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Frequency Domain and
Gradient Domain Tone
Reproduction

In addition to local and global operators,

08 there are two other classes of operators
that work in a fundamentally different way.
First, it may be possible under favorable
conditions to separate illuminance from
surface reflectance. By compressing only
the illuminance component, an image may
be successfully reduced in dynamic range.
Second, we may exploit the fact that an im-

age area with a high dynamic range tends to exhibit large gradients between neigh-
boring pixels. This leads to a solution whereby the image is differentiated. Then the
gradients are manipulated before the result is integrated into a compressed image.

Frequency-dependent operators are interesting from a historical perspective as
well as for the observations about image structure they afford. These algorithms
may therefore help us better understand the challenges we face when preparing
HDR images for display. The following also explores gradient domain operators, in
that they are algorithmically related to frequency domain operators.

8.1 FREQUENCY DOMAIN OPERATORS

Tone reproduction and dynamic range reduction are generally thought of as fairly
recent developments. The problem was introduced to the field of lighting design in
1984 [186], and to the computer graphics community in 1993 [130,131]. How-
ever, HDR images and the problem of dynamic-range reduction are as old as the field
of photography, for which the printing process may be seen as a tone-mapping tech-
nique. The problem also surfaced again with the invention of digital images. The
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first digital images were scanned with a bit depth of 12 bits, but could only be
displayed with a bit depth of 8 bits. As a result, the first digital images had to be
tone mapped prior to display. To our knowledge, the first digital tone-reproduction
operator was published in 1968 by Oppenheim and colleagues [91].

Although this operator appears to be largely forgotten, the work itself contains
several key ideas (including homomorphic filtering) that have found their way
into numerous other tone-reproduction operators. In addition, the resulting tone-
reproduction operator produces visually appealing output for a variety of images
and perhaps deserves more attention than it currently receives.

Oppenheim’s operator is a frequency-dependent compressor, in which low fre-
quencies are attenuated more than higher frequencies. This approach was recently
also taken by a technique called bilateral filtering [23] (Section 8.1.2). This term refers
to an edge-preserving smoothing technique that forms the basis for various image-
processing tasks, including tone reproduction. The bilateral filtering technique is
used to separate an image into a base layer and a detail layer. The base layer tends
to be low frequency and HDR, whereas the detail layer is high frequency and LDR.
The tone-reproduction operator then proceeds by compressing the base layer before
recombining it with the detail layer. At the same time, the output of the bilateral
filter may be seen as providing a local adaptation value for each pixel, and therefore
classification of this algorithm as a local operator would have been equally valid.

A similar separation into base and detail layers may be achieved with the trilateral
filter [10], which is an extension of the bilateral filter. The difference between this
and the bilateral filter lies in the technique used to separate the image into two
layers.

All three techniques, however, apply a compression scheme that is frequency
dependent, and thus they are grouped in this chapter. In the following subsections,
each of these techniques is presented in more detail.

8 . 1 . 1 O P P E N H E I M F R E Q U E N C Y- B A S E D O P E R AT O R

Under simplified assumptions, such as a scene consisting of diffuse objects only
and no directly visible light sources, image formation may be thought of as the
product of illuminance and reflectance. As indicated in Section 7.1.3, the illumi-
nance component is then HDR, whereas the reflectance component is not. It would
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therefore be advantageous if we could separate the two components, and perform
dynamic-range compression on the illuminance component only.

This approach implicitly assumes that the surfaces in a scene are diffuse. This is
to an approximation true for many objects, but the method ignores high-frequency
HDR phenomena such as specular reflections, caustics, and directly visible light
sources. We would therefore not recommend this approach for images depicting
these types of lighting.

For the remaining class of images, separation of reflectance and illuminance is
to some degree possible by observing that illumination varies slowly over the im-
age, whereas reflection is sometimes static and sometimes dynamic [91]. This is
because objects tend to have well-defined edges and vary in size and texture. As
such, partially independent processing of illuminance and reflectance is possible in
the frequency domain.

Oppenheim et al. therefore suggest applying a whitening filter to the density rep-
resentation of an image, which attenuates low frequencies while preserving higher
frequencies. This is based on the observation that density representations of images
tend to show a sharp peak in the low frequencies, with a plateau for medium and
high frequencies.

As an aside, whitening is the process in which the amplitude of the Fourier
representation is altered such that all frequencies carry an equal amount of energy.
This is generally achieved by amplifying higher frequencies. The opposite approach,
in which higher frequencies are attenuated, has the effect of blurring the image.
These two effects are demonstrated in Figure 8.1.

Frequency-sensitive attenuation of an image thus starts by taking the logarithm
of each pixel to compute densities. Then the FFT is computed on the density rep-
resentation so that low frequencies may be attenuated more than high frequencies.
The inverse Fourier transform is then applied to return to a density representa-
tion. In turn, the density image is exponentiated to yield a displayable image. For
a Fourier-transformed density image, we experimented with the following attenua-
tion function.

s(f ) = (1 − c) + c
kf

1 + kf

Both amplitude and phase spectra are multiplied by this scaling, which depends on
frequency f and takes two user parameters c and k. The user parameter c controls
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FIGURE 8.1 The image in the middle was blurred by attenuating higher frequencies (top left)
and whitened by amplifying higher frequencies (bottom). (Image courtesy of the Albin Polasek
Museum, Winter Park, Florida.)

the maximum amount of attenuation applied to the zero-frequency DC (direct cur-
rent) component, whereas the k user parameter determines how rapidly the slope
reaches the plateau of 1.

A reasonable default value for c is 0.5, as recommended by Oppenheim et
al. [91], which generally lies between 0 and 1. The scaling functions s(f ) spanned
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FIGURE 8.2 To demonstrate Oppenheim’s operator, the effect of the parameter choice of c on the
scaling function s(f ) is shown.

by different choices of c are plotted in Figure 8.2. An HDR image compressed with
different values for c is shown in Figure 8.3.

