve both as a means of motion control and as a
meaningful visual record (notation) of the motion.

A block diagram of the system is given in Figure 2. The path
from sketching a motion to producing the motion itself is imple-
mented as a pipeline in order to allow for animated motion to be
produced while the motion sketch is still ongoing. The drawn
sketch undergoes a multi-stage segmentation process to extract rec-
ognizable motion primitives from the input motion sketch. Having
identified one or more motions, multiple parameters are extracted
from the corresponding portion of sketch, including the start and
end points, timing information, and possibly several other features.
These parameters are passed on to an animation back-end, which in
the current system is based on parameterized keyframe motions.

1.2 Contributions

The primary contributions of this paper are as follows:

• We present the design of a set of continuous (cursive) gestures
for sketching a significant variety of motions, their locations,
and their timing. These gestures are implemented in a sketch-
based animation system and are demonstrated on a variety of
display devices.

• We present a system that allows novices to sketch a 2D char-
acter and then draw a variety of animated motion for it, all
within tens of seconds.
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Figure 2: The sketching system.

2 Previous Work

The use of sketching in computer graphics dates back to the
seminal SketchPad system[Sutherland 1963]. More recently, the
sketch-based modeling systems SKETCH[Zeleznik et al. 1996] and
Teddy[Igarashi et al. 1999] are inspired examples of how sketches
or drawn gestures can provide a powerful interface for fast geo-
metric modeling. The notion of “sketching a motion” is less well-
defined than that of sketching an object. Nevertheless, a number of
approaches have been explored. Early work explores an animation-
by-example approach for a single point and fits splines to an in-
put stream of 3D points in order to produce a smoothed version of
the acted trajectory[Balaguer and Gobbetti 1995]. More recently,
a considerably more sophisticated type of animation-by-example
approach has been proposed[Popovic’ et al. 2003], wherein the tra-
jectory (position and orientation over time) of a rigid body can be
specified by example using a 3D tracker and then “cleaned up” au-
tomatically to synthesize the physically-based motion that best fits
the sketched motion. The system we propose is significantly differ-
ent in that we focus on how 2D stylus input can be used to drive
stylized 2D and 3D character motion.

Walking motions can be easily created by drawing a desired path
on the ground plane for the character to follow, with the drawing
also possibly governing the walking or running speed. Given the
path and path timing, the character motion can be implemented in
many different ways[Arikan and Forsyth 2002; Girard 1987; Kovar
et al. 2002; Park et al. 2002; van de Panne 1997]. Our system
supports many types of motion other than walking and allows for
control over additional motion parameters.

Video game interfaces are perhaps one of the most readily-
accessible forms of animation; a joystick and buttons provide the
ability to control the direction and speed of the character as well
as other sets of context-dependent predefined motions. However,
game interfaces cannot fully replicate the control offered by a cur-
sive device such as a stylus – consider for example the difficult task
of cursively writing one’s name with a joystick. Our system ex-
ploits a user’s skills at cursive drawing and offers a greater degree
of control over motions than many game interfaces. In the case
of walking, for example, we offer simultaneous interactive control
over step length, step height, step style, and step time.

A number of character animation systems use some form of act-
ing as their interface. The spectrum of techniques here includes
full-body acting, as used in motion capture or performance anima-
tion; the use of body silhouettes[Lee et al. 2002], various forms of
computer puppetry[Sturman 1998; Oore et al. 2002; Laszlo et al.
2000], and systems that can infer a desired mapping from an ac-
tor or animator to a character using a two-pass imitate-then-modify
process[Dontcheva et al. 2003]. The 2D stylus-based input of our

system differs significantly from the above systems in that it aims
to exploit drawing skills and not acting skills. The drawn input
of our system also serves as a static visual record of the motion,
something that is not available for acting-based interfaces. Labano-
tation[Hutchinson and Balanchine 1987] is an example of a written
motion notation system for dance choreography, which can be au-
tomatically translated into 3D human figure animations[Wilke et al.
2003]. We aim for a written notation system that is much easier to
learn and use, foregoing much of the detailed control that a general
motion notation system can provide.

More distantly-related previous work looks at creating anima-
tions from sequentially-drawn sketches of a character, somewhat
like traditionally-drawn keyframes. With appropriate constraints, a
3D character pose can be inferred for each hand-drawn frame[Davis
et al. 2003].

