

Abstract—The Support Vector Machine is a widely
employed machine learning model due to its repeatedly
demonstrated superior generalization performance. The
Sequential Minimal Optimization (SMO) algorithm is one of
the most popular SVM training approaches. SMO is fast, as
well as easy to implement; however, it has a limited working set
size (2 points only). Faster training times can result if the
working set size can be increased without significantly
increasing the computational complexity. In this paper, we
extend the 2-point SMO formulation to a 4-point formulation
and address the theoretical issues associated with such an
extension. We show that modifying the SMO algorithm to
increase the working set size is beneficial in terms of the
number of iterations required for convergence, and shows
promise for reducing the overall training time.

I. INTRODUCTION
he Support Vector Machine is a classification model,
maintaining excellent generalization capabilities along

with a built-in resistance to overtraining. This generalization
performance is based upon strong theoretical foundations
first introduced by Vapnik [1]. Instead of performing
empirical risk minimization, as many other models do, the
SVM algorithm performs structural risk minimization. This
simply means that the algorithm seeks a balance between
fitting function complexity and training error. The SVM
algorithm works by finding a separating hyperplane between
two classes of data that maximizes the margin between the
closest data point and the separating hyperplane. Vapnik
shows that this is equivalent to structural risk minimization.
The primal, soft-margin problem formulation is shown in
(1).

21minimize
2

s.t. , 1 0

i
i

i i i

C

y b

ξ

ξ

+

⎡ ⎤+ − + ≥⎣ ⎦

∑w

w x
 (1)

Manuscript received January 31, 2007. This work was supported in part

by the NSF grants: CRCD: 0203446, CCLI: 0341601, DUE: 05254209,
IIS-REU: 0647120, and IIS-REU-0647120.

C. Sentelle is with the University of Central Florida, Orlando, FL 32816
USA. He is now with the School of Electrical Engineering and Computer
Science. (e-mail: csentelle@cfl.rr.com) .

M. Georgiopoulos is with the University of Central Florida, Orlando, FL
32816 USA. He is now with the School of Electrical Engineering and
Computer Science. (phone:407-823-5338; e-mail: michaelg@mail.ucf.edu).

G. C. Anagnostopoulos is with the Florida Institute of Technology,
Melbourne, FL 32901 USA. He is now with the Department of Electrical
and Computer Engineering. (email: georgio@fit.edu).

C. Young is with the University of Central Florida, Orlando, FL 32816
USA. She is now with the Department of Mathematics. (email:
cyoung@mail.ucf.edu).

where, ,w is a vector normal to the separating hyperplane,
1

w , is the width of the margin, { }1, 1 ,iy ∈ − is the label

of each data point, ix , is the thi data point, and ,b is a
threshold which defines the offset of the separating
hyperplane from the origin. A slack variable, ,iξ relaxes the
constraint for non-linearly separable data points and a

penalty term
1

n

i
i

C ξ
=
∑ is added to the minimization problem,

which limits the number of data points violating the margin
constraint. Equation (2) shows the primal problem
formulation rewritten in its dual form.

()

1 1 1

1

1maximize ,
2

s.t. 0, 0

n n n

i i j i j i j
i i j

n

i i i
i

y y K

y C

α α α

α α

= = =

=

−

= ≤ ≤

∑ ∑∑

∑

x x

(2)

where, ,iα is the Lagrange multiplier associated with each

data point and (),i jK x x is a non-linear mapping of the dot-

product ,i jx x or kernel function. Equation (3) shows this

rewritten in matrix form.

