
 
 

 

  

Abstract—The Support Vector Machine is a widely 
employed machine learning model due to its repeatedly 
demonstrated superior generalization performance. The 
Sequential Minimal Optimization (SMO) algorithm is one of 
the most popular SVM training approaches. SMO is fast, as 
well as easy to implement; however, it has a limited working set 
size (2 points only). Faster training times can result if the 
working set size can be increased without significantly 
increasing the computational complexity.   In this paper, we 
extend the 2-point SMO formulation to a 4-point formulation 
and address the theoretical issues associated with such an 
extension. We show that modifying the SMO algorithm to 
increase the working set size is beneficial in terms of the 
number of iterations required for convergence, and shows 
promise for reducing the overall training time. 

I. INTRODUCTION 
he Support Vector Machine is a classification model, 
maintaining excellent generalization capabilities along 

with a built-in resistance to overtraining. This generalization 
performance is based upon strong theoretical foundations 
first introduced by Vapnik [1]. Instead of performing 
empirical risk minimization, as many other models do, the 
SVM algorithm performs structural risk minimization. This 
simply means that the algorithm seeks a balance between 
fitting function complexity and training error. The SVM 
algorithm works by finding a separating hyperplane between 
two classes of data that maximizes the margin between the 
closest data point and the separating hyperplane. Vapnik 
shows that this is equivalent to structural risk minimization. 
The primal, soft-margin problem formulation is shown in 
(1). 
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where, ,w  is a vector normal to the separating hyperplane, 
1

w , is the width of the margin, { }1, 1 ,iy ∈ − is the label 

of each data point, ix , is the thi data point, and ,b is a 
threshold which defines the offset of the separating 
hyperplane from the origin. A slack variable, ,iξ  relaxes the 
constraint for non-linearly separable data points and a 

penalty term 
1

n

i
i

C ξ
=
∑  is added to the minimization problem, 

which limits the number of data points violating the margin 
constraint. Equation (2) shows the primal problem 
formulation rewritten in its dual form. 
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where, ,iα  is the Lagrange multiplier associated with each 

data point and ( ),i jK x x is a non-linear mapping of the dot-

product ,i jx x  or kernel function. Equation (3) shows this 

rewritten in matrix form. 
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where Q  is defined as ( ) ( ),i j i jij y y K=Q x x and 1  is a 

vector of ones. This is a quadratic programming problem 
with a single equality constraint and two inequality 
constraints per input vector, .ix  

This quadratic problem becomes intractable as the number 
of data points becomes large due to the associated number of 
inequality constraints and the size of the kernel matrix, .Q  
Vapnik [1] first introduced the idea of chunking where more 
manageable sub-problems are solved. These sub-problems 
consisted of the worst Karush-Kuhn-Tucker (KKT) violators 
and data points having non-zero alpha values.  
Unfortunately, the sub-problem would vary in size as 
convergence progressed. Osuna et al. [2], then, introduced 
the notion of using fixed size sub-problems where at least 
one KKT violator was added to the sub-problem at each 
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iteration. Of course convergence was still slow leading to a 
search for more advanced training algorithms. 

Later, the Sequential Minimal Optimization (SMO) 
algorithm [3] was introduced. The SMO algorithm 
implemented decomposition to an extreme where only two 
input vectors are selected, at each iteration. In previous 
chunking algorithms a quadratic programming technique 
such as an interior point method is applied to each sub-
problem, whereas, with SMO, Platt derives an analytical 
expression for solving the sub-problem. Platt’s algorithm is 
easy to implement and is found to significantly outperform 
existing algorithms [3]. In this paper, we extend the SMO 
idea, where 2 points are updated at a time, to the case where 
4 points are updated.  

