
A Model

Fixed Connection Network

 Processors Labeled P1, P2, … , PN

 Each Processor knows its Unique ID

 Local Control

 Local Memory

 Fixed Bi-directional Connections

 Synchronous

 Global Clock Signals Next Phase

Really Fast Sorts – 2 – Charles E. Hughes — UCF

Operations at Each Phase

Each Time the Global Clock Ticks

 Receive Input from Neighbors

 Inspect Local Memory

 Perform Computation

 Generate Output for Neighbors

 Update Local Memory

Really Fast Sorts – 3 – Charles E. Hughes — UCF

A Model of Cooperation: Bucket Brigades

…P
1

 P
2

 P
3

 P
N

 N Processors, Labeled P1 to PN

 Processor Pi is connected to Pi+1, i<N and Pi-1, i>0

Really Fast Sorts – 4 – Charles E. Hughes — UCF

A Sort Algorithm

Odd-Even Transposition on Linear Array

…P
1

 P
2

 P
3

 P
N

 The Array is X[1 : N]

 Pi's Local Variable X is X[i]

 Pi's have a Local Variables Y and a Global/Singular variable Step

 Step is initialized to Zero (0) at all Pi

 Compares and Exchanges are done alternately at Odd/Even - Even/Odd Pairs

Really Fast Sorts – 5 – Charles E. Hughes — UCF

Odd-Even Transposition

Algorithmic Description of Parallel Bubble Sort

At Each Clock Tick and For Each Pi do {

 Step ++;

 if parity(i) = = parity(Step) & i < N then

 Read from Pi+1 to Y;

 X = min(X,Y)

 else if i > 1 then

 Read from Pi-1 to Y;

 X = max(X,Y);

}

Really Fast Sorts – 6 – Charles E. Hughes — UCF

Example of Parallel Bubble Sort

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors

1 732

2 317

7 132

2 371

Case of 4, 3, 2, 1 Takes 4 Steps

Really Fast Sorts – 7 – Charles E. Hughes — UCF

Measuring Benefits

How Do We Measure What We Have Gained?

 Let T1(N) be the Best Sequential Algorithm

 Let TP(N) be the Time for Parallel Algorithm (P processors)

 The Speedup SP(N) is T1(N)/TP(N)

 The Cost CP(N) is PTP(N), assuming P processors

 The Work WP(N) is the summation of the number of steps taken by each of the

processors. It is often, but not always, the same as Cost.

 The Cost Efficiency CE P(N) (often called efficiency Ep(N)) is

 SP(N)/P = C1(N) / CP(N) = T1(N) / (PTP(N))

 The Work Efficiency WEP(N) is

 W1(N) / WP(N) = T1(N) / WP(N)

Really Fast Sorts – 8 – Charles E. Hughes — UCF

Napkin Analysis of Parallel Bubble

How'd We Do ? - Well, Not Great !

 T1(N) = N lg N Optimal Sequential

 TN(N) = N Parallel Bubble

 SN(N) = lg N Speedup

 CN(N) = WN(N) = N2 Cost and Work

 EN(N) = lg N / N Cost and Work Efficiency

But Good Relative to Sequential Bubble

SN(N) = N2/N = N ; EN(N) = SN(N) /N = 1 !

Really Fast Sorts – 9 – Charles E. Hughes — UCF

Non-Scalability of Odd-Even Sort

Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling
number of values (N), each time we double number of processors (P) in a ring. The cost
of the parallel sort requires each processor to sort its share of values (N/P), and then do P
swaps and merges. Since P processors are busy, the cost is N lg N/P. After the local sort,
sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P

processors, for a Cost of N, and P-1 such merges occur, for a total cost of N(P-1).
Efficiency is then

E = N lg N / (N lg N/P + N(P-1)) = lg N / (P - 1 + lg N - lgP)
First 2 columns double N as P doubles. Second three try to increase N to keep efficiency
when P doubles.

N P E N P E
64 1 1.0000 64 1 1.0000

128 2 1.0000 4096 2 1.0000
256 4 0.8889 16777216 4 0.9600
512 8 0.6923 2.81475E+14 8 0.9231

1024 16 0.4762 7.92282E+28 16 0.8972
2048 32 0.2973 6.2771E+57 32 0.8807
4096 64 0.1739 3.9402E+115 64 0.8707
8192 128 0.0977 1.5525E+231 128 0.8649

Really Fast Sorts – 10 – Charles E. Hughes — UCF

Cost for Finding Max Value in a List

Given a sequence A of n elements find the largest of these elements.

 Serial Algorithm.
 Largest = A [0]
 For i = 1 to n-1 do { if A [i] > Largest then Largest = A [i] }
 n - 1 comparison.

 A Parallel Algorithm

3 • 8 • 5 • 7 • • 2 • 1 • 9 • 4

8 • 7 • • 2 • 9

8 • •9

9 • time 3

time 2

time 1

log n2

P1 P2 P3 P4

Really Fast Sorts – 11 – Charles E. Hughes — UCF

Efficiency of Binary Tree Max

Assume Full Binary Tree

 TN/2(N) = TN/4(N/2) + 1, N > 1

 T1(2) = 1

 TN/2(N) = lg N = O(lg N)

 CN(N) = N lg N = O(N lg N)

E N(N) = N / N lg N = O(1 / lg N)

 WN/2(N) = WN/4(N/2) + N/2, N > 2

 W1(2) = 1

 W N/2(N) = N – 1 = O(N)

 This is optimally work efficient.

 But it is not optimally cost efficient.

Really Fast Sorts – 12 – Charles E. Hughes — UCF

Finding the Maximum by Controlled Anarchy

Step#1: Everyone’s an Optimist

 12 6 15 7

12

We're #1 We're #1 We're #1 We're #1

Ok

6

We're #1 We're #1 We're #1 We're #1

Ok

15

We're #1 We're #1 We're #1 We're #1

Ok

7

We're #1 We're #1 We're #1 We're #1

Ok

Really Fast Sorts – 13 – Charles E. Hughes — UCF

This is the Meatiest Part

Step#2: Realism Sets In

 12 6 15 7

12

Just
Kidding

Rats!

 6

Just
Kidding

Jus t
Kidding

Jus t
Kidding

Rats!

15

7

Just
Kidding

Jus t
Kidding

Rats!

Really Fast Sorts – 14 – Charles E. Hughes — UCF

That’s All Folks

Step#3: Reporting the Answer

 12 6 15 7

12

6

15

15 is boss

7

Really Fast Sorts – 15 – Charles E. Hughes — UCF

Analysis of Very Fast Max

Optimal in Time, Not Work on CRCW (Concurrent Read Concurrent Write) PRAM

(Parallel Random Access Machine)

 Assign N processors to initialize M in 1 step.

 Assign all N2 processors to first statement to fill B in 1 step.

 Assign all N2 processors to 2nd statement to fill M in 1 step.

 Assign N processors to 3rd statement to select maxVal in 1 step.

Really Fast Sorts – 16 – Charles E. Hughes — UCF

That Was Inefficient but Real Fast

 Can Solve Any Size Problem in 3 Steps

But we need to make unreasonable assumptions about memory (CRCW)

 Use Lots of Processors

Over a Million to Find Max of 1000

 We Want Fast but Not Too Expensive

