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Abstract

This paper focuses on the evolution of Fuzzy ARTMAP neural network classifiers, using genetic algorithms, with the objective of improving
generalization performance (classification accuracy of the ART network on unseen test data) and alleviating the ART category proliferation
problem (the problem of creating more than necessary ART network categories to solve a classification problem). We refer to the resulting
architecture as GFAM. We demonstrate through extensive experimentation that GFAM exhibits good generalization and is of small size (creates
few ART categories), while consuming reasonable computational effort. In a number of classification problems, GFAM produces the optimal
classifier. Furthermore, we compare the performance of GFAM with other competitive ARTMAP classifiers that have appeared in the literature
and addressed the category proliferation problem in ART. We illustrate that GFAM produces improved results over these architectures, as well as
other competitive classifiers.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The Adaptive Resonance Theory (ART) was developed
by Grossberg (1976). One of the most celebrated ART
architectures is Fuzzy ARTMAP (FAM) (Carpenter, Grossberg,
Markuzon, & Reynolds, 1992), which has been successfully
used in the literature for solving a variety of classification
problems. Some of the advantages that FAM possesses is
that it can solve arbitrarily complex classification problems,
it converges quickly to a solution (within a few presentations
of the list of input/output patterns belonging to the training
set), it has the ability to recognize novelty in the input patterns
presented to it, it can operate in an on-line fashion (new
input/output patterns can be learned by the system without re-
training with the old input/output patterns), and it produces
answers that can be explained with relative ease.
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One of the limitations of FAM that has been repeatedly
reported in the literature is the category proliferation problem.
This refers to the creation of a relatively large number of
categories to represent the training data. Categories are the
hidden nodes (or units) in a FAM neural network. Each
node is mapped to a specific class. The creation of a large
number of categories means poor compression of the training
data. Quite often the category proliferation problem, observed
in FAM, is connected with the issue of overtraining. Over-
training happens when FAM is trying to learn the training
data perfectly at the expense of degraded generalization
performance (i.e., classification accuracy on unseen data) and
also at the expense of creating many categories to represent the
training data (leading to the category proliferation problem).
Also, it has been related to several limitations of FAM, such
as the representative inefficiency of the hyperbox categories or
the excessive triggering of the match tracking mechanism due
to existence of noise.

In this paper, we propose the use of genetic algorithms
(Goldberg, 1989) to solve the category proliferation problem,
while improving the generalization performance in FAM. We
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refer to the resulting architecture as GFAM. In our work here,
we use GAs to evolve simultaneously the weights, as well as
the topology of the FAM neural networks. We start with a
population of trained FAMs, whose number of nodes in the
hidden layer and the values of the interconnection weights
converging to these nodes are fully determined (at the beginning
of the evolution) by the ART’s training rules. To this initial
population of FAM networks, GA operators are applied to
modify these trained FAM architectures (i.e., number of nodes
in the hidden layer, and values of the interconnection weights)
in a way that encourages better generalization and smaller size
architectures.

It is worth reminding the reader that, as with many neural
network architectures, the knowledge in Fuzzy ARTMAP
is stored in its interconnection weights that have a very
interesting geometrical interpretation (see Anagnostopoulos
and Georgiopoulos (2002), Carpenter, Grossberg, and Rosen
(1991)). In particular, the interconnection weights in Fuzzy
ARTMAP (converging to the nodes in the hidden layer)
represent the lower and upper end-points of hyper-rectangles
(referred to as categories) that enclose within their boundaries
clusters of data that are mapped to the same label.

Eventually, the evolution of these trained FAMs produces
a FAM architecture, referred to as GFAM, which has better
generalization performance and smaller size than the FAMs that
we started with in the initial FAM population. GFAM is the
FAM network that at the last generation of the evolutionary
process attained the highest fitness function value. In the
evolution of FAM trained networks, in addition to the common
GA operators, such as reproduction, crossover, and mutation,
we used a unique (and needed) genetic operator, referred to
as the Catdel operator. This operator, by allowing us to destroy
FAM categories, leads us to FAM networks of smaller size.

Our results show that GFAM performed well on a number
of classification problems, and on a few of them it performed
optimally. Furthermore, GFAM networks were found to be
superior to a number of other ART networks (ssFAM, ssEAM,
ssGAM, safe micro-ARTMAP) that have been introduced into
the literature to address the category proliferation problem in
ART. More specifically, GFAM gave a better generalization
performance and a smaller than, or equal, size network (in
almost all problems tested), compared to these other ART
networks, requiring reduced computational effort to achieve
these advantages. More specifically, in some instances the
difference in classification performance of GFAM with these
other ART networks quite significant (as high as 10%). Also, in
some instances the ratio of the number of categories created by
these other ART networks, compared to the categories created
by GFAM was large (as high as 5).

The organization of this paper is as follows: In Section 2
we present a literature review relevant to some of the issues
addressed in this paper. In Section 3 we emphasize some of
the basics of the Fuzzy ARTMAP architecture. In Section 4 we
describe all the necessary elements pertinent to the evolution of
the Fuzzy ARTMAP architecture. In Section 5, we describe the
experiments and the datasets used to assess the performance
of GFAM, we assess the performance of GFAM, and we

offer performance comparisons between GFAM and other ART
architectures that were proposed as solutions for the category
proliferation problem in FAM. Also, in Section 5 we compare
GFAM with other non-ART based classifiers (although the
comparison is not comprehensive). In Section 6, we summarize
our contribution, findings, and we provide directions for future
research.

2. Literature review

A number of authors have tried to address the cate-
gory proliferation/overtraining problem in Fuzzy ARTMAP.
Amongst them we refer to the work by Marriott and Har-
rison (1995), where the authors eliminate the match track-
ing mechanism of Fuzzy ARTMAP when dealing with
noisy data; the work by Charalampidis, Kasparis, and Geor-
giopoulos (2001), where the Fuzzy ARTMAP equations
are appropriately modified to compensate for noisy data;
the work by Anagnostopoulos, Georgiopoulos, Verzi, and
Heileman (2002), Anagnostopoulos, Bharadwaj, Georgiopou-
los, and Heileman (2003), and Gomez-Sanchez, Dimitri-
adis, Cano-Izquierdo, and Lopez-Coronado (2001, 2002)
Verzi, Heileman, Georgiopoulos, and Healy (2001), where dif-
ferent ways are introduced of allowing the Fuzzy ARTMAP cat-
egories to encode patterns that are not necessarily mapped to the
same label; the work by Koufakou, Georgiopoulos, Anagnos-
topoulos, and Kasparis (2001), where cross-validation is em-
ployed to avoid the overtraining/category proliferation problem
in Fuzzy ARTMAP; and the work by Carpenter and Milenova
(1998), Parrado-Hernandez, Gomez-Sanchez, and Dimitriadis
(2003), Williamson (1997), where the ART structure is changed
from a winner-take-all to a distributed version and simultane-
ously slow learning is employed with the intent of creating
fewer ART categories and reducing the effects of noisy patterns.

Genetic algorithms have been extensively used to evolve
artificial neural networks. Genetic algorithms (GAs) are a
class of population-based stochastic search algorithms that
are developed from ideas and principles of natural evolution.
An important feature of these algorithms is their population
based search strategy. Individuals in a population compete and
exchange information with each other in order to perform
certain tasks. For a thorough exposition of the available
research literature on evolving neural networks the interested
reader is advised to consult Yao (1999). In Yao (1999), the
author distinguishes three different strategies in evolving neural
networks. The first strategy is the one used to search for the
weights of the neural network (see for example Sexton, Dorsey,
and Jonson (1998)), the second one is the one used to design the
structure of the network (see for example Marin and Sandoval
(1993), where only the structures are evolved, and Yao and
Liu (1998), where both the structure and the interconnection
weights are evolved), and the third one is the one where the
learning rules of the neural network are evolved (see Hancock,
Smith, and Phillips (1991)). Furthermore, GAs may also be
used to select the features that are input to the neural network.
Since the pioneering work by Siedlecki and Sklansky (Siedlecki
& Sklansky, 1989), genetic algorithms have been used for
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many selection problems using neural networks (Brotherton &
Simpson, 1995; Yang & Honavar, 1998), and other classifiers,
such as decision trees (Bala, De Jong, Huang, Vafaie, &
Wechsler, 1996), k-nearest neighbors (Kelly Jr & Davis, 1991;
Punch, Goodman, ChiaShun, Hovland, & Enbody, 1993), and
naı̈ve Bayes classifiers (Inza, Larranaga, Etxeberria, & Sierra,
1999; Cantu-Paz, 2002).