The organization of the paper is as follows. Section II 
discusses, in detail, the literature review of approaches that 
have been introduced to solve (efficiently) the quadratic 
optimization problem with constraints, associated with the 
SVM formulation (see equation (3)), and the motivation 
behind considering a 4-point SMO. In Section III, 
theoretical issues regarding the 4-point SMO formulation 
are dealt with, such as the update of the 4 variables, the 
degeneracies that one might encounter in the 4-point SMO 
formulation, and the method to select the 4-points that are to 
be updated. Section IV contains preliminary experiments 
that we have performed with the 4-point SMO algorithm and 
comparisons with a state-of-the art SVM training algorithm 
implementation, LIBSVM. These results indicate that there 
is merit in considering a 4-point SMO approach to solve the 
SVM problem. Finally, in Section V we present a summary 
of our work, and some conclusive remarks.  

II. LITERATURE REVIEW AND MOTIVATION 
There are a number of approaches that have been 

introduced in the literature to solve the SVM problem, in 
addition to the aforementioned SMO algorithm. For 
instance, Joachims, introduced in [4], the concept of 
performing decomposition for any number of even data 
points and employs an interior point method to solve each 
sub-problem. In addition, Joachims introduced a novel 
method for selecting data points for each sub-problem that is 
linear in time, introduced the concept of shrinking, and 
implemented kernel caching, which Platt mentioned in his 
initial publication but did not implement. Joachims [4] 
reports that the SVMLight software, based upon these 
concepts, is faster than the SMO algorithm. 

Recognizing some issues with Platt’s algorithm, a 
modification to the data point selection and termination 
criterion were suggested by Keerthi [5]. Keerthi shows that 
the Platt algorithm could perform more iterations than 
necessary when using a single threshold, and, therefore, 
introduces the notion of using a dual threshold. Platt’s 
algorithm also maintains inefficiencies in the manner in 
which it selects input vectors for the sub-problem since, if 
the heuristic for selecting a second input vector fails, a 

random mechanism is employed. Keerthi’s improvement 
eliminated this randomness. 

While Keerthi’s algorithm was shown to outperform 
Platt’s original implementation of SMO, Fan et al. [6] 
introduced yet another modification to the SMO algorithm 
for selecting input vectors. It is shown that Keerthi’s point 
selection algorithm is the Working Set Selection (WSS) 
introduced by Joachims when two points are selected [6].  
The SVMLight algorithm approximates the objective 
function using a 1st order Taylor’s series approximation and 
builds a linear programming problem from this for selecting 
data points for the next iteration. On the other hand, Fan et 
al. show that a 2nd order Taylor’s series approximation of the 
objective function may yield significantly better results 
when applied to the SMO algorithm. Fan, et al. [6] report 
significant convergence timing improvements based upon 
their working set selection using second order information.   

In addition to the mainstream SVM training algorithms, 
there have been a host of other modifications introduced 
such as the LS-SVM [7], LSVM [8], SSVM [9], and RSVM 
[10], to name a few. In these algorithms, the authors 
reformulate the primal problem associated with SVM and/or 
perform techniques for working with smaller subsets of the 
data.  In each case, the algorithm is either not competitive 
for the non-linear kernel (LSVM), the support vectors are no 
longer sparse (LS-SVM) or training time is traded for some 
small reduction in accuracy (RSVM) [11].  

Our motivation for considering a 4-point SMO algorithm 
stems from the realization that some problems might benefit 
from considering more than two points per iteration from the 
standpoint of faster convergence to the solution. For 
example, although the SVMLight methodology is much 
more difficult to implement, it affords the possibility of 
quicker convergence by considering more points per 
iteration. In fact, in two of the data sets identified by 
Joachims [4], the Ohsumed data set and the Baluja face 
image data set, the optimal number of data points per 
iteration was identified to be 20, while in other cases; the 
optimal working set size was 2. The current SMO 
implementation does not provide the flexibility of increasing 
the working set selection size beyond two, despite the fact 
that there may be potential practical advantages for doing so. 
In this paper, we explore the possibility of extending the 
SMO algorithm to consider more than 2 points per iteration 
while maintaining the ease of implementation associated 
with SMO. The theoretical issues of such an extension are 
addressed in Section III, while preliminary experimental 
results are provided in Section IV, justifying the practical 
merit of such an investigation.  

