
A Model

Fixed Connection Network

 Processors Labeled P1, P2, … , PN

 Each Processor knows its Unique ID

 Local Control

 Local Memory

 Fixed Bi-directional Connections

 Synchronous

 Global Clock Signals Next Phase

Really Fast Sorts – 2 – Charles E. Hughes — UCF

Operations at Each Phase

Each Time the Global Clock Ticks

 Receive Input from Neighbors

 Inspect Local Memory

 Perform Computation

 Generate Output for Neighbors

 Update Local Memory

Really Fast Sorts – 3 – Charles E. Hughes — UCF

A Model of Cooperation: Bucket Brigades

…P
1

 P
2

 P
3

 P
N

 N Processors, Labeled P1 to PN

 Processor Pi is connected to Pi+1, i<N and Pi-1, i>0

Really Fast Sorts – 4 – Charles E. Hughes — UCF

A Sort Algorithm

Odd-Even Transposition on Linear Array

…P
1

 P
2

 P
3

 P
N

 The Array is X[1 : N]

 Pi's Local Variable X is X[i]

 Pi's have a Local Variables Y and a Global/Singular variable Step

 Step is initialized to Zero (0) at all Pi

 Compares and Exchanges are done alternately at Odd/Even - Even/Odd Pairs

Really Fast Sorts – 5 – Charles E. Hughes — UCF

Odd-Even Transposition

Algorithmic Description of Parallel Bubble Sort

At Each Clock Tick and For Each Pi do {

 Step ++;

 if parity(i) = = parity(Step) & i < N then

 Read from Pi+1 to Y;

 X = min(X,Y)

 else if i > 1 then

 Read from Pi-1 to Y;

 X = max(X,Y);

}

Really Fast Sorts – 6 – Charles E. Hughes — UCF

Example of Parallel Bubble Sort

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors

1 732

2 317

7 132

2 371

Case of 4, 3, 2, 1 Takes 4 Steps

Really Fast Sorts – 7 – Charles E. Hughes — UCF

Measuring Benefits

How Do We Measure What We Have Gained?

 Let T1(N) be the Best Sequential Algorithm

 Let TP(N) be the Time for Parallel Algorithm (P processors)

 The Speedup SP(N) is T1(N)/TP(N)

 The Cost CP(N) is PTP(N), assuming P processors

 The Work WP(N) is the summation of the number of steps taken by each of the

processors. It is often, but not always, the same as Cost.

 The Cost Efficiency CE P(N) (often called efficiency Ep(N)) is

 SP(N)/P = C1(N) / CP(N) = T1(N) / (PTP(N))

 The Work Efficiency WEP(N) is

 W1(N) / WP(N) = T1(N) / WP(N)

Really Fast Sorts – 8 – Charles E. Hughes — UCF

Napkin Analysis of Parallel Bubble

How'd We Do ? - Well, Not Great !

 T1(N) = N lg N Optimal Sequential

 TN(N) = N Parallel Bubble

 SN(N) = lg N Speedup

 CN(N) = WN(N) = N2 Cost and Work

 EN(N) = lg N / N Cost and Work Efficiency

But Good Relative to Sequential Bubble

SN(N) = N2/N = N ; EN(N) = SN(N) /N = 1 !

Really Fast Sorts – 9 – Charles E. Hughes — UCF

Non-Scalability of Odd-Even Sort

Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling
number of values (N), each time we double number of processors (P) in a ring. The cost
of the parallel sort requires each processor to sort its share of values (N/P), and then do P
swaps and merges. Since P processors are busy, the cost is N lg N/P. After the local sort,
sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P

processors, for a Cost of N, and P-1 such merges occur, for a total cost of N(P-1).
Efficiency is then

E = N lg N / (N lg N/P + N(P-1)) = lg N / (P - 1 + lg N - lgP)
First 2 columns double N as P doubles. Second three try to increase N to keep efficiency
when P doubles.

N P E N P E
64 1 1.0000 64 1 1.0000

128 2 1.0000 4096 2 1.0000
256 4 0.8889 16777216 4 0.9600
512 8 0.6923 2.81475E+14 8 0.9231

1024 16 0.4762 7.92282E+28 16 0.8972
2048 32 0.2973 6.2771E+57 32 0.8807
4096 64 0.1739 3.9402E+115 64 0.8707
8192 128 0.0977 1.5525E+231 128 0.8649

Really Fast Sorts – 10 – Charles E. Hughes — UCF

Cost for Finding Max Value in a List

Given a sequence A of n elements find the largest of these elements.

 Serial Algorithm.
 Largest = A [0]
 For i = 1 to n-1 do { if A [i] > Largest then Largest = A [i] }
 n - 1 comparison.

 A Parallel Algorithm

3 • 8 • 5 • 7 • • 2 • 1 • 9 • 4

8 • 7 • • 2 • 9

8 • •9

9 • time 3

time 2

time 1

log n2

P1 P2 P3 P4

Really Fast Sorts – 11 – Charles E. Hughes — UCF

Efficiency of Binary Tree Max

Assume Full Binary Tree

 TN/2(N) = TN/4(N/2) + 1, N > 1

 T1(2) = 1

 TN/2(N) = lg N = O(lg N)

 CN(N) = N lg N = O(N lg N)

E N(N) = N / N lg N = O(1 / lg N)

 WN/2(N) = WN/4(N/2) + N/2, N > 2

 W1(2) = 1

 W N/2(N) = N – 1 = O(N)

 This is optimally work efficient.

 But it is not optimally cost efficient.

Really Fast Sorts – 12 – Charles E. Hughes — UCF

Finding the Maximum by Controlled Anarchy

Step#1: Everyone’s an Optimist

 12 6 15 7

12

We're #1 We're #1 We're #1 We're #1

Ok

6

We're #1 We're #1 We're #1 We're #1

Ok

15

We're #1 We're #1 We're #1 We're #1

Ok

7

We're #1 We're #1 We're #1 We're #1

Ok

Really Fast Sorts – 13 – Charles E. Hughes — UCF

This is the Meatiest Part

Step#2: Realism Sets In

 12 6 15 7

12

Just
Kidding

Rats!

 6

Just
Kidding

Jus t
Kidding

Jus t
Kidding

Rats!

15

7

Just
Kidding

Jus t
Kidding

Rats!

Really Fast Sorts – 14 – Charles E. Hughes — UCF

That’s All Folks

Step#3: Reporting the Answer

 12 6 15 7

12

6

15

15 is boss

7

Really Fast Sorts – 15 – Charles E. Hughes — UCF

Analysis of Very Fast Max

Optimal in Time, Not Work on CRCW (Concurrent Read Concurrent Write) PRAM

(Parallel Random Access Machine)

 Assign N processors to initialize M in 1 step.

 Assign all N2 processors to first statement to fill B in 1 step.

 Assign all N2 processors to 2nd statement to fill M in 1 step.

 Assign N processors to 3rd statement to select maxVal in 1 step.

Really Fast Sorts – 16 – Charles E. Hughes — UCF

That Was Inefficient but Real Fast

 Can Solve Any Size Problem in 3 Steps

But we need to make unreasonable assumptions about memory (CRCW)

 Use Lots of Processors

Over a Million to Find Max of 1000

 We Want Fast but Not Too Expensive