As has been verified in the literature, the topology of the
neural network is crucial to its performance. If a network has
too few nodes, it might not be able to learn the required task.
On the other hand, if the network has too many nodes, it may
over-fit the training data and thus exhibit poor generalization.
Miller, Todd and Hedge (Miller, Todd, & Hedge, 1989) defined
two major approaches to using GAs to design the topology of
the neural networks. The first approach uses direct encoding to
specify every connection of the network, or to evolve an indirect
specification of the connectivity. The direct encoding GA
approach implies that every connection between every node be
directly represented in a chromosomal string. Direct encoding
has been used effectively to prune neural networks with good
results (Whitley, Starkweather, & Bogart, 1990; Hancock,
1992). On the other hand, a simple indirect encoding method
is to commit to a particular topology (e.g., feed-forward or
recurrent NN) and a learning algorithm (e.g. back-prop learning
algorithm), and then use a GA to find the parameter values that
complete the network specification. For example, the GA in
the feed-forward neural network approach can search for the
number of layers and the number of units (nodes) per layer. The
indirect encoding scheme is far more sophisticated while being
theoretically capable of representing complicated topologies
with finesse. It encodes the most important parameters and
leaves the remainder to be determined elsewhere. Harp, et al.
(see Harp, Samad, and Guha (1989)) used segments of two parts
in an encoding scheme entitled blueprints. The first segment
held parameter specifications including address, organization
and number of nodes, and learning parameters associated with
the nodes. The second segment described the connections
between themselves by specifying the density between the
current area and the target area, the target’s area address,
organization of the connections, and parameters of learning
associated with the connection weights.

To the best of our knowledge, work that utilizes GAs
and ART neural network architectures is rather limited. For
instance, in Liu, Liu, Liu, Zhang, and Wu (2003), a GA
algorithm was employed to appropriately weigh attributes of
input patterns before they were fed into the input layer of
Fuzzy ARTMAP. The results reported reveal that this attribute
weighting was beneficial because it produced a trained ART
architecture of improved generalization. In our work, we do not
use the GAs to optimize the weight with which its attribute
of the input patterns is affecting the input layer of the ART
architecture. Instead, as can be seen, we use GAs to optimize
the topology and the weights of a trained ART architecture.
Furthermore, in Burton and Vladimirova (1997), a Fuzzy
ART neural network was employed as a GA fitness function
evaluator, however the brevity of the published paper did not
allow for the discussion of the details pertinent to this work.

In our work here, we use GAs to evolve simultaneously the
weights as well as the topology of the Fuzzy ARTMAP neural
networks. In contrast to the feed-forward neural networks that
have been extensively evolved, the Fuzzy ARTMAP neural
network has a number of topological constraints, such as (a)
it consists of one hidden layer of nodes, called the category
representation layer, and (b) every interconnection weight value
from every node of the input layer to a node in the hidden layer
is important (representing the minimum or the maximum of
the values of input patterns across every dimension that were
encoded by this node).

It is apparent that, in evolving neural network architectures,
one has to decide on the genotype representation scheme for the
neural network architecture under consideration, on the genetic
operators used to evolve these neural network architectures,
and on the fitness function used to guide this evolution. In
this paper we address these issues in a manner that fits the
characteristics of the FAM neural network and our ultimate
objective of reducing category proliferation in FAM, while
preserving good generalization performance. In addition to
successfully addressing the issues related with the evolution
of FAM structures, mentioned above, we also compare in
this paper the final product of FAM’s evolution with other
approaches proposed in the ART literature that also addressed
the category proliferation problem in ART. This comparison
is based on the accuracy of the architectures and size of the
architectures produced by these techniques, as well as the
computational effort involved in producing these architectures.
This comparison demonstrates that GFAM does very well
compared to a number of other approaches proposed in the
literature that have claimed that they address the ART category
proliferation problem.

3. The fuzzy ARTMAP architecture

Since Fuzzy ARTMAP’s introduction (Carpenter et al.,
1992), a number of Fuzzy ARTMAP variations, and associated
successful applications of this ART family of networks have
appeared in the literature.

The block diagram of FAM is shown in Fig. 1. Notice
that this block diagram is simpler than the block diagram
of FAM, reported in Carpenter and Grossberg in 1992, but
very similar to the block diagram depicted in Kasuba (1993),
as well as Taghi, Bagmisheh, and Pavesic (2003). Initially,
Kasuba in 1993, and later on, other researchers, including Taghi
et al. (2003), adopted this simpler FAM architecture because
it is equivalent to the more complicated FAM architecture
in Carpenter’s and Grossberg’s paper (1992), when FAM
is confronted with classification problems. As the focus of
our paper is on classification problems, we also adopt this
simpler FAM architecture. The FAM architecture, depicted in
Fig. 1, has three major layers. The input layer (Fa

1 ) where
the input patterns (designated by I) are presented, the category
representation layer (Fa

2 ), where compressed representations of
these input patterns are formed (designated as wa

j , and called
templates), and the output layer (Fb

2 ) that holds the labels of
the categories formed in the category representation layer. An
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Fig. 1. Block-diagram of a Fuzzy ARTMAP architecture.

input pattern I, presented at the input layer Fa
1 of FAM, has the

following form:

I = (a, ac) = (a1, a2 . . . , aMa , ac
1, ac

2, . . . , ac
Ma

)

where,

ac
i = 1 − ai ; ∀i ∈ {1, 2, . . . , Ma}.

The assumption here is that the input vector a is such
that each one of its components lies in the interval [0, 1].
Any input pattern can be represented by the input vector a,
through an appropriate normalization, where Ma stands for
the dimensionality of this input pattern. The above operation
that creates an input vector I from the input vector a is called
complementary encoding. Normalization of the components
of the input patterns has been a common practice in the
neural network literature. Complementary encoding of the
input vector is necessary for the successful training of FAM
(see Georgiopoulos, Huang, and Heileman (1994), where
an example is provided for which, without complementary
encoding of the input vector, FAM training fails).

FAM can operate in two distinct phases: the training phase
and the performance (test) phase. The training phase of FAM
can be described as follows: Given a set of inputs and associ-
ated label pairs, {(I1, label(I1)), . . . , (Ir , label(Ir )), . . . , (IPT,

label(IPT))} (called the training set), we want to train FAM to
map every input pattern of the training set to its corresponding
label. To achieve the aforementioned goal we present the train-
ing set to the FAM architecture repeatedly. That is, we present
I1 to Fa

1 , label(I1) to Fb
2 , I2 to Fa

1 , label(I2) to Fb
2 , and fi-

nally, IPT to Fa
1 , label(IPT) to Fb

2 . We present the training set
to Fuzzy ARTMAP as many times as necessary for FAM to
correctly classify these input patterns. The task is considered
accomplished (i.e., learning is complete) when the weights in

Fig. 2. A FAM category is represented by two vectors ua
j and va

j , this category
has learned few.

FAM do not change during a training set presentation, or after
a specific number of list presentations is reached. The perfor-
mance phase of Fuzzy ARTMAP works as follows: Given a set
of input patterns Ĩ1

, Ĩ2
, . . . , ĨPS

(referred to as the test set), we
want to find the Fuzzy ARTMAP output (label) produced when
each one of the aforementioned test patterns is presented at its
Fa

1 layer. In order to achieve this goal, we present the test set
to the trained Fuzzy ARTMAP architecture and we observe the
network’s output. For the purposes of this paper, we assume that
the reader knows the details of the training/performance phases
in Fuzzy ARTMAP.

What is worth emphasizing again is that the weights (tem-
plates) in Fuzzy ARTMAP create compressed representations
of the input patterns presented to Fuzzy ARTMAP during its
training phase. These compressed representations have a geo-
metrical interpretation. In particular, every node (category) in
the category representation layer of Fuzzy ARTMAP has tem-
plate weights that completely define the lower and upper end-
points of a hyperbox. This hyperbox includes within its bound-
aries all the input patterns that chose this category as their rep-
resentative category in FAM’s training phase and were subse-
quently encoded by this category. In Fig. 2, we illustrate the
hyperbox representation of a category j in FAM (in two dimen-
sions) that has encoded input patterns I1, I2, I3, I4 and I5. A
category j in FAM can be represented by its lower and upper
endpoints as follows:

wa
j = (ua

j , {v
a
j }

c).

The vector ua
j is the vector with components the minimum

values of the components of the input patterns (the a’s) that
were encoded by this category. Please note that {va

j }
c is the

complement of va
j . The vector va

j is the vector with components
the maximum values of the components of the input patterns
(the a’s) that were encoded by this category. These vectors are
defined below:

ua
j = ∧

P
i=1 a(i) and va

j = ∨
P
i=1 a(i).