3 Character Sketching

The two core components of our animation system are a charac-
ter sketching tool and a motion sketching tool, as shown in Fig-
ure 2. We first discuss the character sketching tool, which consists
of sketching the skeletal links comprising the basic character shape,
followed by the optional addition of drawn annotations.

3.1 Sketching the Skeleton

A character sketch begins with drawing the links that will represent
the character’s articulations and basic shape. The system assumes
that this is sketched in a side view using a total of 7 links, one for
each of the head, torso, upper arm, lower arm, upper leg, lower leg,
and foot. Each link is drawn using one continuous stroke, and the
links can be drawn in any order. Links may or may not intersect
when they are drawn and they may or may not contain some sur-
face detail, such as adding in a sketched thumb, pot-belly, or nose.
Figure 3(a) shows an example sketch.

Figure 3: The process of inferring the skeleton from the sketch.
(a) The seven sketched links. (b) Computed major and minor axes.
(c) Oriented bounding boxes. (d) Computed joint locations. (e)
Computed skeleton.

Once skeletal links have been drawn, the system automatically
infers the locations of the joints, labels the links, and creates the
second arm and leg. Recognizing the human form is addressed in
numerous ways in the computer vision literature, but we are solving
a simpler problem, one that benefits from additional constraints.
Individual links do not need to be identified – each recorded stroke
is already known to be a link. Also, the expected connectivity of
the links is known in advance. Users can sketch the character in a
wide range of initial configurations, as shown in Figure 5.

The pseudocode for inferring the skeletal structure from the
sketched links is given in Figure 4. Once all seven links have
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been sketched, the principal axes of each link are computed as
shown in Figure 3(b). Each sketched link outline is treated as a
series of n points Pi, and the principal axes are computed by fit-
ting the points to an anisotropic Gaussian distribution. If M is
the mean of the points, the major and minor axes of the box are
chosen as the unit-length eigenvectors U j of the covariance matrix
Σ = 1

n ∑i(Pi −M)(Pi −M)′. Σ is tridiagonal in 2D, so the QL al-
gorithm with implicit shifting can be used to solve the eigenprob-
lem[Press et al. 1992]. Next, the points are projected onto the axes
to find the intervals of projection [a j,b j] along those axes, in other
words a j = mini|U j · (Pi −M)| and b j = maxi|U j · (Pi −M)|. Fi-
nally, an oriented bounding box is computed from the intervals of
projection, centered at Cbox = M +∑ j

a j+b j
2 U j , where a j+b j

2 are the
extents along each axis.

1. Wait for seven links to be sketched
2. Fit oriented bounding boxes to all links
3. For each link i
4. For each major-axis end-point on link i, P1

i and P2
i :

5. Search all links j 6= i, for the closest point, Pj
6. If links i and j are not aligned
7. create joint Jn at intersection of major axes of i and j
8. else
9. create joint Jn at midpoint of PiPj
10. Identify and remove all duplicate joints
11. Identify links based on connectivity
12. Create duplicate arm and leg segments.

Figure 4: Algorithm for inferring the skeleton from the sketch.

The next step is to determine the connectivity of the links and the
locations of the resulting joints. For this, a closest link is defined
for each major-axis endpoint, measured in terms of the minimal
Euclidean distance from the major-axis endpoint to any point on
another link. Once link j has been identified as being the closest
link for a major-axis endpoint on link i, a joint is created at the
geometric intersection of the extensions of the major axes of links
i and j. However, this will not produce a sensible joint location if
links i and j are nearly parallel. If the major axes are within 20◦
of being parallel, the mid-point of the line segment connecting the
major axis end-points of i and j is used. This joint-creation process
will result the creation of duplicate joints, such as a second ’ankle’
joint being created when processing the major-axis endpoint at the
toe of the foot. These duplicates are trivially removed.

Once the joints and their associated links are known, we resort
to the expected topology of a human figure in order to label all
the links as being the head, the torso, etc. The torso is identified
as being the only link having 3 associated joints. The head link
is identified as being attached to the torso and having no further
joints. The arms and the legs are similarly identified by their unique
connectivity. If the identification process fails, this is reported to the
user. The bones for the underlying skeleton are finally constructed
by connecting the appropriate joints with straight line segments.
The sketched links are then redefined in the local coordinate frame
of the resulting bones. The default reference pose used to start all
animations is given by a standing posture that has all bones being
vertical and the feet being horizontal. Figure 5 is illustrative of the
variety of skeleton sketches that the system can recognize.