1maximize
2

s.t. 0,

T T

T C

−

= ≤ ≤

1 α α Qα

α y 0 α 1
 (3)

where Q is defined as () (),i j i jij y y K=Q x x and 1 is a

vector of ones. This is a quadratic programming problem
with a single equality constraint and two inequality
constraints per input vector, .ix

This quadratic problem becomes intractable as the number
of data points becomes large due to the associated number of
inequality constraints and the size of the kernel matrix, .Q
Vapnik [1] first introduced the idea of chunking where more
manageable sub-problems are solved. These sub-problems
consisted of the worst Karush-Kuhn-Tucker (KKT) violators
and data points having non-zero alpha values.
Unfortunately, the sub-problem would vary in size as
convergence progressed. Osuna et al. [2], then, introduced
the notion of using fixed size sub-problems where at least
one KKT violator was added to the sub-problem at each

On Extending the SMO Algorithm Sub-Problem
Christopher Sentelle, Michael Georgiopoulos, Georgios C. Anagnostopoulos, and Cynthia Young

T

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

iteration. Of course convergence was still slow leading to a
search for more advanced training algorithms.

Later, the Sequential Minimal Optimization (SMO)
algorithm [3] was introduced. The SMO algorithm
implemented decomposition to an extreme where only two
input vectors are selected, at each iteration. In previous
chunking algorithms a quadratic programming technique
such as an interior point method is applied to each sub-
problem, whereas, with SMO, Platt derives an analytical
expression for solving the sub-problem. Platt’s algorithm is
easy to implement and is found to significantly outperform
existing algorithms [3]. In this paper, we extend the SMO
idea, where 2 points are updated at a time, to the case where
4 points are updated.

The organization of the paper is as follows. Section II
discusses, in detail, the literature review of approaches that
have been introduced to solve (efficiently) the quadratic
optimization problem with constraints, associated with the
SVM formulation (see equation (3)), and the motivation
behind considering a 4-point SMO. In Section III,
theoretical issues regarding the 4-point SMO formulation
are dealt with, such as the update of the 4 variables, the
degeneracies that one might encounter in the 4-point SMO
formulation, and the method to select the 4-points that are to
be updated. Section IV contains preliminary experiments
that we have performed with the 4-point SMO algorithm and
comparisons with a state-of-the art SVM training algorithm
implementation, LIBSVM. These results indicate that there
is merit in considering a 4-point SMO approach to solve the
SVM problem. Finally, in Section V we present a summary
of our work, and some conclusive remarks.

II. LITERATURE REVIEW AND MOTIVATION
There are a number of approaches that have been

introduced in the literature to solve the SVM problem, in
addition to the aforementioned SMO algorithm. For
instance, Joachims, introduced in [4], the concept of
performing decomposition for any number of even data
points and employs an interior point method to solve each
sub-problem. In addition, Joachims introduced a novel
method for selecting data points for each sub-problem that is
linear in time, introduced the concept of shrinking, and
implemented kernel caching, which Platt mentioned in his
initial publication but did not implement. Joachims [4]
reports that the SVMLight software, based upon these
concepts, is faster than the SMO algorithm.

Recognizing some issues with Platt’s algorithm, a
modification to the data point selection and termination
criterion were suggested by Keerthi [5]. Keerthi shows that
the Platt algorithm could perform more iterations than
necessary when using a single threshold, and, therefore,
introduces the notion of using a dual threshold. Platt’s
algorithm also maintains inefficiencies in the manner in
which it selects input vectors for the sub-problem since, if
the heuristic for selecting a second input vector fails, a

random mechanism is employed. Keerthi’s improvement
eliminated this randomness.

While Keerthi’s algorithm was shown to outperform
Platt’s original implementation of SMO, Fan et al. [6]
introduced yet another modification to the SMO algorithm
for selecting input vectors. It is shown that Keerthi’s point
selection algorithm is the Working Set Selection (WSS)
introduced by Joachims when two points are selected [6].
The SVMLight algorithm approximates the objective
function using a 1st order Taylor’s series approximation and
builds a linear programming problem from this for selecting
data points for the next iteration. On the other hand, Fan et
al. show that a 2nd order Taylor’s series approximation of the
objective function may yield significantly better results
when applied to the SMO algorithm. Fan, et al. [6] report
significant convergence timing improvements based upon
their working set selection using second order information.

