Notes for COT 5405 – Monday 8/23/2010

1) Covered syllabus, stated that CLR is text, but design/flow of the course will come from Dasgupta.

2) Checked familiarity with standard divide and conquer algorithms. Several not familiar with “QuickSelect”/”Medians” problem.

3) Did a classroom exercise to find the person with the 14th earliest birthday in the year using QuickSelect. Approximately 5 recursive calls were made, each time we took the appropriate group and partitioned it based on a random person’s birthday in the group until one individual emerged as the one with the 14th earliest birthday in the year (out of a total of 40 students).

4) Offered Extra Credit for a detailed analysis of the average case performance of Quick Select. 

5) Mentioned it would be similar to Quick Sort and then did its average case analysis in its entirety. Basically, started with recurrence relation:

T(n) = n + 1/n [T(0) + T(n-1) + 1/n [T(1) + T(n-2)] + 1/n [T(2) + T(n-3)] +…+1/n[T(n-1) + T(0)]

Got it to the form

nT(n) = n2 + 2[T(0) + T(1) + … + T(n-1)]

then subtracted out the equation for

(n-1)T(n-1) = (n-1)2 + 2[T(0) + T(1) + … + T(n-2)]

To get

nT(n) – (n-1)T(n-1) = 2T(n-1) + (2n – 1)

nT(n) = (n+1)T(n-1) + (2n – 1)

from here, divide by n(n+1), and let S(n) = T(n)/(n+1), and solve from here.

6) Talked about how original D+C Fib was very slow. Then talked about run-time of iterative Fib, if we assume each addition is constant time. Then went over utilizing Fast Matrix exponentiation as follows:

[image: image1.png]L TRI=]




If we were to assume that each operation was constant time, this would run in O(lg n) instead of O(n). This assumption isn’t true because the numbers grow very large, but if we were only interested in a calculation of Fn mod some value (say 12 digits long), then the constant assumption would be valid.

7) Outlined FFT. Just talked about the idea that a polynomial could be represented as a sampling of points and that multiplying point samples to get a product polynomial was easy, so long as we oversampled (2n+1) the two original polynomials getting multiplied.

Notes for COT 5405 – Wednesday 8/25/2010

Just covered FFT. Took the whole time and went through the code I created. My code just did the translation from coefficients to points. Since then, I have updated it, so that it actually multiplies and converts the answer back into coefficients. I want to edit it again so that it runs a large case and compares it time-wise to the standard n^2 algorithm. I also started coding up fast matrix exponentiation, but never finished that. I went through one example of the translation in class, in depth.