The k parameter could be initialized to 0.01, with a sensible range for this pa-
rameter being [0.001,0.02]. Its impact on the shape of the scaling function s(f ) is
shown in Figure 8.4. Images compressed with different values of k are presented in
Figure 8.5. For smaller values of k, the plateau at which no attenuation is applied
occurs for higher frequencies and thus the image is compressed more. The higher
the value of k the sooner the plateau is reached, and less dynamic-range reduction
is achieved.

In summary, Oppenheim et al. were the first to address the dynamic-range re-
duction problem. They proposed to attenuate low frequencies in the density (log)
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FIGURE 8.3 The effect of different values of c in Oppenheim’s operator. In reading order, c is
given values of 0.1, 0.3, 0.5, 0.7, and 0.9.
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FIGURE 8.4 Effect of the parameter choice of k on the scaling function s(f ) in Oppenheim’s
operator.

domain, while preserving higher frequencies. This type of processing is called ho-
momorphic filtering, which affords partially independent processing of illuminance
and reflectance. They observed that reflectance is typically high frequency and LDR,
whereas illuminance produces slow gradients within an arbitrary HDR. For images
depicting sharp shadow boundaries, participating media, specular highlights, or di-
rectly visible light sources, this separation may not always be performed cleanly and
the method may therefore not always yield satisfactory results.

Aspects of this algorithm — including homomorphic filtering (Section 7.1.3),
separation of the image into illuminance and reflectance, and the concept of tone
reproduction — were first introduced in Oppenheim’s work. With a suitable choice
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FIGURE 8.5 The effect of different values of k in Oppenheim’s operator. In reading order, k is
increased from 0.002 to 0.004, 0.008, and 0.016.

of the parameters c and k (introduced by us), this algorithm produces reasonable
output, despite the theoretical restrictions mentioned previously.

8 . 1 . 2 D U R A N D B I L AT E R A L F I LT E R I N G

The idea that an image may be separated into a high-frequency component that
contains only LDR information and a low-frequency component with an HDR is
explicitly exploited by Oppenheim’s operator by attenuating low frequencies in the
Fourier domain. Separation of an image into separate components whereby only
one of the components needs to be compressed may also be achieved by applying
an edge-preserving smoothing operator.

Durand and Dorsey introduced the bilateral filter to the computer graphics com-
munity and showed how it may be used to help solve the tone-reproduction prob-
lem [23]. Bilateral filtering is an edge-preserving smoothing operator that effec-
tively blurs an image but keeps sharp edges intact. An example is shown in Fig-
ure 8.6, in which the smoothed image is shown on the right. Edges in this image
are preserved (compare with the unprocessed image on the left), whereas interior
regions have reduced detail. This section introduces a tone-reproduction operator
that uses bilateral filtering and goes by the same name.

Blurring an image is usually achieved by convolving the image with a Gaussian
filter kernel. The bilateral filter extends this idea by reducing the weight of the
Gaussian kernel if the density difference is too large (see Equation 7.7). A second
Gaussian is applied to density differences. Following Oppenheim, this method op-
erates on a density image, rather than on linear values.

The result of this computation, as seen in Figure 8.6, is to some extent analogous
to the illuminance component as discussed by Oppenheim et al. [91]. From the
input image and this illuminance image, the reflectance image may be reconstructed
by dividing the input and illuminance image. The smoothed image is known as the
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FIGURE 8.6 The image on the left was smoothed with a bilateral filter, resulting in the image
on the right.

base layer, whereas the result of this division is called the detail layer. Note that the
base and detail layers do not necessarily split the image into an illuminance and
reflectance component. This method does not make the implicit assumption that
the scene depicted is predominantly diffuse.

Examples of an HDR input image, an HDR base layer, and an LDR detail layer are
shown in Figure 8.7. In this figure, the bilateral filter is applied to the luminance
channel only. To reconstruct the base layer in color, we replaced the luminance chan-
nel of the image (in Yxy color space) with this output, exponentiated the result to
yield a linear image, and converted to RGB. The detail layer was reconstructed in a
similar manner.

After the bilateral filter is applied to construct base and detail layers in the loga-
rithmic domain, the dynamic range may be reduced by scaling the base layer to a
user-specified contrast. The two layers are then recombined and the result is expo-
nentiated and converted to RGB to produce the final displayable result.

The amount of compression applied to the base layer is user specified, but Du-
rand and Dorsey note that a target dynamic range of about 5 log units suffices for
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FIGURE 8.7 HDR image tone mapped with bilateral filtering (left). The corresponding base
layer and detail layers are shown in the right-hand and bottom images.

many images.1 For images that show light sources directly, this value may be ad-
justed. The effect of this parameter is shown in Figure 8.8, in which the contrast of
the base layer was varied between 2 log units and 7 log units.

Bilateral filtering may be implemented directly in image space, but the convolu-
tion with a spatial Gaussian modulated by a Gaussian in density differences is rel-

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 We use the natural logarithm in this case.
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FIGURE 8.8 Bilateral filtering results with varying amounts of compression applied to the base
layer. The dynamic range of the base layer was set between 2 log units (top left-hand image) and
7 log units (bottom right-hand image).

atively expensive to compute. In addition, the second Gaussian makes this method
unsuitable for execution in the Fourier domain. Durand and Dorsey show how these
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disadvantages may be overcome by splitting the density differences into a number of
segments [23]. The results are then recombined, yielding an approximate solution
that in practice is indistinguishable from accurate spatial processing. The computa-
tion is given by the following.