In the above equation the symbol ∧ (‘fuzzy min”) means
that we take the minimum of all the components of the a(i)’s to
produce ua

j . Also in the above equation, the symbol ∨ (‘fuzzy
max”) means that we take the maximum of all the components
of the a(i)’s to produce va

j . In the above equations, P is the
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maximum index of the input patterns that chose and were
encoded by category j in FAM.

As can be seen from Fig. 2, the input patterns are
simply represented by the first half of their components
(i.e., corresponding vectors a). In Fig. 3, we show how a
Fuzzy ARTMAP category is expanded (during FAM’s training)
to encode the information conveyed by a new input pattern
I∗ (with corresponding geometrical representation a∗). In a
similar fashion, Fig. 3 shows that the expansion of a category
is not needed if the new input pattern I∗ is contained within
the boundaries of the hyperbox that represents this category.
At the beginning, every category of FAM starts as a trivial
hyperbox (equal to a point) and subsequently it expands, and
its size is increased, to incorporate within its boundaries all the
input patterns that in the training phase choose this hyperbox
as their representative hyperbox, and are encoded by it. There
are many ways of defining the size of a hyperbox, such as the
Euclidean distance (L2 distance between its lower and upper
endpoints). In FAM the size of a hyperbox is defined to be
the L1 distance between its lower and upper endpoints, which
ends up being the sum of the lengths of all the sides of the
hyperbox. The size of a hyperbox, is allowed to expand up
to a point allowed by a FAM network parameter denoted as
the baseline vigilance parameter in FAM, and designated by
the symbol ρ̄a . During the operation of FAM a vigilance ratio
is computed, whose numerator is equal to (Ma—size of the
hyperbox), and the denominator is equal to Ma . A hyperbox
is deemed appropriate to encode an input pattern if this ratio
is larger than or equal to FAM’s vigilance parameter. Since this
vigilance ratio is always a number between 0 and 1, it suffices to
consider baseline vigilance parameter values only in the interval
[0, 1]. Small values of this parameter allow the creation of
large hyperboxes, while large values of this parameter allow
the creation of small hyperboxes. In the one extreme when ρ̄a
is equal to 0, a hyperbox equal to the whole input space could
be created, while at the other extreme when ρ̄a is equal to 1
only point categories are formed. It turns out that this parameter
has a significant effect on the number and type of categories
(hyperboxes) formed in Fuzzy ARTMAP, and consequently it
affects the performance of FAM. The performance of FAM
is measured in terms of the number of categories created in
its training phase (small number of categories is good), and
how well it generalizes on unseen data (high generalization
accuracy is good). In the process of discovering GFAM we are
starting from a population of trained FAM networks that have
been trained with different baseline vigilance parameter values,
and as a result they attain different performances (in terms of
size of the FAM networks created and in terms of the achieved
generalization performance). It turns out that Fuzzy ARTMAP
performance is also affected by the order in which patterns are
presented to FAM in its training phase. In our experiments we
used multiple differently trained FAM networks as members of
the initial population in our evolutionary process because we
changed the baseline vigilance, as well as the order of training
pattern presentation for these FAM networks. The performance
of FAM is also affected by another network parameter called
choice parameter (denoted by the symbol βa). In the training

of the Fuzzy ARTMAP networks, used in our experiments, we
fixed this choice parameter to the value of 0.1 (quite often used
in Fuzzy ARTMAP training).

4. The evolution of FAM–GFAM

In the rest of the paper we assume that for every
classification problem that we focus on we are provided with
a training set, a validation test, and a test set. The training
set is used for the training of GFAM architectures under
consideration. The validation set is used to optimize the
produced GFAM network in ways that will become apparent
in the following text. Finally, the test set is used to assess the
performance of the optimized GFAM network created.

GFAM (Genetic Fuzzy ARTMAP) is an evolved FAM
network that is produced by applying, repeatedly, genetic
operators on an initial population of trained FAM networks.
GFAM uses tournament selection with elitism, as well
as genetic operators, including crossover and mutation. In
addition, GFAM uses a special operator, Catdel; this special
operator is needed so that categories could be destroyed in the
ART network, thus leading us, through evolution, to smaller
ART structures.

To better understand how GFAM is designed we resort
to a step-by-step description of this design. It is instructive
though to first introduce some terminology that is included in
Appendix A. The design of GFAM can be articulated through
a sequence of steps, defined succinctly below. The following
pseudo-code shows the basic steps of GFAM:

Begin

1: Generate-Initial-Population ()

2: Repeat

2. a. Evaluate-Fitness-And-Sort ()

2. b. Selection ()

2. c. Crossover ()

2. d. Catdel ()

2. e. Mutdate ()

Until [a stopping criterion is met]

3. Return bestNetwork

End

Step 1: Generate initial population: The algorithm starts by
training Popsize FAM networks, each one of them trained with a
different value of the baseline vigilance parameter ρ̄a , and order
of training pattern presentation. In particular, we first define

ρ̄inc
a =

ρ̄max
a −ρ̄min

a
Popsize−1 , and then the baseline vigilance parameter of

every network is determined by the equation ρ̄min
a + i ∗ ρ̄inc

a ,
where i ∈ {0, 1, . . . , Popsize − 1}. In our experiments with
GFAM we chose ρ̄min

a = 0.1, and ρ̄max
a = 0.95. The choice

parameter was chosen to be equal to 0.1.
We assume that the reader is familiar with how training of

FAM networks is accomplished, and thus the details here are
omitted. Once the Popsize networks are trained, they need to be
converted to chromosomes so that they can be manipulated by
the genetic operators. GFAM uses a real number representation
to encode the networks. Each FAM chromosome consists of
two levels: level 1 containing all the categories of the FAM
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Fig. 3. FAM learning: a. A FAM category that learned 5 patterns. b. A new pattern I∗ was presented inside the category, and thus the category does not expand. c.
A new input pattern I∗ was presented outside the category, and thus the category expands to include the input pattern I∗.

Fig. 4. GFAM chromosome structure.

network, and level 2 containing the lower and upper endpoints
of every category in level 1, as well as the label of that category
(see Fig. 4). We denote the category of a trained FAM network
with index p (1 ≤ p ≤ Popsize) by wa

j (p), where wa
j (p) =

(ua
j (p), (va

j (p))c), where ua
j (p) and va

j (p) are the lower and
upper endpoints of the hyperbox corresponding to this category,
and l j (p) is the label of this category.

Step 2: Apply genetic operators: In this step a GA is applied
to the population of the ART trained networks.

Sub-step 2a: Fitness evaluation: Calculate the fitness of
each ART chromosome (ART trained network). The fitness
function for the p-th ART network is denoted by Fit(p), and it
depends on the PCC(p) and Na(p) values of this network. Note
that, PCC(p)designates the percentage of correct classification,
exhibited by the p-th network, on the validation set, while
Na(p) is the number of categories of the p-th network. The
fitness function Fit(p) of the p-th network is defined as follows:

Fit(p) = PCC(p) − α(Na(p) − Catmin). (1)

Obviously, this fitness function increases as PCC(p)

increases or as Na(p) decreases. The value of Catmin is chosen
to be equal to the number of classes of the classification
problem at hand. The parameter, α, in the fitness function
equation above, is a user controlled parameter. It can be used to
dictate the user’s preference of accuracy versus complexity. It
is evident from the fitness equation, that if we choose α = 0.5,
one percentage of better correct classification of a network, or
two categories less of a network, increase the fitness function
by the same amount (i.e., by an amount of 1); other values of α

have similar interpretations. This is one of the simplest ways
of defining a fitness function that depends on two measures
(generalization performance of the network and size of the
network) and has been extensively adopted in the classification
literature (e.g., see Breiman, Friedman, Olshen, and Stone
(1984), Palmes, Hayasaka, and Usui (2005)).

Fig. 5. Crossover implementation in GFAM.

Sub-step 2b: Selection: Initialize an empty generation
referred to as the temporary generation. The algorithm searches
for the best NCbest chromosomes (i.e., the chromosomes having
the NCbest highest fitness values) from the current generation
and copies them to the temporary generation without change.