There are two additional joints internal to the torso that are not
shown in the figures. They represent bending at the waist and the
upper back, and are added to facilitate tucking during the forward
and backwards somersault motions. The joints are located at fixed
fractions along the torso bone. A joint is also automatically added
at the ball of the foot in a similar fashion.

The current algorithm used for inferring the skeleton will fail if

Figure 5: A variety of skeleton sketches and their inferred skeleton.
D: the original drawing; S: inferred joints and the fitted skeleton;
R: character in the reference pose; A: drawn annotations; P: an
animated pose.

the arms are sketched in a downwards pose parallel to the torso, or
if the character is sketched in a pose such that the hands are located
close to the head, knees, or feet. These types of malformed sketches
or erroneous link assignments could be addressed with some addi-
tional sophistication in the skeleton recognition algorithm. In prac-
tise the algorithm is quite robust in its current form. The system
does not currently allow for the user to refine the skeleton after it is
constructed by the system.

3.2 Adding Annotations

The system allows the user to add annotations which serve to dec-
orate the links of the character. Thus, one can sketch additional
features such as eyes, ears, hands, hair, a hat, a nose, and shoes. All
annotations automatically become associated with the closest link.
In our current version, this will result in annotations that break, such
as for a sleeve that crosses multiple links. There are a number of
known skinning techniques for addressing this problem, although
these have not yet been implemented in the current system.

4 Motion Sketching

Sketching a motion for a character requires a degree of abstraction
not present when sketching geometry. The motion sketch needs to
convey a significant amount of information: (1) the type of motion;
(2) the spatial location and extent of the motion; and (3) the timing
of the motion. In this section we describe the design of the gestures
for the 2D system, how the gestures are segmented and recognized,
how the output animation is generated, and, lastly, how the 3D sys-
tem works.

4.1 A Cursive Alphabet for Character Motions

Our gesture vocabulary was designed with the following principles
in mind: (1) The motion gestures should be cursive, thus allowing
the specification of one motion to smoothly flow into the specifi-
cation of the next motion; (2) Given the limited number of very-
easy-to-draw gestures that are available, the effort to draw the ges-
ture should reflect the effort required to produce the corresponding
motion. Thus, a regular walk should be easier to draw than a stiff-
legged walk, which itself is easier to draw than a one-legged hop.
(3) The gesture should be reminiscent of the corresponding motion,
to the extent this is possible; (4) Gestures related to locomotion
should allow for forwards and backwards motions; (5) Similar mo-
tions should have similar gestures; (6) Gestures should allow for
the generation of stylistic variations where possible.
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Guided by these principles, we developed the gesture vocabulary
shown in Figure 6. These 18 motions gestures (31 when allowing
for backwards-traveling variants) all allow for control over the tim-
ing of the motion by having the animated motions directly reflect
the time taken to draw the gestures. They also allow for control
over the start and end points of the motions, and all but two of the
motions provide control over a height parameter, either the height
of the swing foot during a step or the height of the body center of
mass during a jump.

Figure 6: Gesture vocabulary.

The drawn gestures do not typically act as a direct representation
of the motion of any particular part of the body. For example, the
drawn arcs used for walking and its variations are evocative of the
path taken by the swing foot, but are not an accurate representation
of this motion. The path of the real swing foot begins from the
previous foot-fall location, not the current one. Similarly, the arc
drawn to represent a jump represents the location of the feet at the
start and end of the arc, while the middle of the arc represents an
approximate trajectory for the center of mass.

Because walks and jumps are both specified using arcs, they are
distinguished by the height of the sketched arc. A “jump line” is

overlaid onto the scene during motion sketching and represents the
maximum arc height that is treated as a walking step. Arcs that
pass over this line are treated as jumps or leaps. Additional de-
tails regarding the parsing and recognition of the input gestures are
provided in the next section.

For motions such as a jump with a twist, it is difficult to find a
2D drawing gesture that is evocative of what is fundamentally a 3D
motion. Our system recognizes a class of more abstract gestures in
order to support such motions. The four motions appearing at the
bottom of Figure 6 shows this class of gestures being employed to
control various gymnastic motions.