Dsmooth
j (x, y) = 1

kj (x, y)

∑

u

∑

v

bj (x, y,u, v) D(x − u,y − v)

kj (x, y) =
∑

u

∑

v

bj (x, y,u, v)

bj (x, y,u, v) = f
(√

(x − u)2 + (y − v)2
)
g
(
D(x − u,y − v) − Dj

)

Here, the values Dj form a quantized set of possible values for pixel (x, y). The
final output for this pixel is a linear combination of the output of the two smoothed
values Dsmooth

j and Dsmooth
j+1 . These two values are chosen such that Dj and Dj+1

are the closest two values to the input density D of pixel (x, y).
For each segment j , the previous equation may be executed in the Fourier do-

main, thus gaining speedup. The number of segments depends on the dynamic
range of the input image, as well as the choice of standard deviation for the Gaussian
g(), which operates on density differences. A suitable choice for this standard de-
viation is about 0.4. The computation time of the bilateral filter depends on the
number of segments. There is therefore a trade-off between computation time and
visual quality, which may be chosen by specifying this standard deviation.

We have experimented with different values and show the results in Figure 8.9.
For this particular image, the choice of standard deviation has a relatively small effect
on its visual appearance. However, this parameter directly influences the number of
segments generated, and thus affects the computation time. For this image, the
largest standard deviation we chose was 8 log units, resulting in the creation of
two segments. For values close to the default of 0.4, the number of segments is
much higher due to the image’s high dynamic range. This image was split into
19 segments for a standard deviation of 0.5, and into 38 segments for a standard
deviation of 0.25. The computation times recorded for these images are graphed in
Figure 8.10.

This computation time is substantially higher than those reported by Durand
and Dorsey [23], most likely because the dynamic range of this image is higher



reinhard v.2005/03/22 Prn:14/06/2005; 15:02 F:reinhard08.tex; VTEX/JOL p. 14

338 CHAPTER 08. FREQUENCY DOMAIN AND GRADIENT DOMAIN

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35



reinhard v.2005/03/22 Prn:14/06/2005; 15:02 F:reinhard08.tex; VTEX/JOL p. 15

8.1 FREQUENCY DOMAIN OPERATORS 339

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

FIGURE 8.9 Bilateral filtering showing results for different choices of standard deviation of the
Gaussian filter operating on density differences, starting at 0.25 for the top left-hand image and
doubling for each subsequent image. The bottom right-hand image was therefore created with a
standard deviation of 8 log units.

than many of their examples. In this chapter, we use a standard deviation of 0.4 as
recommended in the original paper, but note that discrepancies in reported com-
putation times may be due to the choice of images.

FIGURE 8.10 Computation time of Durand and Dorsey’s bilateral filter as a function of the
standard deviation of the Gaussian filter.
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Further, Durand and Dorsey observed that bilateral filtering aims at low-pass fil-
tering, and thus for most of the computations the full resolution of the input image
is not required. It is therefore possible to sample the image using nearest-neighbor
downsampling, perform bilateral filtering, and then upsample the results to the full
resolution. This significantly reduces the computational cost of the algorithm for
downsampling factors of up to 10 to 25. Higher factors will not yield a further re-
duction in computation time, because upsampling and linear interpolation will then
start to dominate the computation. The visual difference between no downsampling
and downsampling within this range is negligible. We therefore downsampled all
results in this section with a factor of 16.

In summary, bilateral filtering is a worthwhile technique that achieves a hands-
off approach to tone reproduction. The method is able to smooth an image without
blurring across sharp edges. This makes the method robust against outliers and
other anomalies. The method splits a density image into an HDR and an LDR layer.
The HDR layer is then compressed and recombined with the other layer. The result
is exponentiated to form an LDR image. Various techniques are available to speed
up the process.

8 . 1 . 3 C H O U D H U RY T R I L AT E R A L F I LT E R I N G

Although the bilateral filter has attractive features for edge-preserving filtering,
Choudhury and Tumblin note that this filter also has certain drawbacks. In par-
ticular, the filter smooths across sharp changes in the gradients of the image, and
the filter poorly smooths high-gradient and high-curvature regions [10].

The trilateral filter aims to overcome these limitations by extending the bilateral
filter. In fact, two modified versions of the bilateral filter are applied in succes-
sion. The algorithm starts by computing a density image from a luminance image,
whereupon image gradients are computed. These gradients are then smoothed and
used as an indicator of the amount by which the bilateral filter should be tilted to
adapt to the local region. The smoothing itself is achieved through bilateral filtering.
Figure 8.11 shows images of the various steps involved in the algorithm.
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With the filter kernel given by b(x, y,u, v), the bilaterally smoothed tilting vec-
tor A may be computed for each pixel as follows.

A(x,y) = 1

w(x,y)

∑

u

∑

v

b(x, y,u, v)∇Din(x − u,y − v)

w(x, y) =
∑

u

∑

v

b(x, y,u, v)

b(x, y,u, v) = f
(√

(x − u)2 + (y − v)2
)

× g
(‖∇Din(x − u,y − v) − ∇Din(x, y)‖)

The filter output is normalized by the weight factor w. The gradients of the input
are computed using forward differences, as follows.

∇Din(m,n) ≈ (
Din(m + 1, n) − Din(m,n),Din(m,n + 1) − Din(m,n)

)

If we were to apply a bilateral filter to the input image after tilting the filter by
A(x,y), its Gaussian constituents f ( ) and g( ) would no longer be orthogonal.
Therefore, rather than computing a spatial weight s( ) for neighboring densities
D(x−u,y−v) by measuring the spatial distance between (x, y) and (x−u,y−v),
this distance is now measured through a plane of density values with orientation
P(x −u,y − v). This orientation is a scalar value that may be computed as follows.

