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Abstract

One of the properties of FAM, which can be both an asset and a liability, is its capacity to produce
new neurons (templates) on demand to represent classification categories. This property allows FAM to
automatically adapt to the database without having to arbitrarily specify network structure. We provide
two methods for speeding up the FAM algorithm. The first one, referred to as the data partitioning
approach, partitions the data into subsets for independent processing. The second one, referred to as
the network partitioning approach, uses a pipeline to distribute the work between processes during
training. We provide experimental results on a Beowulf cluster of workstations for both approaches
that confirm the speedup of the modifications.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Neural networks have been used extensively and successfully to address a wide variety
of problems. As computing capacity and electronic databases grow, there is an increasing
need to process considerably larger datasets. In this context, the algorithms of choice tend
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to be ad-hoc algorithms, or tree-based algorithms such as CART [2] and C4.5 [7]. Variations
of these tree learning algorithms, such as SPRINT [8] and SLIQ [5] have been successfully
adapted to handle very large data sets.

Neural network algorithms have, for some applications, prohibitively high convergence
times. Even one of the fastest neural network algorithms, the Fuzzy ARTMAP (FAM) algo-
rithm, tends to lag in convergence time as the size of the network grows. The FAM algorithm
corresponds to a family of neural network architectures introduced by Carpenter et al. [3,4],
and has proven to be one of the premier neural network architectures for classification
problems.

Some of the advantages that FAM has, compared to other neural network classifiers are
that it learns the required task fast, it has the capability to do on-line learning, and its learning
structure allows the explanation of the answers that the neural network produces.

One of FAM’s properties which is a mixed blessing is its capacity to produce new neurons
(templates) on demand to represent classification categories. This property allows FAM to
automatically adapt to the database without having to arbitrarily and a priori specify its
network structure, but it also has the undesirable side effect that for large databases it can
produce a large network size that can dramatically slow down the algorithm’s training
time. It would be desirable to have a method capable of keeping FAM’s convergence time
manageable, without affecting the generalization performance of the network or its resulting
size when the training is completed.

In this paper, we propose two partitioning approaches for the FAM algorithm to be
used in a parallel setting. The network partitioning approach and the data partitioning
approach. Our research on the proposed data partitioning approach for FAM has shown that
it dramatically reduces the training time of FAM, by partitioning the training set, without a
significant effect on the classification (generalization) performance of the network. For the
network partitioning approach, a pipelined FAM implementation is proposed that speeds
up the algorithm linearly with respect to the number of processors used in the pipeline.

This paper is organized as follows: first we review the Fuzzy ARTMAP architecture
and functionality, then we examine the computational complexity of FAM and analyze
how and why a data partitioning and/or a network partitioning approach can considerably
reduce the algorithm’s training time. Then, we discuss in detail the data partitioning of FAM
and provide a network partitioning parallel pipelined algorithm for FAM. Furthermore, we
discuss some results of correctness on the network partitioning pipelined FAM approach.
Finally, experimental results are presented that illustrate the merit of our approaches. The
data-partitioned FAM and the pipelined FAM were implemented on a Beowulf cluster of
workstations. We close the paper with a summary of the findings and suggestions for further
research.

2. Fuzzy ARTMAP

2.1. The Fuzzy ARTMAP architecture

The Fuzzy ARTMAP architecture consists of four layers or fields of nodes (see Fig. 1).
The layers that are worth describing are the input layer Fa

1 , the category representation
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Fig. 1. Fuzzy ARTMAP diagram.

layer Fa
2 , and the output layer Fb

2 . The input layer of Fuzzy ARTMAP is the layer where
an input vector of dimensionality 2Ma of the following form is applied:

I= (a, ac)= (a1, a2, . . . , aMa , a
c
1, a

c
2, . . . , a

c
Ma

), (1)

ac
i = 1− ai, ∀i ∈ {1, 2, . . . , Ma}. (2)

The assumption here is that the input vector a is such that each one of its components
lies in the interval [0, 1].

The layer Fa
2 of Fuzzy ARTMAP is referred to as the category representation layer,

because this is where categories (or groups) of input patterns are formed. Finally, the out-
put layer is the layer that produces the outputs of the network. An output of the network
represents the output to which the input applied at the input layer of FAM is supposed to
be mapped to.