III. 4-POINT SMO 
To derive the 4-point SMO formulation, we first start with 
(3). The equality constraint is ensured at each update using 4 
points by satisfying (4). 
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Using a Lagrange multiplier and adding to the original 
objective function, we obtain 
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The gradient of the objective function, with respect to ,α  is 
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can be obtained from (6) by extracting the first four rows of 
the gradient, as seen in (7). 
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If we define 
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in terms of 1 2 3, , ,  α α α and 4α and rewrite these in a matrix 
form, we obtain 
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where ( ) { },  1..4 ,i ii y v i= ∈u ,sQ  is a sub-matrix of Q  

containing the kernel matrix for the 4 selected points, sy  
contains the labels of the 4 points, and sα  contains the alpha 
values for the 4 data points. 

By solving this equation, we obtain the unconstrained 4-
point sub-problem; however, we must also consider the 
inequality constraints associated with the original problem 
(3). In the case of more than two points, the problem 
becomes one of constraining the solution on the surface of a 
hyperplane based upon the inequality constraints defined, 
now, by the interior of a hypercube. The computation 
entailed in considering all possible combinations with more 

than 2 points grows exponentially. There are a total of 12n−  
possible hyperplane orientations based upon the labels, iy , 
where the sign of the normal to the hyperplane is ignored. 
For four data points, 4,n = there are 8 relevant orientations 
of the hyperplane. Each hyperplane orientation can intersect 
the hypercube in multiple ways. In addition, it is discovered 
that the intersections are no longer points, as in the SMO 
case, but, they are planes. Therefore, it seems that the 
analytical methodology suggested by Platt for clipping the 
data points is no longer applicable. 

Therefore, the Theil-Van de Panne procedure [12] is 
introduced to solve this problem. This procedure provides a 
mechanism for searching the inequality constraints to find 
those that are active in the final solution. The author in [12] 
introduces the quadratic programming problem 
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where B  is a positive definite matrix of size n n×  and C  is 
a matrix of the size n m× , with mconstraints. A subset of 
the active constraints is referred to as ,S  and the solution 
where the constraints, ,S  are active is referred to as ,Sx  

which is both feasible ( )S′ ≤C x d and optimal.   
In general, the procedure works as follows. First, the 

solution to the unconstrained problem, ,φx is solved. If this 
solution is feasible, then this is also the optimal solution. 
However, if there are violated constraints, then at least one 
of the constraints violated will be an active constraint in the 
final solution. The heuristic, then, considers each violator of 

,φx  and includes each violator, in turn, as an active 
constraint and re-solves the optimization problem to obtain 

/1Sx  (where /S fx indicates a set of active constraints, ,S  

containing f elements).  In this case, /1Sx  implies we are 
considering all solutions with one active constraint. Each of 
these solutions, may, in turn, identify additional violators. If 
any solution /1Sx is feasible, then that is an optimal solution 
and the algorithm has completed. If there are no feasible 

/1Sx  solutions, then the algorithm considers all 
solutions / 2 ,Sx that is, all solutions containing two active 

constraints. If a solution, / 2 ,Sx  is found to be feasible, we 
must consider the Lagrange multiplier associated with that 
solution to determine if it is not only feasible but optimal. In 
fact, there could be more than one / 2Sx  feasible solution, 
but only one is optimal in terms of providing the maximal 
value of the objective function. This process continues until 
the optimal solution is found. In our implementation, the 
original matrix equation can be augmented in order to solve 
for the solution to Sx as shown in (10) where 1α is 
constrained to the value .C  
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Any number of constraints can be added to this equation by 
simply augmenting the matrix for each constraint. Note that 
the resulting matrix on the left hand-side of the equation 
remains symmetric and sparse. 

A. Solutions for Non-Degenerate Cases 
In the non-degenerate case, a single, global maximum 

exists and sQ  is of full rank.  Note that (8) contains a 
symmetric, partitioned matrix and a closed form solution 
exists.   