4.2 Sketch Segmentation

The input sketch is processed in multiple stages. The first tok-
enization stage consists of taking a stream of input points from the
stylus and producing a corresponding list of tokens. Figure 7(top)
shows the six types of tokens that are output by this first stage and
Figure 7(middle) shows an example input sketch which has been
labelled using these tokens. Once the sketch input has been to-
kenized, a parsing stage is used to identify the set of admissable
gestures, as shown in Figure 7(bottom). Lastly, the motion identifi-
cation stage identifies the specific motions to be generated. Seg-
menting and recognizing gestures based on a regular expression
grammar has a number of precedents, a good example being the
framework set out in [Hammond and Davis 2003]. We now de-
scribe the segmentation steps in additional detail.

Figure 7: Segmenting the motion sketch input.

The tokenization stage processes a sequence of time-stamped in-
put points in six steps, as shown in Figure 8. In step one, the input
points are segmented based upon changes in the vertical direction
of motion (thus discerning between rising and descending strokes).
Step two applies a simple corner detection algorithm[Chetverikov
and Szab 1999]. However, corners may be falsely identified for
quickly drawn loops and arcs on slow input devices, resulting in
curves being represented by only a few sparsely-spaced points. If
the stylus velocity as measured by finite differences at a corner point
exceeds 35% of the maximum stylus velocity, then the point is no
longer regarded as a corner point. Step four classifies segments as
being either straight or curved. A straight segment is defined as
having r < 1.2, where r is the ratio of the arc length to the geomet-
ric distance between segment endpoints. Also in this step, colin-
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ear neighboring straight segments are merged. Step five adds seg-
mentation points at locations where the stylus has paused, which
are important for motions such as shuffles and skates. Lastly, step
six assigns one of six tokens to each resulting segment based upon
whether the segment is straight or curved, and, if straight, based
upon the absolute angle of the line segments. Straight lines that
make an angle of less than 30 degrees with the vertical or horizon-
tal are assigned tokens g and h, respectively; otherwise they are
assigned the token e or f , whichever is closer in terms of angle.

Figure 8: Tokenization consists of six steps: (1) Rough segmenta-
tion based on vertical direction of motion; (2) Corner detection; (3)
Corner post-processing; (4) Merge colinear segments; (5) Identify
pauses; (6) Token assignment.

Given an input sketch that has been labelled with tokens, the
parsing stage groups tokens together into the set of admissable ges-
tures shown in Figure 7(bottom). This is accomplished by matching
the regular expressions corresponding to each gesture type. Lastly,
the motion identification stage determines the specific motion to be
executed. In some cases, the identified gestures will map directly to
particular motions. For example, the gesture for a one-legged hop
has a unique interpretation. In other cases, additional criteria are
examined in order to disambiguate the desired motion.

In order to further distinguish between a walking step and a
jump, the maximum height of the arc is used. An arc of height
h > hwalk is determined to be a jump or leap; all others are inter-
preted as some type of walking step. In our current implementation,
a horizontal line is drawn at y = hwalk, thereby providing the ani-
mator with an easy point of reference while sketching.

An additional criteria is employed to avoid impossibly-large
walking steps. Any arc of length greater than a maximum step
length dmaxstep is interpreted as a jump rather than a step. This
avoids the ill-posed inverse-kinematics problems that would oth-
erwise arise in performing such steps. Similarly, if an arc passes
above y = hwalk but does not allow sufficient ground clearance for
the jump to be completed due to the character’s geometry, a vertical
offset is computed for the apex, allowing for a feasible jump.

Tip-toe and stomp walking steps are distinguished from regu-
lar walking steps by examining the relative position of the apex
of the sketched arc with respect to its endpoints, as measured by
α = (xapex − xstart)/(xend − xstart). A tip-toe step is identified for
α < 0.35 and stomp-step for α > 0.65. At present, the system
performs a discrete classification of each step as being a regular,
tip-toe, or stomp step. A final ambiguity exists between shuffle
steps and a slides, which are both represented by horizontal line
segments. A shuffle step is assumed if the length of the step is less
than dmaxstep and otherwise becomes a slide.

If during a sketch the pen remains stationary for more than 0.5s,
the character is brought to a standing posture. A standing long jump

occurs as a result of a sketched jump arc whenever both feet are
together. If this is not the case, such as when a walking step is
followed by a jump arc, the jump is classified as a leap.

Because the user’s sketch is always ahead of the motion seg-
mentation and synthesis, successfully segmented motion actions are
stored in a queue for processing. It is possible that the motion queue
is exhausted while the next gesture is still in the process of being
drawn, in which case a pause is introduced into the output motion.
This pause exists only as an artifact during the original sketching
process and disappears during a motion replay.