Sub-step 2c: Cross-over operation: The remaining
Popsize–NCbest chromosomes in the temporary generation are
created by crossing over pairs of parents from the current gen-
eration. The parents are chosen using a deterministic tourna-
ment selection, as follows: Randomly select two groups of four
chromosomes each from the current generation, and use as a
parent, from each group, the chromosome with the best fitness
value in the group. If it happens that from both groups the same
chromosome is chosen then we choose from one of the groups
the chromosome with the second best fitness value. If two par-
ents with indices p, p′ are crossed over two random numbers
n, n′ are generated from the index sets {1, 2, . . . , Na(p)} and
{1, 2, . . . , Na(p′)}, respectively. Then, all the categories with
index greater than index n′ in the chromosome with index p′

and all the categories with index less than index n in the chro-
mosome with index p are moved into an empty chromosome
within the temporary generation. Notice that crossover is done
on level 1 of the chromosome. This operation is pictorially il-
lustrated in Fig. 5.

Sub-step 2d: Category deletion: The operator Catdel deletes
one of the categories of every chromosome (created in step
2c) with probability P(Catdel). If a chromosome is chosen to
have one of its categories deleted, then this category is picked
randomly from the collection of the chromosome’s categories;
however deletion is prohibited if it would violate the class
inclusion criterion. The class inclusion criterion dictates that,
in every network, there is at least one category for each class
label present in the data.

Sub-step 2e: Category mutation: With probability P(mut)
every chromosome created by step 2d gets mutated as follows:
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Fig. 6. The two graphs were obtained by plotting the fitness function value of GFAM against the generation number. Each experiment was run for 500 generations.
The first problem is a relatively easy problem for GFAM. The second problem is harder. Examining these graphs reveals a number of issues that need to be considered
when implementing the stopping criteria. The left graph shows that maximum performance is achieved early in the process (at about generation 25). There was no
need to continue the evolution of FAMs for such a large number of generations (500). The graph on the right shows the change in fitness function, as generations
progress, for a harder database. It can be observed that for many consecutive periods no appreciable change in the fitness is observed. In this case, a stopping
criterion that depends on the improvement might be triggered prematurely resulting in poor results. A stopping criterion should wait for an appropriate window of
no-improvement before it is triggered.

For each category, either its u or v endpoint is selected
randomly (50% probability) and then every component of this
selected vector gets mutated by adding to it a small number.
This number is drawn from a Gaussian distribution with zero
mean and standard deviation of 0.01. If the component of the
chosen vector becomes smaller than 0 or greater than 1 (after
mutation), it is set back to 0 or 1, respectively. Notice that
mutation is applied at level 2 of the chromosome structure.
The label of the chromosome is not mutated because our initial
GA population consists of trained FAMs, and consequently we
have a lot of confidence in the labels of the categories that
these trained FAMs have discovered through the FAM training
process.

Step 3: Check stopping criteria: If a stopping criterion is not
met, replace the current generation with the members of the
temporary generation and go to step 2a. Otherwise, terminate
and return the best network.

There is a need for an automated stopping criterion so that
the evolution of FAMs does not proceed for unnecessarily
many generations. Ideally, the evolution should be allowed
to proceed for as long as necessary, and it should terminate
when network performance improvements are not attainable
any more. In practice though, there is a trade-off between
network performance improvements and computational effort
expended to achieve these improvements.

It might be beneficial to use multiple stopping criteria
to terminate the evolution of FAM networks. One obvious
stopping criterion is to set a threshold for the maximum number
of generations, Genmax, that the evolution of FAMs is allowed
to continue. The advantage of having this stopping criterion
is that it ensures that the algorithms will always terminate
and would not get trapped in an infinite loop if the other
stopping criteria are never triggered. The user can always set the
maximum number of iterations to a large number to allow the
algorithm to terminate using other, more appropriate, stopping
criteria.

Another popular stopping criterion is to stop when no
more improvement in fitness is observed. To ensure the

lack of improvement is not due to the stochasticity of the
search, the evolution of FAMs is terminated only when no
significant network performance improvements are observed
for a number of consecutive evolutions. This number of
consecutive evolutions can be chosen to be a percentage
of the maximum number of generations Genmax; selecting
this number correctly is a difficult feat (see Fig. 6). In
our experiments we chose Genmax = 500, and furthermore
we stopped the evolution of FAMs if 50 generations (10%
of Genmax) elapsed without an appreciable network fitness
improvement. Appreciable network fitness improvement is an
improvement larger than 0.01.

5. Experiments with GFAM

We conducted a number of experiments to assess the
performance of the genetically engineered Fuzzy ARTMAP
(GFAM) architecture. There were two objectives for this
experimentation.

• The first objective is to find good (default) values for
the ranges of two of the GA parameters, the probability
of deleting a category, P(Catdel), and the probability of
mutating a category, P(mut). The default values were
identified by conducting experiments with 19 databases.
This effort is described in detail in Section 5.2.

• The second objective is to compare the GFAM performance
(for the default parameter values) to that of popular ART
architectures that have been proposed in the literature with
the intent of addressing the category proliferation problem
in FAM, such as ssFAM, ssEAM, ssGAM, and micro-
ARTMAP. This effort is described in Section 5.3.

5.1. Databases

We experimented with both artificial and real databases.
Table 1 shows the specifics of these databases.
Gaussian databases (Database index 1–12): These are
artificial databases, where we created 2-dimensional data sets,
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Table 1
Databases used in the GFAM, ART experiments

Database name # Training instances # Validation instances # Test instances # Attributes # Classes % Major class

1 G2c-05 500 5000 5000 2 2 50.00
2 G2c-15 500 5000 5000 2 2 50.00
3 G2c-25 500 5000 5000 2 2 50.00
4 G2c-40 500 5000 5000 2 2 50.00
5 G4c-05 500 5000 5000 2 4 25.00
6 G4c-15 500 5000 5000 2 4 25.00
7 G4c-25 500 5000 5000 2 4 25.00
8 G4c-40 500 5000 5000 2 4 25.00
9 G6c-05 504 5004 5004 2 6 16.67

10 G6c-15 504 5004 5004 2 6 16.67
11 G6c-25 504 5004 5004 2 6 16.67
12 G6c-40 504 5004 5004 2 6 16.67
13 4Ci/Sq 2000 5000 3000 2 5 20.00
14 1Ci/Sq 2000 5000 3000 2 2 50.00
15 1Ci/Sq/70:30 2000 5000 3000 2 2 70.00
16 2Ci/Sq/50:30:20 2000 5000 3000 2 3 50.00
17 MOD-IRIS 500 4800 4800 2 2 50.00
18 ABALONE 501 1838 1838 7 3 33.30
19 PAGE 500 2486 2487 10 5 83.20
20 OPTDIGITS 1823 2000 1797 64 10 10.00
21 PENDIGITS 4494 3000 3498 16 10 10.00
22 SAT 2000 2436 2000 36 6 24.19
23 SEG 800 810 700 19 7 14.29
24 WAV 1000 2000 2000 21 3 33.33
25 SHUTTLE 3000 1000 54,000 9 5 80.00
26 GLASS 75 75 64 9 6 35.51
27 PIMA 150 150 232 7 2 65.10

Gaussianly distributed, belonging to 2-class, 4-class, and 6-
class problems. In each one of these databases, we varied the
amount of overlap of data belonging to different classes. In
particular, we considered 5%, 15%, 25%, and 40% overlap.
Note that 5% overlap means the optimal Bayesian Classifier
would have a 5% misclassification rate on the Gaussianly
distributed data. There are a total of 3 × 4 = 12 Gaussian
databases. We name the databases as “G#c-##” where the first
number is the number of classes and the second number is
the class overlap. For example, G2c-05 means the Gaussian
database is a 2-class and 5% overlap database.
Structures within a structure databases (Database index
13–16): These are artificial databases that were inspired by the
circle (structure) – in the – square (structure) problem. This
problem has been extensively examined in the ART, and other
than ART neural network literature. Eight different datasets
were generated by changing the structures (type, number
and probability) that we were dealing with. The data-points
within each structure of these artificial datasets are uniformly
distributed within the structure. The number of points within
each structure is chosen in a way that the probability of finding
a point within this structure is equal to a pre-specified number.
Some of these artificial datasets were also considered in the
Parrado-Hernandez et al. (2003) paper where four different
ART architectures were compared, Fuzzy ARTMAP, FasART,
distributed Fuzzy ARTMAP, and distributed FasART.

(a) 4Ci/Sq: This is a four circle in a square problem, a five
class classification problem. The probability of finding a

data point within a circle or inside the square and outside
the circles is equal to 0.2.

(b) 1Ci/Sq: This is a one circle in a square problem, a two
class classification problem. The probability of finding a
data point within a circle or inside the square and outside
the circle is equal to 1/2. The sizes of the areas in the circle
and outside the circle and inside the square are the same.
This is the benchmark circle in the square problem.

