A Model

Fixed Connection Network

e Processors Labeled P1, P2, ..., PN

e Each Processor knows its Unique ID
e Local Control

e Local Memory

e Fixed Bi-directional Connections

e Synchronous
Global Clock Signals Next Phase

Operations at Each Phase

Each Time the Global Clock Ticks

Receive Input from Neighbors

Inspect Local Memory

Perform Computation

Generate Output for Neighbors

Update Local Memory

Really Fast Sorts -2- Charles E. Hughes — UCF

A Model of Cooperation: Bucket Brigades

e N Processors, Labeled P1 to PN

e Processor Pj is connected to Pj+1, i<N and Pj-1, i=>0

Really Fast Sorts -3- Charles E. Hughes — UCF

A Sort Algorithm

Odd-Even Transposition on Linear Array

P P P — ... —P

1 2 3 N

The Array is X[1 : N]
Pi's Local Variable X is X[i]

Pi's have a Local Variables Y and a Global/Singular variable Step

Step is initialized to Zero (0) at all Pi

Compares and Exchanges are done alternately at Odd/Even - Even/Odd Pairs

Really Fast Sorts -4 - Charles E. Hughes — UCF

Odd-Even Transposition

Algorithmic Description of Parallel Bubble Sort

At Each Clock Tick and For Each Pj do {
Step ++;
If parity(i) = = parity(Step) & i< N then
Read from Pi+1 to Y;
X =min(X)Y)
else if i > 1 then

Read from Pj-1to Y;

X =max(X,Y);

Really Fast Sorts -5- Charles E. Hughes — UCF

Example of Parallel Bubble Sort

Sort 4 Numbers 7, 2, 3, 1 on an Array of 4 Processors

<+ g
2 ! 1 3
-«

2 1 / 3
- -«

Case of 4, 3, 2, 1 Takes 4 Steps

Really Fast Sorts -6- Charles E. Hughes — UCF

Measuring Benefits

How Do We Measure What We Have Gained?

e Let T1(N) be the Best Sequential Algorithm

o Let Tp(N) be the Time for Parallel Algorithm (P processors)
e The Speedup Sp(N) is T1(N)/Tp(N)

e The Cost Cp(N) is PxTp(N), assuming P processors

e The Work Wp(N) is the summation of the number of steps taken by each of the
processors. It is often, but not always, the same as Cost.

e The Cost Efficiency CE p(N) (often called efficiency Ep(N)) is
Sp(N)/P = C1(N) / Cp(N) = T1(N) / (PxTp(N))

e The Work Efficiency WEpR(N) is
W1(N) / Wp(N) =Ty(N) / Wp(N)

Really Fast Sorts -7- Charles E. Hughes — UCF

Napkin Analysis of Parallel Bubble

How'd We Do ? - Well, Not Great !

e Ti(N)=NIgN Optimal Sequential

e Ty(N) =N Parallel Bubble

e Sy(N)=1IgN Speedup

e Cn(N) =Wy(N) =N2 Cost and Work

e EN(N) =IgN/N Cost and Work Efficiency

But Good Relative to Sequential Bubble
Sn(N) =N2/N=N;EnN) =Sy(N)/N=11

Really Fast Sorts -8- Charles E. Hughes — UCF

Non-Scalability of Odd-Even Sort

Assume we start with 1 processor sorting 64 values, and then try to scale up by doubling
number of values (N), each time we double number of processors (P) in a ring. The cost
of the parallel sort requires each processor to sort its share of values (N/P), and then do P
swaps and merges. Since P processors are busy, the cost is N Ig N/P. After the local sort,
sets are exchanged, merged, and parts thrown away. The merge costs N/P on each of P
processors, for a Cost of N, and P-1 such merges occur, for a total cost of Nx(P-1).
Efficiency is then

E=NIgN/(NIgN/P+Nx(P-1))=IgN/(P-1+IgN -IgP)

First 2 columns double N as P doubles. Second three try to increase N to keep efficiency
when P doubles.

N P E N P E
64 1 1.0000 64 1 1.0000
128 2 1.0000 4096 2 1.0000
256 4 0.8889 16777216 4 0.9600
512 8 0.6923 2.81475E+14 8 0.9231
1024 16 0.4762 7.92282E+28 16 0.8972
2048 32 0.2973 6.2771E+57 32 0.8807
4096 64 0.1739 3.9402E+115 64 0.8707
8192 128 0.0977 1.5525E+231 128 0.8649

Really Fast Sorts -9- Charles E. Hughes — UCF

Cost for Finding Max Value in a List

Given a sequence A of n elements find the largest of these elements.
Serial Algorithm.
Largest = A [0]
Fori=1ton-1do {if A[i] > Largest then Largest=ATi] }
n - 1 comparison.

A Parallel Algorithm

log, n

Really Fast Sorts -10- Charles E. Hughes — UCF

Efficiency of Binary Tree Max

Assume Full Binary Tree

Tn2(N) =Tna(N/2) + 1, N> 1
T1(2)=1

Tnz(N) =1g N =0O(lg N)

Cn(N) =NIgN =O(N Ig N)
En(N) =N /NIgN =0(1/1gN)
Whi2(N) = Wha(N/2) + N/2, N > 2
Wi(2) =1

Wi(N) =N —1=0O(N)

This is optimally work efficient.

But it is not optimally cost efficient.

Really Fast Sorts -11-

Charles E. Hughes — UCF

Finding the Maximum by Controlled Anarchy

Step#1:. Everyone’s an Optimist

12 6

15 14
G
o o (o

[o
(o]

o

S
>0

12

(@)

S>—ro
S>—ro
o
o

o
O O (o]

G
o o o o (o]

)—rO
)—rO

15

S
S

-

Really Fast Sorts -12 - Charles E. Hughes — UCF

This 1s the Meatiest Part

Step#2: Realism Sets In

= =n[=Je=
12J§ JI J: J;)l
6 JI JI J: J; 5
s s f s [
15k X L X)l

That’s All Folks

Step#3: Reporting the Answer
12 6
OD OD o o
1127 S S S

15 7

CCCCCCCCCCCCCCCCCCC

Analysis of Very Fast Max

Optimal in Time, Not Work on CRCW (Concurrent Read Concurrent Write) PRAM
(Parallel Random Access Machine)

Assign N processors to initialize M in 1 step.

Assign all N2 processors to first statement to fill B in 1 step.

Assign all N2 processors to 2nd statement to fill M in 1 step.

Assign N processors to 3rd statement to select maxVal in 1 step.

Really Fast Sorts -15- Charles E. Hughes — UCF

That Was Inefficient but Real Fast

e Can Solve Any Size Problem in 3 Steps
But we need to make unreasonable assumptions about memory (CRCW)

e Use Lots of Processors
Over a Million to Find Max of 1000

e \We Want Fast but Not Too Expensive

Really Fast Sorts -16 - Charles E. Hughes — UCF