Animators can also sketch motions directly in an environment
with other animated objects. This allows for motions that need to
be coordinated with existing animated objects, such as executing
a leap over a falling character or jumping out of the way of a car.
Because we use the time at which a motion sketch was drawn as
the reference timing for the motion, coordination with existing ani-
mated motion is easily accomodated. The character animation pro-
duced during an initial ‘live’ sketch may not be properly synchro-
nized with the action because of the necessary delay in recognizing
gestures. However, a motion replay produces the correctly timed
result.

4.3 Output Motion Synthesis

Once an input gesture has been appropriately identified and mapped
to a particular motion, e.g., “single back flip”, the key parameters
for that motion segment are extracted, and the output motion syn-
thesis can begin. Common parameters to all motions include the
start and end positions, as well as the motion duration. Most other
motions also extract a parameter relating to the location and timing
of the apex of the sketched input gesture. For example, jumps and
leaps are parameterized in terms of duration of ascent, duration of
descent, the maximum height of the jump, and the start and end lo-
cations. Front and back flips have additional parameters describing
the number and direction of rotations. The walk, walk-stomp, tip-
toe, stiff-leg walk, hop, and one-foot shuffle all use the arc height
parameter to control the height of the swing leg during stepping.

Once the type of motion and the related parameters are known,
the desired motion could be synthesized in one of several ways. We
choose to employ a parameterized keyframe-based motion synthe-
sis technique. Motion-capture-retargeting techniques or space-time
optimization techniques could also be considered, but the kind of
physical realism obtained with these techniques is not one of our
goals, nor are they necessarily appropriate for a system which en-
courages experimentation with cartoon-like super-human motions.

Each type of motion is implemented by breaking it into a fixed
number of stages and then applying a number of tools: a keyframe
database, a keyframe interpolator, an inverse-kinematics solver, and
a means to position the center-of-mass at a specified point. As an
example, the stages used to implement jumps are shown in Figure 9.
A detailed description of the stages used for all motions may be
found in [Thorne 2003].

The duration of each stage is determined as a fixed fraction of the
input-sketch times associated with the motion. For example, a jump
motion has both ascent and descent times, which are determined di-
rectly from the input sketch. The first three stages of a jump motion
all determine their duration as a fixed fraction of the input-sketch
ascent time. The durations of the remaining three stages correspond
to fixed fractions of the input-sketch descent time.

All stages of any particular motion have an associated keyframe
that defines target joint angles to be reached by the character at
the end of the stage. A Catmull-Rom interpolant is used between
successive keyframes. The global position of the character is con-
trolled separately from the keyframes. For steps, the root of the
character (located at the hip) is placed halfway between the known
positions of the stance and swing feet. For the airborne phases of
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Figure 9: States and keyframes used for jumps.

jumps, flips, and leaps, the center-of-mass is directly placed at an
appropriate position as determined by two parabolic center-of-mass
curves, one for ascent and one for descent. These curves are fitted
based upon the start, apex, and end locations of these motions.

Once the keyframes have been interpolated to obtain the pose
and the skeleton has been positioned, some stage-specific modifica-
tions are implemented. These can perform a number of functions,
one example being the modifications required to preserve continu-
ity of the center-of-mass velocity upon jump landings, as required
when the center-of-mass transitions from being controlled by the
descending parabolic arc to being controlled by the landing-stage
keyframes. Inverse kinematics is applied to the legs for all anima-
tion frames involving ground contact, such as landing and follow-
through for the jump, or stance during walking.

A key issue in designing motions is making them robust to vari-
ations in the proportions of the character being animated. Thus,
a character with a short torso and long legs will potentially move
very differently than a character with a long torso and short legs.
At present we deal with this issue primarily through the appropriate
use of inverse kinematics during all ground contact phases. Also,
the length of the largest possible step, dmaxstep, is dependent on the
character’s leg length. The remaining aspects of the motion in our
current system are independent of the character proportions, being
driven purely by joint angles. While generally robust, characters
with extreme proportions will occasionally exhibit problems with
body parts passing through the ground.