In addition to the mainstream SVM training algorithms,
there have been a host of other modifications introduced
such as the LS-SVM [7], LSVM [8], SSVM [9], and RSVM
[10], to name a few. In these algorithms, the authors
reformulate the primal problem associated with SVM and/or
perform techniques for working with smaller subsets of the
data. In each case, the algorithm is either not competitive
for the non-linear kernel (LSVM), the support vectors are no
longer sparse (LS-SVM) or training time is traded for some
small reduction in accuracy (RSVM) [11].

Our motivation for considering a 4-point SMO algorithm
stems from the realization that some problems might benefit
from considering more than two points per iteration from the
standpoint of faster convergence to the solution. For
example, although the SVMLight methodology is much
more difficult to implement, it affords the possibility of
quicker convergence by considering more points per
iteration. In fact, in two of the data sets identified by
Joachims [4], the Ohsumed data set and the Baluja face
image data set, the optimal number of data points per
iteration was identified to be 20, while in other cases; the
optimal working set size was 2. The current SMO
implementation does not provide the flexibility of increasing
the working set selection size beyond two, despite the fact
that there may be potential practical advantages for doing so.
In this paper, we explore the possibility of extending the
SMO algorithm to consider more than 2 points per iteration
while maintaining the ease of implementation associated
with SMO. The theoretical issues of such an extension are
addressed in Section III, while preliminary experimental
results are provided in Section IV, justifying the practical
merit of such an investigation.

III. 4-POINT SMO
To derive the 4-point SMO formulation, we first start with
(3). The equality constraint is ensured at each update using 4
points by satisfying (4).

 1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4 old old old old

y y y y

y y y y

α α α α

α α α α

+ + + =

+ + +
 (4)

Using a Lagrange multiplier and adding to the original
objective function, we obtain

 () ()1,
2

T TL r r
⎛ ⎞⎡ ⎤

= − − −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

ST T
old

y
α 1 α α Qα α α

0
 (5)

The gradient of the objective function, with respect to ,α is

 (), TL r r
⎡ ⎤

∇ = − − ⎢ ⎥
⎣ ⎦

Sy
α 1 Qα

0
 (6)

We are only interested in
1 2 3 4

, , ,L L L L
α α α α

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 which

can be obtained from (6) by extracting the first four rows of
the gradient, as seen in (7).

1 1 1
1 1

2 2 2
2 1

3 3 3
3 1

4 4 4
4 1

1

1

1

1

n

i i i
i

n

i i i
i
n

i i i
i

n

i i i
i

L y y k ry

L y y k ry

L y y k ry

L y y k ry

α
α

α
α

α
α

α
α

=

=

=

=

∂
= − −

∂

∂
= − −

∂

∂
= − −

∂

∂
= − −

∂

∑

∑

∑

∑

 (7)

If we define
5

n

i j j ij
j

v y kα
=

= ∑ , solve each expression of (7)

in terms of 1 2 3, , , α α α and 4α and rewrite these in a matrix
form, we obtain

0

s s s
T T old
s sr

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

Q y 1 uα
y y α

 (8)

where () { }, 1..4 ,i ii y v i= ∈u ,sQ is a sub-matrix of Q

containing the kernel matrix for the 4 selected points, sy
contains the labels of the 4 points, and sα contains the alpha
values for the 4 data points.

By solving this equation, we obtain the unconstrained 4-
point sub-problem; however, we must also consider the
inequality constraints associated with the original problem
(3). In the case of more than two points, the problem
becomes one of constraining the solution on the surface of a
hyperplane based upon the inequality constraints defined,
now, by the interior of a hypercube. The computation
entailed in considering all possible combinations with more

than 2 points grows exponentially. There are a total of 12n−
possible hyperplane orientations based upon the labels, iy ,
where the sign of the normal to the hyperplane is ignored.
For four data points, 4,n = there are 8 relevant orientations
of the hyperplane. Each hyperplane orientation can intersect
the hypercube in multiple ways. In addition, it is discovered
that the intersections are no longer points, as in the SMO
case, but, they are planes. Therefore, it seems that the
analytical methodology suggested by Platt for clipping the
data points is no longer applicable.