There are two sets of weights worth mentioning in FAM. The first set of weights are
weights from Fa

2 to Fa
1 , designated as wa

ij , 1�j �Na , 1� i�Ma , and referred to as top-
down weights. The vector of weights

wa
j = (wa

j1, w
a
j2, . . . , w

a
j,2Ma

)

is called a template. Its functionality is to represent the group of input patterns that chose
node j in the category representation layer of Fuzzy ARTMAP as their representative node.
The second set of weights worth mentioning, are weights that emanate from every node j
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in the category representation layer to every node k in the output layer. These weights are
designated as Wab

jk (called inter-ART weights). The vector of inter-ART weights emanating
from every node j in Fuzzy ARTMAP

Wab
j = (Wab

j1 , Wab
j2 , . . . , Wab

j,Nb
)

corresponds to the output pattern that this node j is mapped to.
Fuzzy ARTMAP can operate in two distinct phases: the training phase and the perfor-

mance phase. The training phase of Fuzzy ARTMAP can be described as follows: Given a
list of input/output pairs,

{(I1, O1), (I2, O2), . . . , (IP , OP )}.
We want to train Fuzzy ARTMAP to map every input pattern of the training list to its
corresponding output pattern. To achieve the aforementioned goal, we present the training
list to Fuzzy ARTMAP architecture repeatedly. That is, we present I1 to Fa

1 , O1 to Fb
2 , I2

to Fa
1 , O2 to Fb

2 , and finally IP to Fa
1 , and OP to Fb

2 . We present the training list to Fuzzy
ARTMAP as many times as it is necessary for FuzzyARTMAP to correctly classify all these
input patterns. The task is considered accomplished (i.e., the learning is complete) when
the weights do not change during a list presentation. The aforementioned training scenario
is called off-line learning. The performance phase of Fuzzy ARTMAP works as follows:
Given a list of input patterns, such as Ĩ1, Ĩ2, . . . , ĨS , we want to find the Fuzzy ARTMAP
output produced when each one of the aforementioned test patterns is presented at its Fa

1
layer. In order to achieve the aforementioned goal, we present the test list to the trained
Fuzzy ARTMAP architecture and we observe the network’s output.

The operation of Fuzzy ARTMAP is affected by two network parameters, the choice
parameter �a , and the baseline vigilance parameter �̄a . The choice parameter takes values in
the interval (0,∞), while the baseline vigilance parameter assumes values in the interval [0,
1]. Both of these parameters affect the number of nodes created in the category representation
layer of Fuzzy ARTMAP. Higher values of �a and �̄a create more nodes in the category
representation layer of Fuzzy ARTMAP, and consequently produce less compression of the
input patterns. There are two other network parameter values in Fuzzy ARTMAP that are
worth mentioning. The vigilance parameter �a and the number of nodes Na in the category
representation layer of Fuzzy ARTMAP. The vigilance parameter �a takes value in the
interval [�̄a, 1] and its initial value is set to be equal to �̄a . The number of nodes Na in the
category representation layer of Fuzzy ARTMAP increases, while training the network, and
it corresponds to the number of committed nodes in Fuzzy ARTMAP plus one uncommitted
node.

2.2. The Fuzzy ARTMAP learning algorithm

Prior to initiating the training phase of Fuzzy ARTMAP, the top-down weights (the wa
ij ’S)

are chosen equal to 1, and the inter-ART weights (the Wab
jk ’S) are chosen equal to 0. There

are three major operations that take place during the presentation of a training input/output
pair (e.g., (Ir , Or )) to Fuzzy ARTMAP, and they are described below. One of the specific
operands involved in all of these operations is the fuzzy min operand, designated by the
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symbol ∧. Actually, the fuzzy min operation of two vectors x, and y, designated as x∧ y, is
a vector whose components are equal to the minimum of components of x and y. Another
specific operand involved in these equations is designated by the symbol | • |. In particular,
|x| is the size of a vector x and is defined to be the sum of its components.

Operation 1. Calculation of bottom-up inputs to every node j in Fa
2 as follows:

T a
j =
|Ir ∧ wa

j |
|wa

j | + �a

. (3)

After calculation of the bottom up inputs the node jmax with the maximum bottom-up input
is chosen.

Operation 2. The node jmax with the maximum bottom up input is examined to determine
whether it passes the vigilance criterion.A node passes the vigilance criterion if the following
condition is met:

|Ir ∧ wa
j |

|Ir | ��a . (4)

If the vigilance criterion is satisfied we proceed with operation 3 otherwise node jmax is
disqualified and we find the next node in Fa

2 that maximizes the bottom-up input. Eventually
we will end up with a node jmax that maximizes the bottom-up input and passes the vigilance
criterion.