4.4 Sketching in 3D environments

The basic mechanisms used in the 2D system can be extended to
work in a 3D setting, albeit with some caveats. The addition of
an extra dimension introduces ambiguities into the interpretation of
the 2D input sketch. A motion sketch for a 3D environment begins
by positioning the camera such that it covers the desired workspace
in its field of view. The sketch is then drawn directly overtop of the
image produced by this fixed point of view, as shown in Figure 13.
One can also sketch motion on top of a photograph by creating
proxy geometry for the objects in the photo, as seen in Figure 14.
The 3D character for our system is modelled in advance and not
produced from a 2D sketch.

The sketching of walks, jumps, leaps, and flips can be mapped
to a 3D environment in a relatively straightforward manner. The
sketch is processed to find the start and end points of each gesture,
as indicated by a change in the vertical direction of motion and
the satisfaction of the corner metric. The identified 2D sketch seg-
mentation points are then back-projected into the 3D scene in order
to locate them in 3D. Given known 3D locations of the start and
end points, the remaining 2D sketch points are back-projected onto
the vertical plane V that embeds the 3D start and end points. The
sketch points can now be processed in the 2D coordinate frame of

V as with the 2D system. In this way, a proper apex for the motions
can be extracted for arcs that are drawn “in perspective”.

The above mapping process still results in a number of limita-
tions. Motions moving directly towards the camera or away from
the camera remain difficult to sketch. Additionally, some gestures
become ambiguous when mapped to 3D, as shown in Figure 10.
In-place stomps and stiff-legged walks become confused with the
shuffle and skating motions, given that all these gestures are drawn
with straight lines. There is a further ambiguity involving the di-
rection the character is facing; the gestures for a forward-step and
backwards-step cannot be distinguished in the 3D environment.
Our system makes the particular assumptions shown in Figure 10
in order to resolve these ambiguities. Other assumptions, modes,
use of context, or additional gestures could equivalently be used to
help with disambiguation.

Figure 10: (a) A gesture which can be interpreted as two slides or
an in-place stomp, resolved in favor of the stomp. (b) Ambiguity
regarding the facing direction of the character is resolved by assum-
ing that the character walks forwards.

Synthesizing motion in 3D occurs much as it does in the 2D
case – the same features are extracted from the sketch as with the
2D system. A keyframe database serves as a back-end to fill in
details of the motion that are not provided directly from the sketch
or through inverse kinematics. Our prototype 3D system largely
uses the same set of keyframes as in the 2D system.

There are two aspects in which 3D motion synthesis differs from
its 2D counterpart: foot placement and direction smoothing. In the
2D system, the start and end point of each gesture marks where the
foot (or feet) strikes the ground. In 3D, the feet are offset from the
vertical plane embedding the sketch in order to allow for distinct
left and right foot placements.

The facing direction of a character does not change in the 2D
system but it may do so in the 3D system. A vector from the start
point to the end point of a gesture is used to define the character’s
direction of travel. In order to have this direction change smoothly,
some form of smoothing is required. Our system interpolates the
heading direction over specific stages of each motion. For walking
motions, this gives the character the appearance of rotating on its
heel. For brevity, we refer the reader to [Thorne 2003] for a detailed
explanation of this process.

5 Results and Discussion

Numerous interactive demonstrations of the system are shown in
the video that accompanies this paper. Sketching both a character
and a motion of the type shown in Figure 1(b) is easily done in
under thirty seconds. The system can also be used to draw and
animate mech-bots, as shown in Figure 11. These are drawn using
5 links instead of 7 and are animated using the same motion data
base, except for the reverse knee bend direction and the lack of
arms.

More abstract gestures allow for the system to animate wider
classes of motions. Figure 12 shows the sketch of a gymnastics
tumbling sequence. As with all motion gestures, the motion type,
height, distance, and timing of the individual motions are derived
from the motion sketch.
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Figure 11: Animating a mech-walker: Shuffle walk and front flip.

Figure 12: Sketching a gymnastics tumbling sequence: flip-with-
twist, butterfly, and front-handspring.

The system is well suited for use with a variety of input devices.
We have most commonly used it with a mouse during development,
but other devices are more suited to producing fast and accurate
gestures. Figure 15 shows the system in use on an electronic white-
board and a Tablet PC. The SMARTboard allows the user to directly
draw the desired motion sketch on top of the scene using a finger,
and similarly for the Tablet PC with a stylus. Children found the
system significantly easier to use with these direct input devices.