Therefore, the Theil-Van de Panne procedure [12] is
introduced to solve this problem. This procedure provides a
mechanism for searching the inequality constraints to find
those that are active in the final solution. The author in [12]
introduces the quadratic programming problem

 () 1maximize
2

s. t.

ψ ′ ′= −

′ ≤

x a x x Bx

C x d
 (9)

where B is a positive definite matrix of size n n× and C is
a matrix of the size n m× , with mconstraints. A subset of
the active constraints is referred to as ,S and the solution
where the constraints, ,S are active is referred to as ,Sx

which is both feasible ()S′ ≤C x d and optimal.
In general, the procedure works as follows. First, the

solution to the unconstrained problem, ,φx is solved. If this
solution is feasible, then this is also the optimal solution.
However, if there are violated constraints, then at least one
of the constraints violated will be an active constraint in the
final solution. The heuristic, then, considers each violator of

,φx and includes each violator, in turn, as an active
constraint and re-solves the optimization problem to obtain

/1Sx (where /S fx indicates a set of active constraints, ,S

containing f elements). In this case, /1Sx implies we are
considering all solutions with one active constraint. Each of
these solutions, may, in turn, identify additional violators. If
any solution /1Sx is feasible, then that is an optimal solution
and the algorithm has completed. If there are no feasible

/1Sx solutions, then the algorithm considers all
solutions / 2 ,Sx that is, all solutions containing two active

constraints. If a solution, / 2 ,Sx is found to be feasible, we
must consider the Lagrange multiplier associated with that
solution to determine if it is not only feasible but optimal. In
fact, there could be more than one / 2Sx feasible solution,
but only one is optimal in terms of providing the maximal
value of the objective function. This process continues until
the optimal solution is found. In our implementation, the
original matrix equation can be augmented in order to solve
for the solution to Sx as shown in (10) where 1α is
constrained to the value .C

1

1

0 0

0 0

1
0

where,
0
0

s s s
T T old
s sr

u C

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

T

1

Q y e 1 uα
y y α

e

e

 (10)

Any number of constraints can be added to this equation by
simply augmenting the matrix for each constraint. Note that
the resulting matrix on the left hand-side of the equation
remains symmetric and sparse.

A. Solutions for Non-Degenerate Cases
In the non-degenerate case, a single, global maximum

exists and sQ is of full rank. Note that (8) contains a
symmetric, partitioned matrix and a closed form solution
exists.

Let sQ be a positive definite, symmetric matrix, and A
the following partitioned matrix,

 .ˆ
0

s
T

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

Q y
A

y
 (11)

Then, the inverse of A exists and is given as,

1
1

1 1 1 1

1

1

0

1
1

 ˆ

s
T

T
s s s s

T
s

T
s

g
g

g

−
−

− − − −

−

−

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤+ −
⎢ ⎥

−⎢ ⎥⎣ ⎦

= −

Q y
A

y

Q Q yy Q Q y

y Q

y Q y

 (12)

since sQ is invertible and 1 0T
s
− ≠y Q y due to the positive

definiteness of .sQ Using this, the solution to α is
computed as

 ()1 1 11 .T
s s sg

u g
− − −⎡ ⎤ ⎡ ⎤= ⇔ = + −⎢ ⎥ ⎣ ⎦⎣ ⎦

α
A b α I Q yy Q Q y b

The closed form solution affords the flexibility of
incremental computation as constraints are added, when
employing the Theil-Van de Panne procedure. In this case,
we can augment the A matrix as

 1 ˆ
0
i

T
i

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

A e
A

e
 (13)

and compute the inverse as follows

1
1

1

1 1 1 1
., ,. .,

1
,.