Operation 3. This operation is implemented only after we have found a node jmax that
maximizes the bottom-up input and passes the vigilance criterion. Operation 3 determines
whether this node jmax passes the prediction test. The prediction test checks if the inter-ART
weight vector emanating from node jmax i.e.

Wab
jmax
= (Wab

jmax1, W
ab
jmax2, . . . , W

ab
jmaxNb

)

matches exactly the desired output vector Or (if it does, this is referred to as passing the
prediction test). If the node does not pass the prediction test, the vigilance parameter �a is
increased to the level of

�a ←
|Ir ∧ wa

jmax
|

|Ir | + �,

where � is a very small number. Node jmax is disqualified, and the next Fa
2 node that

maximizes the bottom-up input and passes the new vigilance is chosen. If, on the other
hand, node jmax passes the predictability test, the weights in Fuzzy ARTMAP are modified
as follows:

wa
jmax
← wa

jmax
∧ Ir , Wab

jmax
← Or . (5)

FuzzyARTMAP training is considered complete if and only if after repeated presentations
of all training input/output pairs to the network, where Operations 1–3 are recursively
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Fig. 2. Fuzzy ARTMAP algorithm.

applied for every input/output pair, we find ourselves in a situation where a complete cycle
through all the input/output pairs produced no weight changes. In some databases, noise in
the data may create over-fitting when we repeatedly present the training input/output pairs;
so a single pass over the training set may be preferable. A single pass over the training data
is also applied when Fuzzy ARTMAP is used in an on-line training environment.

In the performance phase of Fuzzy ARTMAP only Operations 1 and 2 are implemented
for every input pattern presented to Fuzzy ARTMAP. By registering the network output to
every test input applied to Fuzzy ARTMAP, and by comparing it to the desired output, we
can calculate the network’s performance (i.e., network’s misclassification error).

3. Fuzzy ARTMAP time complexity analysis

3.1. Online Fuzzy ARTMAP time complexity

The pseudo-code for the FAM algorithm is shown in Fig. 2. The FAM algorithm tests
every input pattern I in the training set against every template wa

j in Fa
2 at least once. Let us

call � the average number of times that the inner searching loop is executed for each input



J. Castro et al. / Nonlinear Analysis 63 (2005) e877–e889 e883

pattern, and call it the matchtracking factor. Then the number of times that a given input
pattern I passes through the code will be

Time(I)=O(�× |templates|). (6)

If we assume that the number of templates does not change during training it is easy to
see that the time complexity of the algorithm is

Time(FAM)=O(�× P × |templates|). (7)

For a fixed type of database the FAM algorithm achieves a certain compression ratio.
This means that the number of templates created is actually a fraction of the number of
patterns P in the training set. Let us call this compression ratio � so that

|templates| = �P (8)

and thus the FAM time complexity is given by the formula

O(FAM)=O(�P�P)=O(��P 2). (9)

3.2. Off-line Fuzzy ARTMAP time complexity

Without any previous assumptions the complexity of the off-line FAM algorithm would
be

O

⎛
⎜⎜⎜⎜⎝

epochs∑
i=1

�i�iP
2

︸ ︷︷ ︸
A

⎞
⎟⎟⎟⎟⎠ , (10)

where �i is the matchtracking factor for the ith epoch, and �i is the compression ratio of
the ith epoch.

We can simplify A, in Eq. (10), by making the reasonable assumptions that: (a) the number
of epochs is dependent on the number of training patterns, and (b) �i does not vary from
epoch to epoch and (c) �i = �i . Condition (c) basically means that the amount of templates
created decreases geometrically from epoch to epoch. Using these assumptions we can state
the formula as:

A=
epochs∑

i=1

�i�P 2 = �P 2
epochs∑

i=1

�i

=�P 2�

(
1− �epochs(P )

1− �

)
. (11)

If we use the stopping criterion where learning stops when kepochs P = 1, then we can
end up with a computable formula for the term A of Eq. (10). In particular, it can be
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shown that

A= ��P 2

(
1− ��− ln(P )/ ln(�)�

1− �

)
, (12)

where the number of templates created is given by the following equation:

�P

(
1− ��− ln(P )/ ln(�)�

1− �

)
. (13)

We can see from this formula that the convergence of the FAM algorithm is quadratic with
respect to P, the number of patterns in the training set. This relationship suggests that it may
be beneficial to use methods that reduce the size of the training set in FAM to speed up the
convergence of the algorithm, and that by doing so we may get a quadratic speedup on the
time complexity of the algorithm. The following sections are motivated by this partitioning,
one reduces the parameter P by partitioning the input set of FAM, the other reduces the
number of templates �P by doing network partitioning.