5.1 Uses of the system

The animation system presented here is not a substitute for the ar-
ray of professional animation tools and techniques that are com-
monly used in film and games. Instead, the motion sketching sys-
tem presents an alternate and highly-accesible means for users to
create a certain class of character animations. The target class of
motions should be tailored with the application in mind. The mo-
tions and gestures implemented in our prototype have been chosen
to illustrate the motions that one might want for a storyboarding
(variety of locomotion and jumping), for gymnastics choreography,
and for motions that are illustrative of what can be done (moonwalk,
flips).

There exist a number of commercial and research animation sys-
tems that are capable of synthesizing motions from a variety con-
straints. The goal of a cursive motion specification language is to
make the specification of the constraints and timing a more trans-
parent process – the users need not be fully aware of the specific
parameters that drive the motion synthesis process. Unlike acting-
based interfaces, the motion gestures provide a meaningful visual

Figure 13: Walking and leaping around a set of trees.

Figure 14: Stunts for a miniature character that have been sketched
on top of an image with modelled 3D proxy geometry.

Figure 15: Sketching motions on a SMARTboard and a Tablet PC.

record of the motion, as well as allowing for “superhuman” unphys-
ical and exaggerated motions.

Over fifty people of all ages have used the system, including chil-
dren as young as three. A number of anecdotal observations were
made. Users rapidly learned the gesture vocabulary and enjoyed
experimenting with the system in many ways. The gesture iden-
tification was occasionally problematic, with some gestures being
interpreted in a fashion that did not reflect the user’s intentions. We
intend to further improve the robustness of the gesture recognition
in order to address this issue.

Young children greatly enjoyed experimenting with the motion
sketching, but found it difficult to understand the restrictions im-
posed on the character sketching, namely the use of seven links
representing a side view of the human figure and the fact that the
principal seven links had to be drawn before annotations could be
added. Perhaps unsurprisingly, children would also put the system
fully to the test by inevitably drawing motion gestures which had
no meaningful interpretation. “Garbage in, garbage out” describes
the behavior of the system in such circumstances.

Adults enjoyed the ability to sketch a character and then be im-
mediately able to animate it. While we have conceived of the sys-
tem as principally targeting novice users, an accomplished animator
remarked that the system provided almost instantaneous satisfac-
tion because of the immediacy of the animated results, something
he felt was missing from present-day animation tools.

5.2 Scalability

Adding a new motion to the system requires the creation of a new
gesture that can be identified by a novel sequence of tokens, as
well as the implementation of an appropriate sequence of states and
keyframes that is capable of generating parameterized versions of
the desired motion. In the future we wish to add gestures for a va-
riety of falling motions as well as interaction with the environment.
The system can potentially be made more scalable through the use
of 3D input devices and the improved use of context in specifying
motions. Such additional controllability would come at the expense
of increased complexity of the interface.
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5.3 Limitations

The current system has a number of limitations. The system does
not support the complete gesture vocabulary in 3D due to the am-
biguities introduced by the 3D mapping. These can be overcome
in part by making some motions context-specific or by introducing
user-specified modes to resolve such ambiguities. For example, in a
figure-skating context, drawn loops are probably better reserved for
spins around the vertical axis rather than the head-over-heels flips
that the current system is capable of.

The system is not suitable for animation that requires unique or
detailed motions. A partial solution would be to animate a char-
acter in a series of successive passes with a motion layering ap-
proach[Sturman 1998; Oore et al. 2002; Dontcheva et al. 2003].

A possible improvement on our sketch segmentation scheme
would be to develop a system that can be “trained by example” to
recognize specific desired sets of gestures[Rubine 1991]. However,
the work presented in [Rubine 1991] is not directly applicable to
our problem domain because of the cursive nature of our gestures;
one stroke represents a compound sequence of parameterized (and
therefore variable) gestures instead of a single gesture.

6 Summary

As kinematic and dynamic methods for synthesizing motions from
constraints become increasingly mature, the specification of con-
straints becomes a bottleneck, particularly to novice animators. We
have presented a cursive language for sketching 2D and 3D charac-
ter motions. This is implemented in a system that allows novices to
quickly learn to sketch-and-animate a human or “mech-bot” char-
acter of their own design in tens of seconds. The technique is well-
suited to take advantage of Tablet PCs and electronic whiteboards.
The system is simple enough for children to use, and has other po-
tential applications in storyboarding and the choreography of ath-
letic routines. It is our hope that this method and its future variations
play a role in making animation a more accessible media.
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