Let sQ  be a positive definite, symmetric matrix, and A  
the following partitioned matrix, 
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Then, the inverse of A exists and is given as, 
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since sQ  is invertible and 1 0T
s
− ≠y Q y  due to the positive 

definiteness of .sQ  Using this, the solution to α is 
computed as 
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The closed form solution affords the flexibility of 
incremental computation as constraints are added, when 
employing the Theil-Van de Panne procedure. In this case, 
we can augment the A matrix as 

                                    1 ˆ
0
i

T
i

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

A e
A

e
 (13) 

and compute the inverse as follows 
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where ie  is a unit vector with a one in the ith position 

representing the augmented equality constraint, and [ ] ,.
1

i
−A , 

[ ] i.,
1−A , [ ] ii,

1−A denote the ith row, ith column and ith 

diagonal element of matrix 1.−A  Furthermore, replacing A 
with A1 and ei with another unit vector, we can compute, 
recursively, the inverse of an augmented matrix A2 in a 
similar spirit to (14).  As a result, the Theil Van de Panne 
procedure can be performed in an incremental fashion 
resulting in far fewer computations than would be required 
otherwise. 

B. Solutions for Degenerate Cases 
Degeneracy occurs when sQ is not invertible, in the 
presence of duplicate data points or when the dimensionality 
of the input vectors is less than 4 and a linear kernel is 
employed for the 4-point SMO. A degeneracy will also 
occur when sQ is not positive definite. There are two 
methods for dealing with the degeneracies. The appropriate 
rows and columns of (8) can be zeroed out to convert the 
problem to a 3 or 2-point SMO update, or, in the case of 
certain degeneracies, an approach can be taken where all 
alpha values are assumed to violate the constraints and the 
Theil Van de Panne procedure is employed to find the 
optimal, feasible solution set. The details are omitted due to 
lack of space.  

C. Working Set Selection 
In Fan et al. [6], the following Working Set Selection 
(WSS) heuristic is used to select a pair of data points for the 
next iteration. 
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( )kf∇ α  is the gradient, iy  is the label, and ijK  is the 

kernel function applied to input vectors ix and .jx  To deal 
with the possibility of non-positive definite kernels, the 
author introduces the idea of setting ita τ=  in the case 
when 0ita <  where τ is a user selectable parameter 
normally set to 1e-12.  It can be shown, similar to the theory 
of the 2-point case, that the algorithm depicted in (18) and 
(19) can be applied in the 4-point case and will yield an 
optimal update per step. 
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It was found that as the algorithm gets closer to the optimal 
solution there were cases where two sets of data points could 
not be found without duplication. When this occurs, both of 
the initial data points ,s u  can be chosen from either upI  or 

from .lowI    

IV. RESULTS 
To illustrate the merit of the 4-point SMO formulation, we 
perform some preliminary experiments using the data sets 
Sonar, German, and Four Class. The German dataset is from 
the Statlog collection [13]. The Four Class problem is from 
[14] and was transformed to a two-class set. Finally, Sonar 
was obtained from the UCI repository [15]. All data sets 
were acquired from [16] where they have been formatted for 
use with LIBSVM. The linear kernel and RBF kernels were 
employed with 2log C varying from -3 to 9 in steps of 2, for 
the linear kernel, and with 2log C varying from -5 to 13 in 

steps of 2, 2log γ varying from -15 to 3 in steps of 2, for the 
RBF kernel. The same stopping criterion is employed for 
both LIBSVM and the 4-Point SMO with the maximum 
distance from the optimal solution specified as 310− . We 
chose to compare our 4-point SMO algorithm with the latest 
version of LIBSVM (ver. 2.82) [16] compiled as a 
MATLAB MEX file. LIBSVM implements the algorithm as 
described by Fan et al. [6]. The 4-point SMO algorithm was 
also implemented as a MATLAB MEX file. In all cases, 
kernel caching and shrinking was disabled, as this feature is 
not currently implemented in the 4-Point SMO algorithm. 