4. Partitioned FAM

4.1. Data partitioned boxing FAM

We chose to follow a data-partitioning approach that allows reducing the number of
patterns presented to FAM, and consequently the number of templates created in FAM.
Through the data-partitioning scheme that we are proposing the dataset is split into smaller
datasets, each one of which trains a different FAM network. This approach has the advantage
that it can reduce the computational complexity of the algorithm and lends itself well to
parallel implementation.

Under the fairly reasonable assumption that the number of templates in the ART neural
network is proportional to the number of training patterns, we can state that the ART
convergence time is quadratic (i.e., O(P 2)), where as before, P is the number of patterns in
the data set. It is therefore obvious that partitioning the data set will result in a significant
improvement for the FAM convergence time. For instance, if we divide the data set into p
equal partitions of size P/p, the partitioning will theoretically produce a speedup in the
order of p2. So we should theoretically expect a quadratic improvement in speed as we
increase the number of partitions in the data set.

Our approach is inspired by the projective clustering approach proposed and implemented
in [6], and by the natural properties of the FAM algorithm. We project the data contained
in the Ma-dimensional hypercube to M̂a dimensions, where M̂a>Ma , and we partition
the data set by a grid in this projected space. If, for example, we use M̂a = 3 dimensions
and a grid size of 10 divisions per dimension, we would divide the 3-dimensional space,
on which we projected the original data, into 1000 boxes of side length equal to 0.1. If
each set of data within a box trains a different FAM architecture (partitioned FAM) we are
guaranteed that the number of templates created by each such FAM is not going to be large
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(especially if the number of boxes is large). It is likely though that the total number of
templates created by the partitioned FAM is larger than the number of templates created by
the non-partitioned FAM. Furthermore, classification performance may also be negatively
affected by this partitioning approach. To avoid this unwelcome side effect, we take advan-
tage of the natural partitioning imposed by the FAM algorithm. We know that templates in
FAM are geometrically represented by hyper-rectangles. Furthermore each hyper-rectangle
size is restricted by the vigilance parameter �̄a and by the dimensionality Ma of the input
patterns. In particular

size(wa
j )�Ma(1− �̄a). (14)

If we assume that templates grow more or less evenly across every dimension, then by
choosing boxes in the projected space of size (1 − �̄a), across every dimension, we are
actually restricting the template size to the size that the FAM algorithm already enforces.
This partitioning approach is most effective when the value of the vigilance parameter is
large, and this is the case when the number of templates grows the most, and tends to slow
down the training of the algorithm.

4.2. Network partitioned pipelined FAM

In this second approach, we chose to do network partitioning to bring down the com-
plexity of the FAM algorithm. This approach requires the use of a pipeline of processors
which exchange input patterns and templates through the pipeline. The pipeline structure
is depicted in Fig. 3.

One of the problems presented in pipelining the FAM algorithm is its use of matchtrack-
ing: a condition that if met induces the network to retrain a pattern and compare it again
to all the templates in the network. This situation poses serious issues to a pipeline design,
since when a pattern is subjected to a matchtracking operation we must flush all the ele-
ments of the pipeline to guarantee equivalence to the sequential algorithm. Obviously this
approach is inefficient, so we chose to implement a variant of FAM, called no-matchtracking
FAM, developed by Anagnostopoulos (see [1]). The modified FAM algorithm is depicted
in Fig. 4.
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Fig. 4. Anagnostopoulos’ no-matchtracking FAM.

When dividing the network we must guarantee that certain consistency properties hold.
These properties have been formally proven and are simply stated below as theorems.

Non-Duplication. A template w will either be owned by a single processor, or it will be in
transit on a single processor (i.e. only one copy of the template exists in the system).

Bundle size. The excess of templates for a process k 	= 0, at any given time, always fits in
the packet size to be sent back to the pipeline.

No overflow. The first processor in the pipeline can always absorb all templates that are
sent back to it.