P(x − u,y − v) = Din(x, y) + A(x,y) · (u, v)T

Before computing trilateral output values, P(x − u,y − v) is subtracted from the
input density values to compute a local detail signal D�(x − u,y − v), as follows.

D�(x − u,y − v) = Din(x − u,y − v) − P(x − u,y − v)

The output of the trilateral filter Dsmooth(x, y) is then obtained as follows.

Dsmooth(x, y) = Din(x, y) + 1

w�(x, y)

∑

u

∑

v

b(x, y,u, v)D�(x − u,y − v)
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w�(x, y) =
∑

u

∑

v

n(x, y,u, v)

b(x, y,u, v) = f
(√

(x − u)2 + (y − v)2
)
g
(
D�(x − u,y − v)

)
δA(x − u,y − v)

By tilting the trilateral filter it is possible to smooth more accurately in high-gradient
regions, but this comes at the cost of a potential for extending the filter window
beyond local boundaries into regions of dissimilar gradients. This may cause un-
desirable blurring across sharp ridges and corners where the bilaterally smoothed
gradient A changes abruptly.

This problem is solved by the binary function δA introduced in the previous
equation. This function exploits a feature of the functional shape of the smoothed
gradient field A to limit the contribution of pixel (x − u,y − v) if it lies across
a sharp edge. A sharp edge is present if there is a large jump in the magnitude of
A between (x, y) and (x − u,y − v). Thus, δA is the Kronecker delta function,
which is 1 if the gradient step is below a specified threshold R, and 0 if the jump
in gradient magnitude is too large. This is represented as follows.

δA(x − u,y − v) =
{

1 if ‖A(x − u,y − v) − A(x,y)‖ < R

0 otherwise

A computationally efficient way of approximating the search for gradients in a local
neighborhood for a pixel (x, y) is to precompute a stack of minimum and max-
imum gradients at different spatial resolutions. We refer to the original paper on
trilateral filtering for additional information [10].

Although the method has seven internal parameters, only one needs to be spec-
ified by the user. All other parameters are derived from this single user param-
eter. The user parameter σc,� is the neighborhood size of the bilateral gradient-
smoothing filter, specified in pixels. The influence of this parameter on the various
stages of processing is shown in Figure 8.12.

For small kernel sizes, too much detail ends up in the base layer, which is sub-
sequently compressed. The consequence is that these details are absent from the
final tone-mapped image. For larger values of σc,�, the details are separated more
sensibly from the HDR component and thus detail is preserved in the tone-mapped
images. This is shown in the rightmost column in Figure 8.12, where σc,� is set
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FIGURE 8.12 For three different values of σ (3, 13, and 21 pixels), we show the base layer
(top), the detail layer (middle), and the tone-mapped result (bottom).

to 21. This value is recommended for practical use. Larger values have an adverse
effect on the computation time without creating better images.

For the purpose of comparison, Figure 8.13 shows an image tone mapped with
both bilateral and trilateral filters. With comparable parameter choices, the overall
impression of the two images is similar, although several differences between the
two images exist. In particular, the trilateral filter affords a better visualization of
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FIGURE 8.13 Bilateral (left) and trilateral filters (right) applied to the same image with com-
parable parameter settings.

the clouds. On the other hand, the tree in the lower right-hand corner is better
preserved by the bilateral filter.

In summary, the trilateral filter is a further development over the bilateral filter.
The filter smooths the image while preserving edges. Good results are achieved by
tilting the filter kernel dependent on the local gradient information in an image.
Like Oppenheim’s method and Durand and Dorsey’s bilateral filtering approach,
Choudhury and Tumblin’s trilateral filter is used to separate a density image into an
LDR high-frequency image, and an HDR low-frequency image. The latter is com-
pressed and recombined with the former to produce a tone-mapped density image.
This result is then exponentiated to compute a displayable image.

8.2 GRADIENT DOMAIN OPERATORS

High-frequency components in an image cause rapid changes from one pixel to
the next. On the other hand, low-frequency features cause the differences between
neighboring pixels to be relatively small. It is therefore possible to partially distin-
guish between illuminance and reflectance in a different way by considering the
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gradients in the image. Under the assumption of diffusely reflecting scenes, this
separation may be reasonably successful, as shown by Horn’s lightness computation
(discussed in the following section).

Although such separation depends on thresholding, tone reproduction does not
necessarily require separation of illuminance and reflectance. In addition, HDR im-
agery frequently depicts scenes that deviate significantly from the assumption of
diffuse reflection. Fattal et al. have shown that image gradients may be attenuated
rather than thresholded, leading to a capable tone-reproduction operator (discussed
in Section 8.2.2).

8 . 2 . 1 H O R N L I G H T N E S S C O M P U TAT I O N

The first to explore the idea of separating reflectance from illuminance on the basis
of the gradient magnitude was Berthold Horn [53]. His work outlines a computa-
tional model of human lightness perception, that is a perceptual quantity that cor-
relates with surface reflectance. Like Stockham and colleagues [91,123], this work
assumes that each pixel of an image is formed as the product of illumination and
surface reflectance, as follows.

Lv(x, y) = Ev(x, y)r(x, y)

Here, Lv(x, y) is the pixel’s luminance and Ev(x, y) and r(x, y) are illuminance
and reflectance components, respectively. In the log domain, a density image would
represent the same information, as follows.

D(x,y) = log(Lv(x, y))

= log(Ev(x, y)) + log(r(x, y))

Taking the derivative of D(x,y) gives us the gradient, which is a 2-vector of partial
derivatives in the horizontal and vertical directions. The gradient field of an image
may be approximated using forward differences, as follows.

∇G(x,y) = (
Gx(x, y),Gy(x, y)

)

= (
D(x + 1, y) − D(x,y),D(x, y + 1) − D(x,y)

)
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Note that differences in the log domain correspond to ratios in linear space. By
computing a gradient field of a density image we are effectively computing contrast
ratios.