1 1
,

0

1
1

ˆ

i
T
i

i i i

i

T
i i i i

g

g

g

−
−

− − − −

−

− −

⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤−⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤= − = − ⎣ ⎦

A e
A

e

A A A A

A

e A e A

 (14)

where ie is a unit vector with a one in the ith position

representing the augmented equality constraint, and [] ,.
1

i
−A ,

[] i.,
1−A , [] ii,

1−A denote the ith row, ith column and ith

diagonal element of matrix 1.−A Furthermore, replacing A
with A1 and ei with another unit vector, we can compute,
recursively, the inverse of an augmented matrix A2 in a
similar spirit to (14). As a result, the Theil Van de Panne
procedure can be performed in an incremental fashion
resulting in far fewer computations than would be required
otherwise.

B. Solutions for Degenerate Cases
Degeneracy occurs when sQ is not invertible, in the
presence of duplicate data points or when the dimensionality
of the input vectors is less than 4 and a linear kernel is
employed for the 4-point SMO. A degeneracy will also
occur when sQ is not positive definite. There are two
methods for dealing with the degeneracies. The appropriate
rows and columns of (8) can be zeroed out to convert the
problem to a 3 or 2-point SMO update, or, in the case of
certain degeneracies, an approach can be taken where all
alpha values are assumed to violate the constraints and the
Theil Van de Panne procedure is employed to find the
optimal, feasible solution set. The details are omitted due to
lack of space.

C. Working Set Selection
In Fan et al. [6], the following Working Set Selection
(WSS) heuristic is used to select a pair of data points for the
next iteration.

Select

() (){ }
()
() ()

2

arg max ,

,
arg min

k k
t uptt

k
low

it
k kt it t it i

i y f t I

t Ib
j

a y f y f

∈ − ∇ ∈

⎧ ⎫∈⎪ ⎪∈ −⎨ ⎬
− ∇ < − ∇⎪ ⎪

⎩ ⎭

α α

α

α α

 (15)

where

() { }
() { }

, 1 or 0, 1 ,

, 1 or 0, 1

up t t t t

low t t t t

I t C y y

I t C y y

α α

α α

< = > = −

< = − > =

α

α
 (16)

 () () ,

2

k k
it i ti t

it ii tt it

b y f y f

a K K K

= − ∇ + − ∇

= + −

α α
 (17)

()kf∇ α is the gradient, iy is the label, and ijK is the

kernel function applied to input vectors ix and .jx To deal
with the possibility of non-positive definite kernels, the
author introduces the idea of setting ita τ= in the case
when 0ita < where τ is a user selectable parameter
normally set to 1e-12. It can be shown, similar to the theory
of the 2-point case, that the algorithm depicted in (18) and
(19) can be applied in the 4-point case and will yield an
optimal update per step.

Select

() (){ }
() { }

() ()
2

arg max ,

, ,
arg min

k k
i upii

k
low

it
k ki it i ti t

s y f i I

i I i ub
t

a y f y f

∈ − ∇ ∈

⎧ ⎫∈ ∉⎪ ⎪∈ −⎨ ⎬
− ∇ < − ∇⎪ ⎪

⎩ ⎭

α α

α

α α

 (18)

() (){ }
() { }

() ()
2

arg min ,

, , ,
arg min

k k
i lowii

k
upvi

k ki it v iv i

u y f i I

i I i s tb
v

a y f y f

∈ − ∇ ∈

⎧ ⎫∈ ∉⎪ ⎪∈ −⎨ ⎬
− ∇ < − ∇⎪ ⎪

⎩ ⎭

α α

α

α α

 (19)