(c) 1Ci/Sq/30:70: This is a one circle in a square problem, a
two class classification problem. The probability of finding
a data point within a circle or inside the square and outside
the circle is equal to 0.3 and 0.7, respectively. The sizes
of the areas in the circle and outside the circle and inside
the square are 0.3 and 0.7, respectively. This is a modified
version of the circle in the square problem.

(d) 2Ci/Sq/20:30:50: This is two circles in a square problem,
a three class classification problem. One of the circles is
smaller than the other. The probabilities of finding a data
point within the small circle, the large circle, and outside
the circles but inside the square are 0.2, 0.3, and 0.5,
respectively.

In Figs. 7 and 8 we show plots of the simulated databases.
Modified iris database (MOD-IRIS) (Database index 17): In
this database we started from the IRIS dataset (Newman,
Hettich, Blake, & Merz, 1998) of the 150 3-class problem. We
eliminated the data corresponding to the class that is linearly
separable from the others. Thus, we ended up with 100 data-
points. From the four input attributes of this IRIS dataset we
focused on only two attributes (attribute 3 and 4) because
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Fig. 7. Gaussian databases (2-dimensional, 2, 4 or 6 class, 5%, 15%, 25% and 40% of overlap).

Fig. 8. Structures within structure databases.

they seem to have enough discriminatory power to separate
the 2-class data. Finally, in order to create a reasonable size
dataset from these 100 points (so we can reliably perform cross-
validation to identify the optimal ART, GFAM networks) we
created noisy data around each one of these 100 data-points (the
noise was Gaussian of zero mean and small variance) to end
up with approximately 10,000 points. We named this database
Modified Iris.
Modified abalone database (ABALONE) (Database index 18):
This database is originally used for prediction of the age of

an abalone (Newman et al., 1998). It contains 4177 instances,
each with 7 numerical attributes, 1 categorical attribute, and
1 numerical target output (age). We discarded the categorical
attribute in our experiments, and grouped the target output
values into 3 classes: 8 and lower (class 1), 9-10 (class 2), 11
and greater (class 3). This grouping of output values has been
reported in the literature before.
Page blocks database (PAGE) (Database index 19): This
database represents the problem of classifying the blocks of
the page layout in a document (Newman et al., 1998). It
contains 5473 examples coming from 54 distinct documents.
Each example has 10 numerical attributes (e.g., height of the
block, length of the block, eccentricity of the block, etc.,) and
one target (output) attribute, representing the type of the block
(text, horizontal line, graphic, vertical line, and picture). One
of the noteworthy points about this database is that its major
class (text) has a high probability of occurring (about 90%).
This dataset has five classes; four of them make only 10% of
the total instances.
Optdigits (OPT) (Database index 20): This UCI (Newman et al.,
1998) database has vectors representing normalized bitmaps of
handwritten digits from a preprinted form. The bitmaps were
normalized using preprocessing programs made available to
UCI by NIST. From a total of 43 people, 30 contributed to
the training set and the remaining 13 to the test set. 32 × 32
bitmaps are divided into non-overlapping blocks of 4 × 4 and
the number of pixels is counted in each block. This generates
an input matrix of 8 × 8 where each element is an integer in the
range 0–16. This database has 64 attributes and 10 classes. The
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training set has 3823 records and the test set has 1797 records.
In our experiments, we divided the original training set into a
training set of 1823 records and a validation set of 2000 records.

Pendigits (PEN) (Database index 21): This UCI (Newman
et al., 1998) database has records representing hand-written
digits. The database was created by collecting 250 samples
from 44 writers. The samples written by 30 writers are used for
training, cross-validation and writer dependent testing, and the
digits written by the remaining 14 writers are used for writer
independent testing. This database has 16 attributes and 10
classes. The training set has 7494 records and the test set has
3498 records. We divided the original training set into a training
set of 4494 records and a validation set of 3000 records.
Satellite image (SAT) (Database index 22): This UCI (Newman
et al., 1998) dataset gives the multi-spectral values of
pixels within 3 × 3 neighborhoods in a satellite image, and
the classification associated with the central pixel in each
neighborhood. The aim is to predict the classification given
the multi-spectral values. There are six classes and thirty-six
numerical attributes. The training set consists of 4435 records
while the test set consists of 2000 records. The original training
set was divided into a training set of 2000 records and a
validation set of 2435.
Image segmentation (SEG) (Database index 23): This UCI
(Newman et al., 1998) dataset was used in the StatLog Project.
The samples are from a database of seven outdoor images. The
images are hand-segmented to create a classification for every
pixel as one of brickface, sky, foliage, cement, window, path,
or grass. There are seven classes, nineteen numerical attributes
and 2310 records in the dataset.
Waveform (WAV) (Database index 24): This is an artificial three-
class problem based on three wave-forms (Newman et al.,
1998). Each class consists of a random convex combination
of two waveforms sampled at the integers with noise added.
A description for generating the data is given in Breiman
et al. (1984) and a C program is available from UCI. There
are twenty-one numerical attributes, and 3000 records in the
training set. Error rates are estimated from an independent test
set of 2000 records. The original training set was divided into a
training set of 1000 records and a validation set of 2000 records.
Shuttle (SHU) (Database index 25): This UCI (Newman et al.,
1998) database contains 9 attributes all of which are numerical
and five classes. Approximately 80% of the data belongs to
one class. The training set has 43,500 records and test set has
14,500 records. In our experiments we used 3000 records from
the original training set for training and 1000 for validation. The
rest were added to the test set.
Glass (GLS) (Database index 26): This UCI (Newman et al.,
1998) database is used to classify types of glass. It was
motivated by criminological investigation. At the scene of the
crime, the glass left can be used as evidence, if it is correctly
identified. This database has 214 instances, 10 numerical
attributes and 6 classes.
Pima-Indian diabetes (PIM) (Database index 27): This UCI
(Newman et al., 1998) database was contributed by V. Sigillito.
The patients in the dataset are females at least twenty-one
years old of Pima Indian heritage living near Phoenix, Arizona,

USA. The problem is to predict whether a patient would
test positive for diabetes given a number of physiological
measurements and medical test results. There are 2 classes, 8
numerical attributes, and 768 records. However, many of the
attributes, notably serum insulin, contain zero values which are
physically impossible. We remove serum insulin and records
that have impossible values in other attributes, resulting in 7
attributes and 532 records (this approach is followed by other
researchers).

The summarized specifics of each one of these databases are
depicted in Table 1. Please note that the first 19 databases are
used for objectives 1 and 2.

5.2. Selection of the GA parameters

As we have mentioned above, the first objective of our
experimentation was devoted to the selection of good values
for the GA parameters: probability of deleting a FAM category,
P(Catdel), and probability of mutating a FAM category,
P(mut). As is evident from our prior discussion, there are a
few other GA parameters that one has to carefully choose, such
as Popsize, Genmax, and NCbest; we did not perform exhaustive
experimentation to decide on the values of these parameters,
but limited experimentation with these parameters for some of
the above databases showed that reasonable choices for these
parameters were: Popsize = 20, Genmax = 500, and NCbest =

3.
Our approach to select good values for the GA parameters

P(Catdel) and P(mut) consisted of a number of steps delineated
below:

Select GA step 1: We selected four different values for the
P(Catdel) to experiment with. These were: 0.05, 0.1, 0.2, and
0.4. We also selected four different values for the P(mut)
to experiment with. These were: 0.0, 0.1, 0.2, and 0.4. This
resulted in 16 combinations of parameter settings for P(Catdel),
and P(mut).

Select GA step 2: For each one of the 16 settings of the
P(Catdel), and P(mut) parameters, and for each of the 19
databases listed in Table 2, and described in an earlier section,
we applied the GA optimization of FAMs, as delineated in
Section 4, 10 different times (using a different initial seed for
the GA optimization). Consequently, for each database, and
each parameter setting, we obtained 10 PCC (accuracy) and 10
Na (size) numbers.

Select GA step 3: For each dataset, we chose the best-
performing (with respect to average validation PCC of the
10 experiments) parameter setting. Then, we used ANOVA
statistical tests to choose other parameter settings that did
not significantly differ (statistically) from the best performing
parameter setting. We marked these parameter settings as
“good” settings for this database.