Edges in an image will produce sharp pulses in the gradient field, whereas the
spatial variation of illumination will produce only small gradient values. To sepa-
rate reflectance from illuminance, it is now possible to threshold the gradient and
discard any small gradients, as follows.

∇G(x,y) = 0 iff
√

Gx(x, y)2 + Gy(x, y)2 < t

Integration of the remaining gradients yields an image that represents lightness.
Integration of a discrete image is straightforward in one dimension, but amounts
to solving a partial differential equation in two dimensions. The particular form of
this equation is as follows.

∇2D(x,y) = divG(x,y)

This is Poisson’s equation with ∇2 the Laplacian operator and divG(x,y) the di-
vergence of G(x,y). The Laplacian and divergence may be approximated in two
dimensions using a differencing scheme, as follows.

∇2D(x,y) ≈ D(x + 1, y) + D(x − 1, y) + D(x,y + 1)

+ D(x,y − 1) − 4D(x,y)

divG(x,y) ≈ Gx(x, y) − Gx(x − 1, y) + Gy(x, y) − Gy(x, y − 1)

The Poisson equation cannot be solved analytically, but must be approximated nu-
merically. The method of choice is the full multigrid method, for which off-the-
shelf routines are available [101]. Finally, the resulting density image D(x,y) is
exponentiated to produce the final image Ld(x, y).

The success of separating illuminance from reflectance in this manner depends
on the choice of threshold value t . Setting the threshold too low will cause the
resulting image to contain both the reflectance component and some residual illu-
minance. If the threshold is chosen too high, the integrated result will only partially
represent reflectance.
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FIGURE 8.14 Left: a reproduction of one of Piet Mondrian’s paintings. On the right, a
mini-world of Mondrian (from [88]).

It is also important to note that this method assumes that no light sources are
directly visible in the image. Horn presented his work in the context of Land’s
retinex theory, which was tested with mini-worlds of Mondrian [69].2 In such
worlds, scenes are flat areas divided into subregions of uniform matte color (see
Figure 8.14). The lighting of such worlds creates smooth shading variations within
each panel, but sharp gradient jumps between regions. Thus, the observation that
reflectance causes sharp spikes in the gradient whereas illuminance is smoothly
varying holds for this type of idealized scene.

For practical scenes that are generally more complicated, this assumption may
not hold. In particular, if there are light sources directly visible in the image one

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Mini-worlds of Mondriaan are inspired by the neo-plasticist painting style pioneered by famous Dutch artist Piet Mondri-

aan. Over time, the spelling has become anglicized so that mini-worlds of Mondriaan are now more commonly known as

mini-worlds of Mondrian.
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may expect the illuminance component to also exhibit large gradients, causing this
approach to fail to successfully separate illuminance and reflectance. Depth discon-
tinuities, specular highlights, and the presence of fluorescent materials may also
cause the separation of reflectance from illuminance to be incomplete. Horn con-
cludes that the method may be reasonable for the computation of lightness, but not
for computing reflectance when applied to general images.

In Figure 8.15 the output of this approach is shown for different threshold val-
ues t . Small gradients are indeed removed, whereas dependent on the choice of
threshold value reflectance edges are reasonably well respected. The images pro-
duced by this technique bear a resemblance to those created by bilateral filtering.
In particular, compare the results of Figure 8.15 with Figure 8.6. Both techniques
blur images without blurring across sharp edges. We therefore speculate that Horn’s
lightness computations may be viewed as an early example of an edge-preserving
smoothing operator.

For the purpose of demonstration, Figure 8.15 shows an LDR image because it
is close in nature to a mini-world of Mondrian. HDR images do not tend to adhere
to the restrictions imposed by the mini-worlds of Mondriaan. The direct applica-
tion of the previous thresholding technique is therefore not practical. On the other
hand, large gradients in HDR images are correlated with illuminance variations. We
therefore applied the same thresholding technique to an HDR image, although now
we remove gradients that are larger than the threshold t , as follows.

∇G(x,y) = 0 iff
√

Gx(x, y)2 + Gy(x, y)2 > t

Results of this new thresholding scheme are shown in Figure 8.16. It is clear that
this thresholding scheme is a fairly crude method of bringing an HDR image within
a displayable range. It indicates that compressing the gradient field in some fashion
may be a viable approach, although perhaps not using simple thresholding.

Although Horn was largely interested in computational models of human light-
ness perception, we have shown that a small modification could make the tech-
nique suitable for HDR compression. Thresholding may be too crude for practical
purposes, and the appropriate selection of a suitable threshold would be a matter
of trial and error. On the other hand, modifying the gradient field of an image
and then integrating the result does present an opportunity for effective dynamic
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FIGURE 8.15 Horn’s lightness computation for threshold values of t = 0.0 (top left) through
t = 0.1 in increments of 0.02. The original photograph is shown in the top left.
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FIGURE 8.16 New thresholding scheme applied to Horn’s lightness computation using threshold
values of t = 0.25 (top left) through t = 1.50 in increments of 0.25. (Image courtesy of the
Albin Polasek Museum, Winter Park, Florida.)
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range reduction. This approach is taken by Fattal’s gradient domain compression
algorithm, discussed in the following section.

8 . 2 . 2 F AT TA L G R A D I E N T D O M A I N C O M P R E S S I O N

Fattal et al. presented an alternative compression algorithm that achieves HDR re-
duction by applying a compressive function to the gradient field [32]. Following
Horn, they compute the gradient field of a density image, manipulate these gradi-
ents, and then integrate by solving a Poisson equation.