TABLE I 
COMPARISON OF THE 4-POINT SMO AND LIBSVM TRAINING ALGORITHMS. 

Data 
Set LIBSVM 4-point SMO 

 Time (sec) 
Iterations 

Time (sec) 
Iterations 

Four Class 
(RBF) 

134.97 
476,014 

74.806 
107,441 

Sonar 
(RBF) 

11.41 
63,293 

11.42 
33,316 

Sonar 
(linear) 

10.51 
80,003 

8.05 
45,330 

German 
(RBF) 

578.74 
958,260 

671.56 
587,297 

German 
(linear) 

622.36 
1,965,342 

466.59 
1,153,402 

  
The measure of comparison between the algorithms was 

the total training time required for all combinations of C and 
γ  for a specific problem (dataset). This seems reasonable 
since most practical applications will require evaluation of 
these parameters to find the optimal settings for C and .γ  
Classification performance, the number of support vectors, 
and threshold, not reported here, were compared to ensure 
neither algorithm terminated prematurely. Table I depicts the 
total training times and number of iterations required for 
convergence by each algorithm.  

The time per iteration for both LIBSVM and the 4-point 
SMO is dominated by computation of the error cache 
update. The LIBSVM algorithm requires 2N kernel 
computations at each iteration since two alpha values are 
updated while the 4-point SMO requires 4N kernel 
computations. As a result, we expect that the 4-point SMO 
algorithm must reduce the number of iterations by ½ 
compared to the LIBSVM algorithm in order to achieve 
comparable training times.  In fact, we see this for the Sonar 
dataset, with the RBF kernel, where the number of iterations 
required by the 4-Point SMO algorithm is nearly ½ that of 
the LIBSVM training algorithm and training times are 
comparable. 

In summary, we observe that the 4-Point SMO 
consistently converges in fewer iterations than the LIBSVM 
algorithm. In addition, a comparison of training time reveals 
that the 4-Point SMO algorithm is faster when compared to 



 
 

 

LIBSVM for the Four Class data set, Sonar dataset with a 
linear kernel, and the German dataset with a linear kernel. In 
fact, for the Four Class dataset, the iterations required by the 
4-Point SMO algorithm are approximately ¼ that of 
LIBSVM algorithm and training time is nearly ½.  We note 
a worst case increase of the training time for the German 
dataset with the RBF kernel where there is a 16% increase in 
training time. Based on the results reported by Joachims [4], 
we predict that increasing the working set size may not be 
beneficial for all data sets, as observed by the German 
dataset in Table I.  

V. SUMMARY AND CONCLUSIONS 
In summary, we have presented an extension to the SMO 
algorithm for larger working sets (4 points in this case). We 
have shown that extending the SMO working set size 
consistently decreases the number of iterations required for 
convergence and, in some cases, results in a decrease in 
training time.  In terms of efficiency, the computation time 
for both the 2-point SMO and the 4-point extension is 
dominated by the update of the error cache. As a result, the 
time per iteration is roughly doubled for the 4-point SMO 
algorithm. A decrease in training time will occur if the 
number of iterations required for convergence can be 
substantially reduced by increasing the working set size. The 
promising results, presented here, appear to merit continued 
research into improving the 4-point SMO algorithm and 
further increasing the working set size to discover the point 
at which computational complexity prevents further 
reduction in total training time. 

Future work includes finding more efficient methods for 
dealing with the non-invertible sub-problem kernel matrix, 
by researching alternatives to the Theil-Van de Panne 
procedure, and improved working set selection techniques 
based upon the WSS introduced by Fan et al., all of which 
could lead to a faster implementation of the 4-point SMO 
algorithm. In addition, it seems worthwhile to expand the 
ideas, presented here, to an arbitrary N-point SMO where 
the efficiency, in some cases, might be expected to further 
increase.   
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