Bounded delay. The templates that a process k has, on the current iteration, were created
at least p − k − 1 iterations ago where p is the total number of processors in the pipeline.

Pipeline depth invariance. The difference in the number of templates that 2 arbitrary
processes in the pipeline have cannot exceed pa + 1, where pa is the packet size.

4.3. Network partitioning versus data partitioning

One of the advantages of data partitioning for a quadratic complexity algorithm is that
by splitting the problem into independent subsets the convergence time is reduced propor-
tionally to the square of the number of partitions. Unfortunately, this approach alters the
nature of the algorithm. Therefore, when data partitioning is applied to FAM it is important
to demonstrate that the classification performance of the partitioned FAM is comparable
to the classification of the original FAM. On the other hand, network partitioning using a
pipeline is identical to the original no-matchtracking FAM. Nevertheless, pipelined FAM
can only speed up FAM’s complexity linearly with respect to the number of processors in
the pipeline.
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Fig. 5. Forest Covertype database error rate versus training set size (in thousands of patterns).

5. Experimental results

To prove the feasibility of our approaches we conducted a series of tests on the Covertype
database by Blackard [9]. The size of the data used for training started from 1000 data-
points and increased incrementally, by a factor of 2, until it reached a training set size of
512,000 data-points. Classification performance was evaluated using a fixed set of 20,000
test patterns (see Fig. 5).

5.1. Partitioned FAM

Comparisons of the training performance of the partitioned FAM approach and the non-
partitioned FAM approach on the aforementioned database were conducted. The perfor-
mance comparison was based on two measures: the time that it took for the networks to
undergo one epoch of training (see results in Fig. 6) and the generalization performance of
the trained networks on the chosen test sets (see Fig. 5). The dimensions to project the data
in the partitioned-FAM approach were chosen manually by simply observing the range and
variation of the values of the datasets across the chosen dimensions. A vigilance value of
0.96 was used in the training of FAM. This gives a partitioning scheme with boxes of side
size of 0.04, resulting in 253=15, 625 boxes in the three dimensions that we used to project
the data.

Some of the observations from the results (error rate and training time) of the FAM and
partitioned FAM with these databases are: (a) the partitioned FAM reduces the training time
compared to FAM, and at times significantly (especially when the size of the training set
is large) (b) the generalization performance of the partitioned FAM is slightly inferior to
FAM, especially for training sets of smaller size.
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Table 1
Training Time of the Pipelined no-matchtracking, FAM implemented on a Beowulf cluster of workstations

Proc DBs:32 DBs:64 DBSs:128 DBs:256 DBs:512

1 9.3 28.8 96.0 357.0 1367.9
2 4.8 14.4 49.9 155.4 552.7
4 2.5 7.9 22.1 81.6 273.2
8 1.4 4.2 11.0 51.5 140.2

16 0.9 2.0 7.6 23.4 76.5
32 0.9 1.6 4.5 14.6 38.3

The processor 1 case corresponds to implementation on a sequential machine, DBs stands for database size in
thousands of patterns.

It is worth mentioning that the name “boxed” in Figs. 5 and 6 refers to the partitioned-
FAM approach where the trained FAMs take into consideration only the data-points residing
in their corresponding box. The term “boxed with neighbors” is the partitioned FAM ap-
proach where the trained FAMs take into consideration not only the data-points in their
corresponding box but also the data-points in the boxes neighboring their corresponding
box. Obviously, the term “FAM” corresponds to a single FAM, trained with all the data-
points in the training set.

5.2. Pipelined FAM

Classification results were comparable to those of the original FAM algorithm when
using the pipelined no-matchtracking FAM on the Covertype database. On the other hand,
speedup was substantial, and as expected linear with respect to the number of processors
used in the pipeline (see Table 1).
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6. Conclusions

Two partitioning schemes where proposed for the FAM algorithm to work on a parallel
setting. Network-partitioned FAM exhibited linear speedup with respect to the number of
processors, while data-partitioned FAM provided quadratic speedup with respect to the
number of processors used. These results show promise and encourage us to continue with
further research.Among our current interests we mention: (a) the development of a pipelined
matchtracking FAM parallel algorithm (b) the addition of a pruning scheme for the Boxing
approach to improve its compression ratio and (c) the use of other parallel designs like
master–slave arrangements that require broadcast send and broadcast receive operations.
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