However, rather than thresholding the gradient field their compressive function
is more sophisticated. Fattal et al. observe that any drastic change in luminance
across an HDR image gives rise to luminance gradients with a large magnitude. On
the other hand, fine details (such as texture) correspond to much smaller gradi-
ents. The proposed solution should therefore identify gradients at various spatial
scales and attenuate their magnitudes. By making the approach progressive (i.e.,
larger gradients are attenuated more than smaller gradients), fine details may be
preserved while compressing large luminance gradients. After computing a density
image D(x,y) = log(L(x, y)), the method proceeds by computing the gradient
field ∇G(x,y), as follows.

∇G(x,y) = (
D(x + 1, y) − D(x,y),D(x, y + 1) − D(x,y)

)

This gradient field is then attenuated by multiplying each gradient with a com-
pressive function �(x,y), resulting in a compressed gradient field ∇G′(x, y), as
follows.

∇G′(x, y) = ∇G(x,y)�(x, y)

As in Horn’s approach, a compressed density image D′(x, y) is constructed by
solving the Poisson equation, as follows.

∇2D′(x, y) = divG′(x, y)

The rationale for solving this partial differential equation is that we seek a density
image D′(x, y) with a gradient that approximates G′(x, y) as closely as possible. In
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the least squares sense, this conforms to minimizing the following integral.

∫ ∫ ∥∥∇D′(x, y) − G(x,y)
∥∥2

dxdy

=
∫ ∫ (

δD′(x, y)

δx
− Gx(x, y)

)2

+
(

δD′(x, y)

δy
− Gy(x, y)

)2

dxdy

According to the variational principle, D′(x, y) must satisfy the Euler–Lagrange
equation [101], yielding

2

(
δ2D′(x, y)

δx2
− δGx(x, y)

δx

)
+ 2

(
δ2D′(x, y)

δy2
− δGy(x, y)

δy

)
= 0

Rearranging terms produces this Poisson equation, which may be solved using the
full multigrid method [101]. Exponentiating the compressed density image then
produces the tone-mapped image Ld(x, y), as follows.

Ld(x, y) = exp
(
D′(x, y)

)

To a large extent the choice of attenuation function will determine the visual quality
of the result. In the previous section, a very simple example is shown by setting large
gradients to zero. This produces compressed images, but at the cost of visual quality.
Fattal et al. follow a different approach and only attenuate large gradients.

Their attenuation function is based on the observation that edges exist at multiple
scales [148]. To detect significant ratios, a multiresolution edge-detection scheme
is employed. Rather than attenuate a significant gradient at the resolution where it
is detected, the attenuation is propagated to the full resolution gradient field before
being applied. This scheme avoids haloing artifacts.

First, a Gaussian pyramid D0, D1 . . . Dd is constructed from the density image.
The number of levels d is chosen such that at this coarsest level the resolution of the
image is at least 32 by 32. At each level s, a gradient field ∇Gs(x, y) is computed
using central differences, as follows.

∇Gs(x, y) =
(

Ds(x + 1, y) − Ds(x − 1, y)

2s+1
,
Ds(x, y + 1) − Ds(x, y − 1)

2s+1

)
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At each level and for each pixel, a scale factor may be computed based on the
magnitude of the gradient, as follows.

φs(x, y) = α

‖∇Gs(x, y)‖
(‖∇Gs(x, y)‖

α

)β

This scale factor features two user-defined parameters α and β . Gradients larger
than α are attenuated provided that β < 1, whereas smaller gradients are not atten-
uated and in fact may even be somewhat amplified. A reasonable value for α is 0.1
times the average gradient magnitude. Fattal et al. suggest setting user parameter β

between 0.8 and 0.9, although we have found that larger values (up to about 0.96)
are sometimes required to produce a reasonable image. The attenuation function
�(x,y) can now be constructed by considering the coarsest level first and then
propagating partial values in top-down fashion, as follows.

�d(x, y) = φd(x, y)

�s(x, y) = U(�s+1(x, y))φs(x, y)

�(x, y) = �0(x, y)

Here, �s(x, y) is the partially accumulated scale factor at level s, and U() is an
upsampling operator with linear interpolation. For one image, the two parameters
α and β were varied to create the tableau of images shown in Figure 8.17. For
smaller values of β, more details are visible in the tone-mapped image. A similar
effect occurs for decreasing values of α. Both parameters afford a trade-off between
the amount of compression applied to the image and the amount of detail visible. In
our opinion, choosing values that are too small for either α or β produces images
that contain too much detail to appear natural.

FIGURE 8.17 Fattal’s gradient domain compression. The user parameters α and β were varied:
from left to right α is given values of 0.10, 0.25, and 0.40. From top to bottom, β is 0.85,
0.89, and 0.95.
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FIGURE 8.18 Clamping in Fattal’s gradient domain compression. Top row: clamping 0.1, 1,
and 10% of the dark pixels. Bottom row: clamping 0.1, 1, and 10% of the light pixels.

This approach may benefit somewhat from clamping, a technique whereby a
percentage of the smallest and largest pixel intensities is removed and the remain-
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ing range of intensities is scaled to fit the display range. Figure 8.18 shows the effect
of varying the percentage of dark pixels that are clamped (top row) and separately
varying the percentage of light pixels that are clamped (bottom row). The effect
of clamping dark pixels is fairly subtle, but dramatic effects may be achieved by
clamping a percentage of light pixels. In general, if a tone-mapped image appears
too gray it may be helpful to apply some clamping at the light end. This removes
outliers that would cause the average luminance to drop too much after normaliza-
tion.

In summary, Fattal’s gradient domain compression technique attenuates gradi-
ents, but does so in a gentler manner than simply thresholding. The two user para-
meters provide a trade-off between the amount of compression and the amount of
detail available in the image. Too much compression has the visual effect of exagger-
ated small details. The technique is similar in spirit to Horn’s lightness computations
and is the only recent example of a tone-reproduction operator working on gradient
fields.