Select GA step 4: After we performed step 3 for all databases
we counted the number of databases for which a particular
parameter setting was deemed as “good” from the Select GA
step 3. Based on these counts we recommended the best
parameter setting for each GFAM algorithm, and a range of
acceptable parameter settings.
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Table 2 summarizes the results. In Table 2 an entry of
“1” for a database indicates that the corresponding parameter
setting performed well (with respect to the average PCC on
the validation set). An underscored “1” entry indicates that the
corresponding parameter setting performed the best for this
database (with respect to the average PCC on the validation
set). In Table 2, the “1” entries corresponding to the Number
of Categories criterion (actually average number of categories
criterion) are omitted to preserve the table’s clarity. In Table 2
we designated with an asterisk the parameter setting that
performed best for this database with respect to the average
Number of Categories criterion. A careful observation of the
results shown in Table 2 indicate that any value of P(Catdel)

in the interval [0.2, 0.4], and any value of the P(mut) in the
interval [0.05, 0.4] gives good results. Also, the results from
Table 2 indicate that the best performing parameter setting for
GFAM is P(Catdel) = 0.1, and P(mut) = 0.4, since for
this parameter setting we observe the highest number of good
performances (19), and best performances (7) of the associated
GFAM (the count of the best performances consider the best
observed performances with respect to the average PCC on the
validation set or the average number of categories). Finally, we
can also deduce from the results of Table 2 that a probability
of mutation equal to 0 is not recommended, since it always
(for most databases) results in a GFAM network that is not
performing well.

5.3. Comparison of GFAM with other ART architectures

The second objective of our experimentation was to
compare GFAM with other ART architectures that have
previously appeared in the literature and addressed the category
proliferation problem in ART.

The ART architectures that we chose to compare GFAM
with are: ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP.
The first three are based on the principle of semi-supervision,
introduced by Anagnostopoulos et al. (2002), and Verzi
et al. (2001). Semi-supervision is a term attributed to
learning in ART architecture (FAM, EAM (Anagnostopoulos,
2001; Anagnostopoulos & Georgiopoulos, 2001) or GAM
(Williamson, 1996)), where categories in ART are allowed to
encode patterns of different labels provided that the percentage
of patterns that belong to the plurality label exceed a certain
threshold. Safe micro-ARTMAP is a Fuzzy ARTMAP that
allows categories in Fuzzy ARTMAP to encode patterns that
are mapped to different labels. In safe micro-ARTMAP (see
Gomez-Sanchez et al. (2001)) though the mixture of labels
allowed in a category, or in all of the categories, is controlled
by the entropy of the category or categories.

As we have mentioned in an earlier section, in every
classification problem that we focus on we are provided with
a training set, a validation test, and a test set. The training
set is used for the training of GFAM (ART) architectures
under consideration. The validation set in the GFAM case
is used to guide the evolution of the trained FAM networks
from generation 1 to generation Genmax. The validation set
in the other ART networks’ case is used to choose optimal

values for the ART network parameters (e.g., vigilance, choice
parameter, order of pattern presentation, etc); optimal values
of ART network parameters are the ones that give the highest
value of the already defined fitness function. The test set is
used to assess the performance of the optimized GFAM (ART)
network. The percentages of different class data-points in the
training, validation and test set are the same as the ones found
in the original dataset.

In the previous section, we have experimented extensively
with GFAM to identify a good initialization of the GA
process and to specify a good set of parameters for the
evolution of trained FAMs. From this point on, the GFAM
is produced by first initializing a population of 20 trained
FAM networks (they were trained with different values of the
baseline vigilance parameter and different orders of training
pattern presentations), and by evolving them for a maximum
of 500 generations. In particular, the GA parameters used for
the creation of GFAM were: ρ̄min

a = 0.1, ρ̄max
a = 0.95, βa =

0.1, Popsize = 20, Genmax = 500, NCbest = 3, P(Catdel) =

0.1, P(mut) = 0.4. GFAM is the FAM network that attains the
highest value of the fitness function at end of the evolutionary
process.

For each of the ssFAM, ssEAM, ssGAM, and safe micro-
ARTMAP networks, and for each of the 19 databases, we
performed a number of experiments with different settings of
their network parameter values. For each one of these network
parameter settings we calculated the resulting network’s fitness
function (we used the same fitness function as the one utilized
for the GFAM networks (see Eq. (1))). For the training of
ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP we used
the same training set as the one used for the GFAM networks,
and for the validation of the performance of each of the
ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP networks
we used the same validation set as the one used for the
GFAM networks. The parameter setting of the ssFAM, ssEAM,
ssGAM, and safe micro-ARTMAP network that maximized
the fitness function was chosen as the best parameter setting
for the specific database; the number of categories created by
the “best” parameter setting network, and its corresponding
percentage of correct classification on the test set are reported
in Table 3.

In particular, the parameter settings that we experimented
with for ssFAM were: baseline vigilance values ranging from
0 to 0.9 with step size of 0.1, choice parameter values of
0.001 and 0.01, maximum allowable mixture threshold values
ranging from 0 to 1 with step size of 0.1, and 100 different
orders of pattern presentations of the training data (resulting in
22,000 different parameter settings). Furthermore, the settings
for ssEAM were: baseline vigilance values ranging from 0 to
0.9 with step size of 0.1, choice parameter values of 0.001
and 0.01, maximum allowable mixture threshold values ranging
from 0 to 1 with step size of 0.1, minimum axes to maximum
axis ratio values ranging from 0.1 to 1 with step size of 0.1,
and 100 different orders of pattern presentations of the training
data (resulting in 220,000 different parameter settings). Also,
the settings for ssGAM were: baseline vigilance values ranging
from 0 to 0.9 with step size of 0.1, initial standard deviation
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Table 3
Best results obtained from GFAM compared to best results obtained from safe µARTMAP, ssFAM, ssEAM and ssGAM

Database name GFAM Safe µARTMAP ssFAM ssEAM ssGAM
PCC Size PCC Size PCC Size PCC Size PCC Size

1 G2c-05 95.40 2 95.22 2 94.70 2 94.68 2 94.66 2
2 G2c-15 85.32 2 85.00 2 85.58 2 85.26 2 85.50 2
3 G2c-25 75.24 2 74.98 2 75.08 2 75.16 2 75.06 2
4 G2c-40 62.02 2 61.40 3 59.56 2 59.50 2 59.56 3
5 G4c-05 95.16 4 95.04 4 94.54 5 94.92 4 95.56 4
6 G4c-15 84.78 4 83.28 4 82.74 4 82.06 4 83.42 6
7 G4c-25 75.08 4 74.50 4 70.38 9 72.92 4 72.32 21
8 G4c-40 59.94 4 58.90 4 57.80 7 54.70 7 59.54 14
9 G6c-05 94.84 6 92.36 6 87.23 8 93.46 6 94.66 8

10 G6c-15 84.89 6 80.91 6 80.59 6 82.03 7 83.49 9
11 G6c-25 74.36 6 67.92 6 70.24 15 71.44 7 71.24 13
12 G6c-40 60.13 6 54.07 6 55.15 17 49.30 7 55.15 13
13 4Ci/Sq 95.03 9 95.42 8 87.23 18 94.68 5 93.40 12
14 1Ci/Sq 97.77 7 94.76 8 92.97 8 97.02 8 91.02 8
15 1Ci/Sq/0.3:0.7 97.93 6 96.82 8 93.21 8 97.13 8 92.33 8
16 2Ci/Sq/20:30:50 97.57 5 97.22 6 90.24 12 97.01 3 95.60 9
17 MOD-IRIS 95.35 2 94.91 2 94.79 8 94.77 2 94.70 2
18 ABALONE 61.84 3 58.10 3 60.01 6 58.81 3 56.31 2
19 PAGE 96.77 5 92.92 5 87.93 3 93.84 2 94.32 5

parameter ranging from 0.1 to 1 with step size of 0.1, maximum
allowable mixture threshold values ranging from 0 to 1 with
step size of 0.1, and 100 different orders of pattern presentations
of the training data (resulting in 110,000 different parameter
settings). Finally, the settings for safe micro-ARTMAP were:
baseline vigilance values ranging from 0 to 0.4 with step size
of 0.2, baseline vigilance parameter values of 0.001 and 0.01,
5 values for the maximum “all-categories” entropy threshold,
6 different ratios of the values of the “categories” entropy
threshold to the “all-categories” entropy threshold, three values
of the maximum allowable expansion of a category, and 100
different orders of pattern presentations of the training data
(resulting in 90,000 different parameter settings).

The best parameter setting, identified in the previous sub-
section for GFAM was used for each of the 19 databases. Ten
(10) experiments per database were conducted for 10 different
initial seeds of the GA optimization process. The network
that produced the maximum value of the fitness function was
deemed as “best”. The number of categories of the “best”
GFAM for each database and its corresponding performance
(PCC) on the test set are reported in Table 3.

Some of the conclusions that can be deduced from the
comparative results, depicted in Table 3, are emphasized below.

