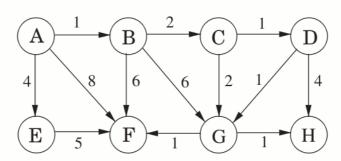

COT5405 - Homework 2

Out date: **09/22/2010** (Wednesday), due date: **09/29/2010** (Wednesday) **15** points each problem.

You need to turn in the solutions for **all four** problems. But we will select **two** problems and **only** grade these two.

3.4. Run the strongly connected components algorithm on the following directed graphs G. When doing DFS on G^R : whenever there is a choice of vertices to explore, always pick the one that is alphabetically first.

In each case answer the following questions.


- (a) In what order are the strongly connected components (SCCs) found?
- (b) Which are source SCCs and which are sink SCCs?
- (c) Draw the "metagraph" (each meta-node is an SCC of G).
- (d) What is the minimum number of edges you must add to this graph to make it strongly connected?

(i.a)		
(i.b) Source SCCs:		
Sink SCCs:		
(i.c) Metagraph:		

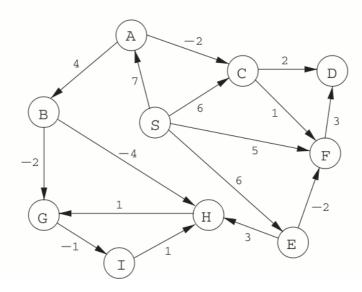
(i.d) _____

(ii.a)	
(ii.b) Source SCCs:	_
Sink SCCs:	_
(ii.c) Metagraph:	
(ii.d)	

4.1. Suppose Dijkstra's algorithm is run on the following graph, starting at node A.

- (a) Draw a table showing the intermediate distance values of all the nodes at each iteration of the algorithm.
- (b) Show the final shortest-path tree.

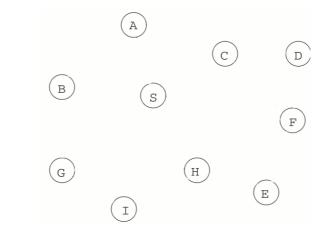
(a)


Node	Iteration							
Node	0	1	2	3	4	5	6	7
A								
В								
C								
D								
E								
F								
G								
Н								

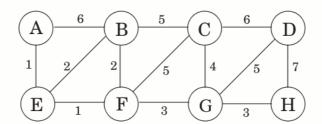
(b)

 $\begin{array}{cccc}
\hline
E & F & G & H
\end{array}$

4.2. Just like the previous problem, but this time with the Bellman-Ford algorithm.



Start at node S. Update the edges in the following order: S->A, S->C, S->E, S->F and the remaining edges in lexicographic order. For example, E->F comes before E->H and C->F comes before F->D.


(a)

Nodo	Iteration 0 1 2 3 4 5 6						
Node							6
S							
A							
В							
С							
D							
E							
F							
G							
Н							
I							

(b)

5.1. Consider the following graph.

- (a) What is the cost of its minimum spanning tree?
- (b) How many minimum spanning trees does it have?
- (c) Suppose Kruskal's algorithm is run on this graph. In what order are the edges added to the MST? For each edge in this sequence, give a cut that justifies its addition.

(a)	

(c)

No	Edge included	Cut		
1				
2				
3				
4				
5				
6				
7				