8.3 PERFORMANCE

For many applications the speed of operation is important. For most tone-
reproduction operators, performance is simply a function of the size of the image.
In this section we report results obtained on an Apple iBook G3 running at 800
MHz using images with 1,600 by 1,200 pixels.

We show the timing required to execute each tone-mapping operator, but ex-
clude the time it takes to read the image from disk or write the result to file. We also
routinely normalize the result of the tone-reproduction operators and apply gamma
correction. None of these operations is included in the timing results.

All timing results are summarized in Table 8.1. This table should be interpreted
with the following caveats. The timing given for Miller’s operator is a rough average
of the timings shown in Figure 8.19. The timing for the bilateral filter is given
for a downsampling factor of 16. The computation time of Chiu’s spatially variant
operator is representative of the algorithm explained in this chapter, but not for
the full algorithm as described by Chiu et al. (in that we have omitted the iterative
smoothing stage).
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Operator Time
(in seconds)

GLOBAL OPERATORS

Miller’s operator ≈ 15.0

Tumblin–Rushmeier’s operator 3.2

Ward’s scale factor 0.96

Ferwerda’s operator 1.0∗

Ferschin’s exponential mapping 3.0

Logarithmic mapping 3.4

Drago’s logarithmic mapping 2.8

Reinhard’s global photographic operator 3.7

Reinhard and Devlin’s photoreceptor model 9.7

Ward’s histogram adjustment 3.4

Schlick’s uniform rational quantization 3.4

LOCAL OPERATORS

Chiu’s spatially variant operator 10.0

Rahman and Jobson’s multiscale retinex 120.0

Johnson and Fairchild’s iCAM 66.0

Ashikhmin’s operator 120.0

Reinhard’s local photographic operator 80.0

GRADIENT DOMAIN OPERATORS

Horn’s lightness computation 45.0

Fattal’s gradient domain compression 45.5

FREQUENCY-BASED OPERATORS

Oppenheim’s operator 12.4

Durand’s bilateral filtering 23.5
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TABLE 8.1 Computation time for all operators using 1,600 by 1,200 images on
an Apple iBook with 512 MB RAM and a G3 processor running at 800 MHz. Note:
∗ Ferwerda’s operator does not include the algorithm to lower visual acuity in scotopic
lighting conditions.

8 . 3 . 1 L O C A L A N D G L O B A L O P E R AT O R S

In general, global operators are the fastest to execute because normally only two
or three passes over the image are required. In each pass, only very simple com-
putations are performed. For applications that require real-time operation, global
operators would be the first choice.

Local operators rely on the computation of local averages for each pixel. Such
local averages are often computed by convolving the image with a filter kernel. For
filter kernels larger than about 3 by 3 pixels, it is faster to Fourier transform both
the image and the filter kernel and perform a pairwise multiplication in the Fourier
domain. The convolved image is then obtained by applying an inverse Fourier trans-
form on the result. Whether the convolution is computed directly or by means of
the Fourier transform, local operators tend to be much slower than their global
counterparts.

The performance of global operators is usually dependent only on the size of the
image. The exception is Miller’s operator, which is also weakly dependent on the
maximum display luminance. The running time as a function of maximum display
luminance is plotted in Figure 8.19. In all cases, the execution time remains below
about 17 seconds.

The performance of the iCAM model depends on whether the adaptation level is
computed from the luminance channel only, or for all three channels independently.
The former takes 44 seconds, whereas the latter takes 66 seconds.

Our implementation of the multiscale observer model requires a substantial
amount of memory to store the full image pyramid. We were not able to reliably
measure the execution time of this operator for the default image size of 1,600 by
1,200 because our iBook did not have sufficient memory (512 MB) to complete the
computation without significant swapping.
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FIGURE 8.19 Running time of Miller’s operator as function of the maximum display luminance
user parameter.

The performance of the local version of Reinhard’s photographic operator is
about 80 seconds. For two reasons, this constitutes a performance gain with respect
to other operators that also build a Gaussian pyramid. First, this operator compresses
a luminance channel, as opposed to three color channels in the multiscale observer
model. In comparison with Ashikhmin’s operator, the total number of levels in the
Gaussian pyramid is smaller.

8 . 3 . 2 G R A D I E N T A N D F R E Q U E N C Y D O M A I N
O P E R AT O R S

Gradient domain operators require an integration step that is both approximate and
costly, though less so than techniques that build image pyramids. The numerical
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integration method of choice is the full multigrid method, which dominates the
computation time of this class of operators. For example, Horn’s lightness compu-
tation takes about 45 seconds. We found the gradient domain operator to be very
similar in performance to Horn’s operator (about 45.5 seconds).

Frequency domain operators rely on FFTs to obtain a frequency-space represen-
tation. We used the public domain FFTW library [39], and for these operators the
performance of the FFT transform dominates the computation time. Note that the
speed of executing an FFT depends strongly on the size of the image. Any image
size that has a large number of factors will be substantially faster than image sizes
that have a smaller number of factors. Although the running time depends on image
size, this dependency is not linear. Our results are obtained with 1,600-by-1,200
images. These numbers may be factored into 2 × 2 × 2 × 2 × 2 × 2 × 5 × 5
and 2 × 2 × 2 × 2 × 3 × 5 × 5, and therefore have eight and seven factors,
respectively. This yields a relatively fast computation of FFTs. On the other hand, if
the image were smaller by 1 pixel in each dimension (1,599 by 1,199 pixels) the
factors would be 3 × 13 × 41 and 11 × 109. This would have a negative impact on
the computation time. In general, images that are powers of 2 will be the fastest and
images the size of prime numbers will be the slowest to compute. In terms of per-
formance, it is beneficial to pad images to a power-of-2 size if a Fourier transform
needs to be computed.