GFAM attains good performance on all the 19 datasets,
and quite often, optimal performance. GFAM’s performance on
databases 1–12 (Gaussian datasets of known amount of overlap)
is optimal, for all practical purposes; for example the best
performance on the G6c-15 problem (6 class Gaussian dataset
of 15% overlap) is a classifier with 6 categories and 85% correct
classification, and GFAM is a classifier with six categories
and 84.89% of correct classification. Finally, two of the real
problems reported here, MOD-IRIS and PAGE, also gave very
good results of 95.35% and 96.77% of correct classification,
by creating the optimum number of two and five categories,
respectively.

According to the results in Table 3, in all instances the
accuracy of GFAM on a test set (generalization performance)
is either higher than or practically equal to the accuracy of
the other ART networks (ssFAM, ssEAM, ssGAM or safe
micro-ARTMAP). Also, in most instances, the size of GFAM
is smaller than the size of the other ART networks. For
instance, ssFAM performs as well as the GFAM network
for the 2-class Gaussian datasets. For all the other datasets
the GFAM network performs better (achieving higher PCC
with fewer ART categories). The largest difference in PCC
observed is almost 8% (for the 4 Circle in the Square problem),
while the largest ratio of number of ssFAM versus GFAM
categories is for the modified IRIS problem (ratio of 4). ssEAM
performs as well as the GFAM for the 2-class Gaussian datasets.
For all the other datasets GFAM performs better (achieving
higher PCC). The biggest difference in PCC is for the 6-
class Gaussian, 40% overlap dataset, where GFAM achieves
more than 10% better classification accuracy. In some problems
GFAM and ssEAM created the same number of categories. In
other problems (e.g. Gaussianly distributed datasets) GFAM
created fewer categories. In the remaining problems, especially
problems for which the data favor the ellipsoidal structure of the
EAM categories, ssEAM created fewer categories than GFAM.
ssGAM performs as well as the GFAM networks for the 2-class
Gaussian datasets. For all the other datasets GFAM performs
better (achieving higher PCC with fewer ART categories). The
largest difference in PCC observed is more than 6% (for the 1
Circle in the Square problem), while the largest ratio of number
of ssGAM versus GFAM categories is for the four Gaussian
dataset with 25% overlap problem (ratio larger than 5). safe
micro-ARTMAP performs as well as the GFAM network for
the 2-class, and 4-class Gaussian datasets. For all the other
datasets GFAM performs better (achieving higher PCC with
fewer ART categories). The largest difference in PCC observed
is more than 6% (for the 6 class Gaussian dataset with 25%
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overlap). On the number of categories it can be observed that
GFAM performed, as good as, or slightly better than, safe
micro-ARTMAP on most databases.

What is also worth pointing out is that the better performance
of the GFAM network is attained with reduced computations
as compared with the computations needed by the alternate
methods (ssFAM, ssEAM, ssGAM, safe micro-ARTMAP).
Specifically, the performance attained by ssFAM, ssEAM,
ssGAM and the safe micro-ARTMAP required training these
networks for a large number of network parameter settings
(at least 22,000 experiments) and then choosing the network
that achieved the highest value for the fitness function that we
introduced earlier (through cross-validation). In GFAM cases
we trained only a small number of these networks (Popsize = 20
of them), compared to the large number of networks trained
in the ssFAM, ssEAM, ssGAM or micro-ARTMAP cases (at
least 22,000). Furthermore, in GFAM we evolved the trained
networks at most Genmax = 500 times, each evolution requiring
cross-validating Popsize = 20 networks. Hence, the total
number of networks cross-validated in the ssFAM, ssEAM,
ssGAM and micro-ARTMAP cases were at least 22,000, while
in the GFAM networks were 10,000; furthermore the networks
cross-validated in the ssFAM, ssEAM, ssGAM, and micro-
ARTMAP cases have higher number of category nodes than
the ones cross-validated in the GFAM case. As a result, we
can argue that the improved performance (in most instances,
smaller number of categories and better generalization) of
GFAM, compared with ssFAM, ssEAM, ssGAM, and safe
micro-ARTMAP, is achieved with reduced computational
effort. Of course, one can claim that such an extensive
experimentation with these networks might not be needed,
especially if one is familiar with the functionality of these
networks and chooses to experiment only with a limited set
of network parameter values. However, the practitioner in the
field might lack the expertise to carefully choose the network
parameters to experiment with, and consequently might need
to experiment extensively to come up with a good network. In
this case, GFAM has an advantage over the other ART network
approaches because it has already provided a list of default
parameter settings for the evolution of trained FAMs, and as
a result the experimentation with a separate validation set is not
needed. In Appendix B, we show, in more detail, how the more
computationally efficient GFAM compares to ssFAM, ssEAM,
ssGAM and safe micro-ARTMAP. The comparison is based
on the assumption that extensive parameter experimentation
with the network parameters of ssFAM, ssEAM, ssGAM or
safe micro-ARTMAP is needed to obtain a good performing
ssFAM, ssEAM, ssGAM or safe micro-ARTMAP network,
respectively.

The comparison of GFAM, and ssFAM, ssEAM, ssGAM,
provided above, is fair because it used the same databases
and datasets/per database for training, validation and testing of
these architectures, as well as the same criterion for finding the
best of these ART architectures (the criterion was to maximize
the fitness function, defined in Section 4). However, some
of the structures-in-a-structure artificial databases, extensively
examined above, have also been utilized to assess the

performance of other ART architectures, such as the distributed
Fuzzy ARTMAP (dFAM), FasART, and distributed FasART
(see Parrado-Hernandez et al. (2003)). Distributed Fuzzy
ARTMAP differs from Fuzzy ARTMAP in the sense that more
than one category is activated to represent an input pattern
in ART’s training phase. FasART uses a different activation
function compared to the one used by Fuzzy ARTMAP. Finally,
distributed FasART is the distributed version of FasART,
in a similar manner as distributed Fuzzy ARTMAP is the
distributed version of Fuzzy ARTMAP. More details about
the functionality of these ART networks can be found in
Parrado-Hernandez et al. (2003) and they are beyond the scope
of this paper. We avoid the extensive comparison of GFAM
with dFAM, FasART, and dFasART for a reason. Although
some of the databases used to assess the performance of
dFAM, FasART, and dFasART, in Parrado-Hernandez et al.
(2003), are approximately the same as the databases used to
assess the performance of GFAM, the actual data used for
training, and testing of GFAM are not the same used for
the training and testing of dFAM, FasART, and dFasART.
Furthermore, parameter network optimization with a validation
set, such as to optimize a fitness function, was not conducted for
FasART, dFAM, and dFasART. Actually, the results reported in
Parrado-Hernandez et al. (2003), are averages of the
performances of the dFAM, FasART, and dFasART on a test
set of 5000 points for a specific set of network parameter
values (we tend to believe that it was a good set of network
parameter values). The averages correspond to the average
performance attained by 100 different choices of training sets of
size equal to 2000 points. The comparison between the GFAM
performance, and dFAM, FasART, and dFasART performances
can be deduced from the summarized numbers of Table 4, with
the cautionary comments about the fairness of this comparison
that were mentioned above.

In all our experiments above, we used simulated or
real databases that predominantly had input patterns of
dimensionality 2. Furthermore, for the GFAM results reported
(databases 1–19 of Table 1) we used these databases to identify
good (default) GA parameter values. It is therefore worth
reporting GFAM’s performance on databases that have input
patterns of higher than 2 dimensionality (see databases 20–27
of Table 1), and for which we use the good GA parameter values
identified on databases 1–19 (see Table 1). The results (PCC on
the test sets, and number of FAM categories created by GFAM)
are depicted in Table 5 (in particular, Table 5 shows) the GFAM
results for two α parameter values (α is the parameter that
appears in the fitness function); an α value of 0.5 (this is the
value used for the Table 3 results) and an α value of 0.1.
Note that a smaller α parameter value allows for higher size
GFAM networks that end up exhibiting higher accuracy (PCC)
on unseen data.

In order for the reader to be able to evaluate how good
the GFAM results are we refer the reader to the work by
Lim, Loh and Shih (2000), where they compared the accuracy
and size of a 33 classifiers belonging to the tree, statistical
and neural types classifiers. Three of the datasets that Lim,
Loh and Shih have experimented with are the Satellite, the
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Table 4
Accuracy and size results achieved by GFAM and other ART networks

Database name dFAM FasART dFasART GFAM
PCC Size PCC Size PCC Size PCC Size

4Ci/Sq 87.19 33.38 92.76 22.30 87.95 22.38 95.03 9
1Ci/Sq 88.90 12.34 96.30 63.42 92.78 30.50 97.77 7
1Ci/Sq/0.3:0.7 75.79 6.96 97.00 56.12 96.28 12.24 97.93 6
2Ci/Sq/20:30:50 95.23 12.96 96.27 57.68 94.91 24.32 97.57 5

Note: dFAM: Distributed Fuzzy ARTMAP, FasART, dFasART : Distributed FasART, GFAM : Genetic Fuzzy ARTMAP.

