A Model

Fixed Connection Network

- Processors Labeled P1, P2, ... , P_{N}
- Each Processor knows its Unique $I D$
- Local Control
- Local Memory
- Fixed Bi-directional Connections
- Synchronous

Global Clock Signals Next Phase

Operations at Each Phase

Each Time the Global Clock Ticks

- Receive Input from Neighbors
- Inspect Local Memory
- Perform Computation
- Generate Output for Neighbors
- Update Local Memory

A Model of Cooperation: Bucket Brigades

- N Processors, Labeled P_{1} to P_{N}
- Processor P_{i} is connected to $P_{i+1}, i<N$ and $P_{i-1}, i>0$

A Sort Algorithm

Odd-Even Transposition on Linear Array

- The Array is $X[1: N]$
- Pi's Local Variable X is $X[i]$
- Pi's have a Local Variables Y and a Global/Singular variable Step
- Step is initialized to Zero (0) at all Pi
- Compares and Exchanges are done alternately at Odd/Even - Even/Odd Pairs

Odd-Even Transposition

Algorithmic Description of Parallel Bubble Sort

```
At Each Clock Tick and For Each Pi do {
    Step ++;
    if parity(i)== parity(Step) & i<N then
        Read from Pi+1 to Y;
        X=min}(X,Y
    else if i> 1 then
    Read from Pi-1 to Y;
    X=max}(X,Y)
}
```


Example of Parallel Bubble Sort

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors

Case of 4, 3, 2, 1 Takes 4 Steps

Measuring Benefits

How Do We Measure What We Have Gained?

- Let $T_{l}(N)$ be the Best Sequential Algorithm
- Let $T_{P}(N)$ be the Time for Parallel Algorithm (P processors)
- The Speedup $S_{P}(N)$ is $T_{l}(N) / T_{P}(N)$
- The $\operatorname{Cost} C_{P}(N)$ is $P \times T_{P}(N)$, assuming P processors
- The Work $W_{P}(N)$ is the summation of the number of steps taken by each of the processors. It is often, but not always, the same as Cost.
- The Cost Efficiency $C E_{P}(N)$ (often called efficiency $E p(N)$) is

$$
S_{P}(N) / P=C_{l}(N) / C_{P}(N)=T_{l}(N) /\left(P \times T_{P}(N)\right)
$$

- The Work Efficiency $W E_{P}(N)$ is

$$
W_{l}(N) / W_{P}(N)=T_{l}(N) / W_{P}(N)
$$

Napkin Analysis of Parallel Bubble

How'd We Do ? - Well, Not Great !

- $T_{l}(N)=N \lg N$
- $T_{N}(N)=N$
- $S_{N}(N)=\lg N$
- $C_{N}(N)=W_{N}(N)=N^{2}$
- $E_{N}(N)=\lg N / N$

Optimal Sequential
Parallel Bubble
Speedup
Cost and Work
Cost and Work Efficiency

But Good Relative to Sequential Bubble

$$
S_{N}(N)=N^{2} / N=N ; E_{N}(N)=S_{N}(N) / N=1!
$$

Non-Scalability of Odd-Even Sort

Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling number of values (N), each time we double number of processors (P) in a ring. The cost of the parallel sort requires each processor to sort its share of values (N/P), and then do P swaps and merges. Since P processors are busy, the cost is $N \lg N / P$. After the local sort, sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P processors, for a Cost of N , and $\mathrm{P}-1$ such merges occur, for a total cost of $\mathrm{N} \times(\mathrm{P}-1)$.
Efficiency is then

$\mathbf{E}=\mathbf{N} \lg \mathbf{N} /(\mathbf{N} \lg \mathbf{N} / \mathbf{P}+\mathbf{N} \times(\mathbf{P}-\mathbf{1}))=\lg \mathbf{N} /(\mathbf{P}-1+\lg \mathbf{N}-\lg \mathbf{P})$

First 2 columns double N as P doubles. Second three try to increase N to keep efficiency when P doubles.

\mathbf{N}	\mathbf{P}	\mathbf{E}	\mathbf{N}	\mathbf{P}	\mathbf{E}
64	1	1.0000	64	1	1.0000
128	2	1.0000	4096	2	1.0000
256	4	0.8889	16777216	4	0.9600
512	8	0.6923	$2.81475 \mathrm{E}+14$	8	0.9231
1024	16	0.4762	$7.92282 \mathrm{E}+28$	16	0.8972
2048	32	0.2973	$6.2771 \mathrm{E}+57$	32	0.8807
4096	64	0.1739	$3.9402 \mathrm{E}+115$	64	0.8707
8192	128	0.0977	$1.5525 \mathrm{E}+231$	128	0.8649

Cost for Finding Max Value in a List

Given a sequence A of n elements find the largest of these elements.
Serial Algorithm.
Largest $=\mathrm{A}[0]$
For $\mathrm{i}=1$ to $\mathrm{n}-1$ do $\{$ if $\mathrm{A}[\mathrm{i}]>$ Largest then Largest $=\mathrm{A}[\mathrm{i}]\}$ n-1 comparison.

A Parallel Algorithm

$$
\log _{2} n
$$

Efficiency of Binary Tree Max

Assume Full Binary Tree

- $T_{N / 2}(N)=T_{N / 4}(N / 2)+1, N>1$
$T_{1}(2)=1$
$T_{N / 2}(N)=\lg N=O(\lg N)$
- $C_{N}(N)=N \lg N=O(N \lg N)$
$\mathrm{E}_{N}(N)=N / N \lg N=O(1 / \lg N)$
- $W_{N / 2}(N)=W_{N / 4}(N / 2)+N / 2, N>2$
$W_{l}(2)=1$
$W_{N / 2}(N)=N-1=O(N)$
- This is optimally work efficient.
- But it is not optimally cost efficient.

Finding the Maximum by Controlled Anarchy

Step\#1: Everyone's an Optimist

This is the Meatiest Part

Step\#2: Realism Sets In

That's All Folks

Step\#3: Reporting the Answer

Analysis of Very Fast Max

Optimal in Time, Not Work on CRCW (Concurrent Read Concurrent Write) PRAM (Parallel Random Access Machine)

- Assign \mathbf{N} processors to initialize \mathbf{M} in 1 step.
- Assign all \mathbf{N}^{2} processors to first statement to fill \mathbf{B} in 1 step.
- Assign all \mathbf{N}^{2} processors to 2 nd statement to fill \mathbf{M} in 1 step.
- Assign \mathbf{N} processors to 3rd statement to select maxVal in 1 step.

That Was Inefficient but Real Fast

- Can Solve Any Size Problem in 3 Steps

But we need to make unreasonable assumptions about memory (CRCW)

- Use Lots of Processors

Over a Million to Find Max of 1000

- We Want Fast but Not Too Expensive