An alternative filtering technique is to apply a fast but approximate filter, such
as that described by Burt and Adelson [8]. For filter kernels with a Gaussian shape,
this may speed up the computations, but with a loss of accuracy. We have found
that this approximation is useful only for larger filter kernels. For very small filter
kernels, this approximation may not be accurate enough.

Oppenheim’s frequency-based operator takes about 12.4 seconds. Bilateral filter-
ing takes about 23 seconds when a downsampling factor of 16 is selected. This is
somewhat slower than Oppenheim’s operator, although not dramatically so. Smaller
downsampling factors will cause the computation time to increase significantly. If
no downsampling is used, the computation time of the same image increases to
685 seconds. The progression of computation times as a function of downsampling
factors is depicted in Figure 8.20.

The computational complexity of the trilateral filter is of necessity higher than
for the bilateral filter, in that its main computational cost is the double application
of the bilateral filter. If the same optimizations are employed as outlined for the



reinhard v.2005/03/22 Prn:14/06/2005; 15:02 F:reinhard08.tex; VTEX/JOL p. 38

362 CHAPTER 08. FREQUENCY DOMAIN AND GRADIENT DOMAIN

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

FIGURE 8.20 Computation time (in seconds) for the bilateral filter as a function of downsam-
pling factors.

bilateral filter in Section 8.1.2, we expect the running times to be about double
that of the bilateral filter. However, our implementation does not incorporate these
optimizations, and we therefore recorded computation times that are substantially
higher.

8.4 DISCUSSION

Tone-reproduction operators achieve dynamic-range reduction based on a small set
of distinct observations. We have chosen to classify operators into four classes, two
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of which are loosely based on image formation and two others operating in the
spatial domain.

The underlying assumption of the first two classes is that images are formed
by light being reflected from surfaces. In particular, the light intensities recorded
in an image are assumed to be the product of light being reflected from a surface
and the surface’s ability to reflect. This led to Oppenheim’s frequency-dependent
attenuation. Subdivision of an image into base and detail layers may be seen as a
frequency-dependent operation. The bilateral and trilateral filters, however, lift the
restriction that images are assumed largely diffuse. These filters operate well for im-
ages depicting scenes containing directly visible light sources, specular reflections,
and so on.

A parallel development has occurred in the class of gradient domain opera-
tors. Horn’s lightness computation is aimed at disentangling illumination from re-
flectance by thresholding gradients. It necessarily assumes that scenes are diffuse.
This restriction is lifted by Fattal et al., who attenuate large gradients but keep small
gradients intact.

Various tone-reproduction operators use partial computational models of the hu-
man visual system to achieve dynamic-range reduction. A returning theme within
this class of operators is the notion of adaptation luminance. Global operators often
derive an adaptation level from the (log) average luminance of the image, whereas
local operators compute a separate adaptation level for each pixel. Local adaptation
levels are effectively weighted local averages of pixel neighborhoods. If the size of
these neighborhoods is grown to include the entire image, these local operators
default to global operators. It should therefore be possible to replace the global
adaptation level of a global operator with a locally derived set of adaptation lev-
els. The validity of this observation is demonstrated in Figure 8.21, in which the
semisaturation constant of Reinhard and Devlin’s photoreceptor model is fed with
various luminance adaptation computations.

There are various ways of computing local adaptation luminances. The use of a
stack of Gaussian-blurred images may be closest to the actual working of the hu-
man visual system, and with a carefully designed scale selection mechanism (such
as shown by Reinhard et al.’s photographic operator, as well as Ashikhmin’s op-
erator), local adaptation levels may be computed that minimize haloing artifacts.
Alternatively, edge-preserving smoothing filters may be used to derive local adapta-
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FIGURE 8.21 Global photoreceptor model (top left) and global photoreceptor model with the
light adaptation parameter set to 0 (top right), followed by local versions in which adapting
luminances are computed with Durand’s bilateral filter (bottom left) and Pattanaik’s gain control
operator (bottom right) [23,96].

tion luminances. Examples of such filters are the bilateral and trilateral filters, as well
as the low-curvature image simplifier [132] and the mean shift algorithm [13].

The human visual system adapts over a period of time to novel lighting condi-
tions. This is evident when entering a dark tunnel from bright daylight. It takes a
short period of time before all details inside the tunnel become visible. Such time-
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dependent behavior may also be included in tone-reproduction operators [22,35,
43,95,112].

Finally, we would like to stress the fact that each of these operators has its own
strengths and weaknesses. Computational complexity, presence or absence of arti-
facts, and ability to deal with extreme HDR images should all be considered. We
believe that there is no single operator that will be the best choice for all tasks, or
even for all images.

For instance, in photography the purpose of tone reproduction may be to pro-
duce an image that appears as beautiful as possible. It may not be necessary to show
every last detail in the captured image to achieve this goal. In addition, for this type
of application a fully automatic operator may be less desirable than one that provides
intuitive user parameters that allow the final result to be steered in the direction the
photographer has in mind.

On the other hand, the task may be to visualize data, for instance if the HDR
data is the result of a scientific simulation. In such cases it may be more important
to visualize all important details than to produce an appealing image. It may be
undesirable to have user parameters in this case.

For video and film, tone reproduction should produce consistent results between
consecutive frames. In addition, tone reproduction could conceivably be used cre-
atively to steer the mood of the scene, and thus help convey a story.

Thus, appropriate tone-reproduction operators should be matched to the task at
hand. The current state of affairs is that we do not know how to match an operator
to a given task. Selection of tone-reproduction operators is usually a matter of taste,
as well as public availability of source code. We hope to alleviate the latter problem
by having made the source code of all of our implementations available on the
companion DVD-ROM.
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