It was found that as the algorithm gets closer to the optimal
solution there were cases where two sets of data points could
not be found without duplication. When this occurs, both of
the initial data points ,s u can be chosen from either upI or

from .lowI

IV. RESULTS
To illustrate the merit of the 4-point SMO formulation, we
perform some preliminary experiments using the data sets
Sonar, German, and Four Class. The German dataset is from
the Statlog collection [13]. The Four Class problem is from
[14] and was transformed to a two-class set. Finally, Sonar
was obtained from the UCI repository [15]. All data sets
were acquired from [16] where they have been formatted for
use with LIBSVM. The linear kernel and RBF kernels were
employed with 2log C varying from -3 to 9 in steps of 2, for
the linear kernel, and with 2log C varying from -5 to 13 in

steps of 2, 2log γ varying from -15 to 3 in steps of 2, for the
RBF kernel. The same stopping criterion is employed for
both LIBSVM and the 4-Point SMO with the maximum
distance from the optimal solution specified as 310− . We
chose to compare our 4-point SMO algorithm with the latest
version of LIBSVM (ver. 2.82) [16] compiled as a
MATLAB MEX file. LIBSVM implements the algorithm as
described by Fan et al. [6]. The 4-point SMO algorithm was
also implemented as a MATLAB MEX file. In all cases,
kernel caching and shrinking was disabled, as this feature is
not currently implemented in the 4-Point SMO algorithm.

TABLE I
COMPARISON OF THE 4-POINT SMO AND LIBSVM TRAINING ALGORITHMS.

Data
Set LIBSVM 4-point SMO

 Time (sec)
Iterations

Time (sec)
Iterations

Four Class
(RBF)

134.97
476,014

74.806
107,441

Sonar
(RBF)

11.41
63,293

11.42
33,316

Sonar
(linear)

10.51
80,003

8.05
45,330

German
(RBF)

578.74
958,260

671.56
587,297

German
(linear)

622.36
1,965,342

466.59
1,153,402

The measure of comparison between the algorithms was

the total training time required for all combinations of C and
γ for a specific problem (dataset). This seems reasonable
since most practical applications will require evaluation of
these parameters to find the optimal settings for C and .γ
Classification performance, the number of support vectors,
and threshold, not reported here, were compared to ensure
neither algorithm terminated prematurely. Table I depicts the
total training times and number of iterations required for
convergence by each algorithm.

The time per iteration for both LIBSVM and the 4-point
SMO is dominated by computation of the error cache
update. The LIBSVM algorithm requires 2N kernel
computations at each iteration since two alpha values are
updated while the 4-point SMO requires 4N kernel
computations. As a result, we expect that the 4-point SMO
algorithm must reduce the number of iterations by ½
compared to the LIBSVM algorithm in order to achieve
comparable training times. In fact, we see this for the Sonar
dataset, with the RBF kernel, where the number of iterations
required by the 4-Point SMO algorithm is nearly ½ that of
the LIBSVM training algorithm and training times are
comparable.

In summary, we observe that the 4-Point SMO
consistently converges in fewer iterations than the LIBSVM
algorithm. In addition, a comparison of training time reveals
that the 4-Point SMO algorithm is faster when compared to

LIBSVM for the Four Class data set, Sonar dataset with a
linear kernel, and the German dataset with a linear kernel. In
fact, for the Four Class dataset, the iterations required by the
4-Point SMO algorithm are approximately ¼ that of
LIBSVM algorithm and training time is nearly ½. We note
a worst case increase of the training time for the German
dataset with the RBF kernel where there is a 16% increase in
training time. Based on the results reported by Joachims [4],
we predict that increasing the working set size may not be
beneficial for all data sets, as observed by the German
dataset in Table I.

