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COT5405 Design & Analysis of Algorithms

Second Midterm Exam – 11/10/2010

Problem Points Points Received

1 30

2 30

3 20

4 20

Total 100
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1. [30 points] Show that the following variation of the maximum flow problem 
can be reduced to linear programming.  Each edge has not only a capacity, 
but also a lower bound on the flow it must carry.  Use the following notations: 
V for vertex set, E for edge set, s for source, t for sink, e=(u,v) for an edge, fe 

for the flow along edge e, ce for the capacity of e, and le for the lower bound 
on the flow along e. 



Name: PID:

2. [30 points] Run the Fulkerson-Ford algorithm on the graph below.  Always 
select the fattest augmenting path, i.e., the one that admits the largest flow. 
(Do not use the BFS algorithm to select the shortest augmenting path.)

s-->c-->e-->t  flow=4

s-->b-->d-->t  flow=2

s-->b-->e-->c-->d-->t  flow=1

Max flow = 7
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3. [20 points] You have to cut a wooden stick into pieces. The most affordable 
company charges money according to the length of the stick being cut. Their 
procedure requires that they only make one cut at a time.

It is easy to notice that different selections in the order of cutting can lead to 
different prices. For example, consider a stick of length 10 meters that has to 
be cut at 2, 4 and 7 meters from one end. There are several choices. One can 
be cutting first at 2, then at 4, then at 7. This leads to a price of 10 + 8 + 6 = 
24 because the first stick was of 10 meters, the resulting of 8 and the last 
one of 6. Another choice could be cutting at 4, then at 2, then at 7. This 
would lead to a price of 10 + 4 + 6 = 20, which is a better price.

The input  to the problem will  consist  of  a positive integer  L denoting the 
length of the stick and array A containing N ≥ 2 positive integers ci (0 ≤ ci ≤ 
L), representing the places where the cuts have to be done, given in strictly 
increasing order. For simplicity, you may assume that A(1) = 0 and A(N) = L 
(though of course you do not actually need to make cuts at these locations).

Your  task  is  to  design  an  efficient dynamic  programming  algorithm  to 
compute the minimum cost for cutting a given stick.

Let C(i,j) be the be the minimum cost of making cuts at positions A[i+1], ...,  
A[j-1] by considering only the stick starting at A[i] and ending at A[j].

If i+1 = j (this is the base case)

C(i,j) =
____________________________

Else (this is the recurrence)

C(i,j) =
____________________________

Output:

____________________________

What is the run-time of this algorithm?

What is the memory requirement of this algorithm?
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4. [20 points] The Hamiltonian Path (HP) Problem is that of deciding whether 
there exists a  simple path in a graph which visits each vertex in a graph 
exactly once. In a general graph, this problem is NP-Complete. However, if 
the given graph is a directed acyclic graph (DAG), then this problem can be 
solved efficiently.

Your task is to design an efficient algorithm to solve the HP Problem on a 
DAG. Note that a HP can start at any vertex, can end at any vertex, and does 
not need to form a cycle (that is, there does not need to be an edge from the 
end vertex to the start vertex). For instance, on the graph 

 to  the  left,  the  output  to  the  HP  Problem  is  “yes”,  due  to  the  path 
1254367.

The input to the problem is a DAG, and your output should be “yes” or “no” 
depending on whether the graph has a HP.

Your answer should consist of the following steps:
a. Give and define the state of your recurrence (for instance, L[j] is the state 

of  the  longest  increasing  subsequence  problem and  is  defined  as  the 
longest increasing subsequence beginning at node j).

b. Define the base case(s) of your state.
c. Give the recurrence.
d. State the output (or how to use the output to arrive at an answer of “yes” 

or “no” if your state is not defined as a Boolean value).
e. State the run-time and memory requirement of your algorithm.

Hint: It may be easier to solve a related graph problem, and then use that to answer “yes” or  
“no” to the HP problem.
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