V. SUMMARY AND CONCLUSIONS
In summary, we have presented an extension to the SMO
algorithm for larger working sets (4 points in this case). We
have shown that extending the SMO working set size
consistently decreases the number of iterations required for
convergence and, in some cases, results in a decrease in
training time. In terms of efficiency, the computation time
for both the 2-point SMO and the 4-point extension is
dominated by the update of the error cache. As a result, the
time per iteration is roughly doubled for the 4-point SMO
algorithm. A decrease in training time will occur if the
number of iterations required for convergence can be
substantially reduced by increasing the working set size. The
promising results, presented here, appear to merit continued
research into improving the 4-point SMO algorithm and
further increasing the working set size to discover the point
at which computational complexity prevents further
reduction in total training time.

Future work includes finding more efficient methods for
dealing with the non-invertible sub-problem kernel matrix,
by researching alternatives to the Theil-Van de Panne
procedure, and improved working set selection techniques
based upon the WSS introduced by Fan et al., all of which
could lead to a faster implementation of the 4-point SMO
algorithm. In addition, it seems worthwhile to expand the
ideas, presented here, to an arbitrary N-point SMO where
the efficiency, in some cases, might be expected to further
increase.

ACKNOWLEDGMENT
Christopher Sentelle gratefully acknowledges the support of
the College of Engineering & Computer Science and the
I2Lab at the University of Central Florida.

REFERENCES
[1] V. Vapnik, Estimation of Dependences Based on Empirical Data,

Springer-Verlag, (1982).
[2] E. Osuna, R. Freund, and F. Girosi, “An improved training algorithm

for support vector machines,” Neural Networks for Signal Processing
VII – Proceedings of the 1997 IEEE Workshop, pp. 276 – 285, New
York, 1997a. IEEE.

[3] J. C. Platt, “Fast Training of Support Vector Machines Using
Sequential Minimal Optimization,” Support Vector Learning, B.
Schölkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999.

[4] T. Joachims, “Making large-Scale SVM Learning Practical. Advances
in Kernel Methods,” Support Vector Learning, B. Schölkopf and C.
Burges and A. Smola (ed.), MIT-Press, 1999.

[5] S. S. Keerthi, "Improvements to Platt's SMO algorithm for SVM
classifier design", Neural Computation, vol. 13, 2001, pp 637-649.

[6] R.-E. Fan, P.-H. Chen, and C.-J. Lin. “Working set selection using the
second order information for training SVM.” Journal of Machine
Learning Research, vol. 6, 1889-1918, 2005.

[7] J. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural Processing Letters, vol. 9: 293–300, 1999.

[8] O. L. Mangasarian and D. R. Musicant, “Lagrangian support vector
machines,” J. Machine Learning Res., vol. 1, pp. 161–177, 2001.

[9] Y. Lee and O. L. Mangasarian, “SSVM: a smooth support vector
machine for classification,” Computational Optimization and
Applications, vol. 20, no. 1, pp. 5-22, 2001.

[10] Y.-J. Lee and O. L. Mangasarian, “RSVM: reduced support vector
machines,” in Proc. 1st SIAM Int. Conf. Data Mining, 2001.

[11] K.-M. Lin, C.-J. Lin, “A study on reduced support vector machines,”
IEEE Transactions on Neural Networks, vol. 14 (6) (2003) pp. 1449 -
1459.

[12] J. C. G. Boot, Quadratic Programming, Vol. 2, Rand McNally &
Company, pp. 95-124, 1964.

[13] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning,
Neural and Statistical Classification. Prentice Hall, Englewood Cliffs,
N.J., 1994. Data available at
http://www.ncc.up.pt/liacc/ML/statlog/datasets.html.

[14] T. K. Ho and E. M. Kleinberg, “Building projectable classifiers of
arbitrary complexity.” Proceedings of the 13th International
Conference on Pattern Recognition, pp. 880–885, Vienna, Austria,
August 1996.

[15] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz, (1998). UCI
Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:
University of California, Department of Information and Computer
Science.

[16] C. Chang and C. Lin, LIBSVM: a library for support vector machines,
2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