Table 5
Accuracy and size results achieved by GFAM on 8 UCI databases

Database Name GFAM (0.5) GFAM (0.1)
PCC Size PCC Size

20 OPTDIGITS 88.09 13 91.21 22
21 PENDIGITS 90.25 15 94.35 28
22 SAT 83.35 7 84.60 8
23 SEG 94.13 12 95.14 15
24 WAV 81.55 3 83.00 4
25 SHUTTLE 99.55 5 99.55 5
26 GLASS 75.00 9 67.19 9
27 PIMA 77.59 2 76.72 3

The results are recorded for 2 settings of the fitness function parameter: 0.5 and
0.1.

Segmentation and the Waveform datasets that GFAM has been
tested on (see Table 5). The GFAM results on the Satellite
dataset are: 83.35% (84.6%) classification accuracy, needing
7 (8) categories (see Table 5). The accuracy results reported
on the Satellite dataset by Lim, Loh, and Shih are: Minimum
classification accuracy of 60% and maximum classification
accuracy of 90%. Furthermore the tree type classifiers (22 of
them) created a minimum tree size of 8, while the median
tree size was 63. Finally, the two most celebrated decision
tree algorithms, CART and C4.5, created tree sizes of 63
and 216. The GFAM results on the Segmentation dataset
are: 94.13% (95.14%) classification accuracy, needing 12 (15)
categories (see Table 5). The accuracy results reported on the
Segmentation dataset by Lim, Loh, and Shih are: Minimum
classification accuracy of 48% and maximum classification
accuracy of 98% (achieved by the nearest neighbor classifier,
which performs no data compression). Furthermore the tree
type classifiers (22 of them) created a minimum tree size of
6, while the median tree size was 39. Finally, the two most
celebrated decision tree algorithms, CART and C4.5, created
tree sizes of 69 and 42. The GFAM results on the Waveform
dataset are: 81.55% (83%) classification accuracy, needing 3
(4) categories (see Table 5). The accuracy results reported on
the Waveform dataset by Lim, Loh, and Shih are: Minimum
classification accuracy of 52% and maximum classification
accuracy of 85%. Furthermore the tree type classifiers (22 of
them) created a minimum tree size of 3, while the median
tree size was 16. Finally, the two most celebrated decision tree
algorithms, CART and C4.5. created tree sizes of 14 and 54.

Overall, one can state that GFAM performs well on a
number of classification problems achieving good classification

accuracy at a network size that compares very favorably with a
number of other ART-based and non-ART based classifiers.

6. Conclusions

In this paper, we have introduced yet another method of
solving the category proliferation problem in ART. This method
relies on evolving a population of trained Fuzzy ARTMAP
(FAM) neural networks. We refer to the resulting architecture
as GFAM.

We have experimented with a number of databases that
helped us identify good default parameter settings for the
evolution of FAM. We defined a fitness function that gave
emphasis to the creation of a small size FAM networks which
exhibited good generalization. In the evolution of FAM trained
networks, we used a unique (and needed) operator; the delete
category operator. This operator allowed us to evolve into FAM
networks of smaller size. The network identified at the end of
the evolutionary process (i.e., last generation) was the FAM
network that attained the highest fitness value. Our method for
creating GFAM resulted in a FAM network that performed well
on a number of classification problems, and on a few of them it
performed optimally.

GFAM was found to be superior to a number of other ART
networks (ssFAM, ssEAM, ssGAM, safe micro-ARTMAP) that
have been introduced into the literature to address the category
proliferation problem in ART. More specifically, GFAM gave
a better generalization performance (in almost all problems
tested) and a smaller than or equal size network (in almost all
problems), compared to these other ART networks, requiring
reduced computational effort to achieve these advantages. In
particular, in some instances the difference in classification
performance of GFAM and these other ART networks was quite
significant (as high as 10%). Furthermore, in some instances
the ratio of the number of categories created by these other
ART networks, compared to the categories created by GFAM,
was large (as high as 5). Finally, some comparisons were also
drawn between GFAM and dFAM, FasART, and dFasART,
and other classifiers that led us to the conclusion that GFAM
achieves good classification accuracy by creating an ART
network whose size compares very favorably with the size of
the other classifiers.

Obviously, the introduced method to evolve trained FAMs
can be extended to other ART architectures, such as EAM and
GAM, amongst others, without any significant changes in the
approach followed.
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Appendix A. Terminology

• FAM: Fuzzy ARTMAP.
• EAM: Ellipsoidal ARTMAP.
• GAM: Gaussian ARTMAP
• ssFAM, ssEAM, ssGAM: Semi-suprvised Fuzzy ARTMAP,

Semi-supervised Ellipsoidal ARTMAP, Semi-supervised
Gaussian ARTMAP.

• Ma : The dimensionality of the input patterns in the training,
validation and test sets provided to us by the classification
problem under consideration.

• Training set: The collection of input/output pairs used in the
training of FAMs that constitute the initial FAM population
in GFAM.

• Validation set: The collection of input/output pairs used to
validate the performance of the FAM networks during the
evolution of FAMs from generation to generation.

• Test set: The collection of input/output pairs used to assess
the performance of the chosen FAM network, after the
evolution of FAMs is completed.

• PT: Number of points in the training set.
• PV: Number of points in the validation set.
• ρ̄min

a : This is the lower limit of the baseline vigilance
parameter used in the training of the FAM networks that
comprise the initial population of the FAM networks.

• ρ̄max
a : This is the upper limit of the baseline vigilance

parameter used in the training of the FAM networks that
comprise the initial population of the FAM networks.

• βa : The choice parameter used in the training of the FAM
networks that comprise the initial population of the FAM
networks. This parameter is fixed, and chosen equal to 1.0.

• Popsize: The number of chromosomes (FAM trained
networks) in each generation.

• wa
j (p) = (ua

j (p), (va
j (p))c): the weight vector correspond-

ing to category j of the pth FAM network from the Popsize
trained FAM networks in a generation; ua

j (p) corresponds
to the lower endpoint of the hyperbox that the weight vector
wa

j (p) defines and va
j (p) corresponds to the upper endpoint

of this hyperbox.
• l j (p): The label of category j of the p-th FAM network from

the Popsize trained FAM networks in a generation.
• PCC(p): The percentage of correct classification on the

validation set exhibited by the pth FAM network from the
Popsize trained FAM networks in a generation.

• Na(p): The number of categories in the pth FAM network
from the Popsize trained FAM networks in a generation.

• Genmax: The maximum number of generations allowed for
the FAM networks to evolve. When this maximum number
is reached evolution stops and the FAM with the best fitness
value on the validation set is reported.

• NCbest: Number of best chromosomes that the GFAM
transfers from the old generation to the new generation
(elitism).

• Catdel: New genetic operator that deletes a category from a
FAM chromosome.

• P(Catdel), P(Mut): The probabilities of deleting and
mutating a category.

• α: The parameter in the GA fitness function that defines the
importance of the number of categories in a FAM network
compared to the FAM’s size; larger α values give more
emphasis to the number of categories in a network compared
to the network’s generalization performance.

• Fit(p) : The fitness function of the pth FAM network.
• Catmin: The minimum number of allowed categories in a

FAM network. It is set equal to the number of classes in the
classification problem under consideration.

• PT: Number of points in the training set.
• PV: Number of data-points in the validation set.
• PTes: Number of points in the test set.
• PS: Number of network parameter settings to produce the

best ART network (ART is ssFAM, ssEAM, ssGAM and
safe micro-ARTMAP).

Appendix B. Complexity comparisons of GFAM and other
ART networks

In this section we provide a fair comparison between the
number of operations needed by GFAM and the number of
operations needed by ssFAM. Similar considerations are valid
when comparing the number of operations needed by GFAM
versus the number of operations needed by ssEAM and ssGAM.
The comparisons between GFAM and safe micro-ARTMAP are
slightly different, and thus omitted, but some observations re-
garding these comparisons are made at the end of this appendix.

To begin let us remind ourselves that in both GFAM
and ssFAM an element contributing to their computationally
complexity is the training of a number of FAM networks.
So, obviously an estimate of the computational complexity
associated with the training of FAM is needed. Furthermore,
an additional element contributing to the computational
complexity of ssFAM is assessing the performance of the
produced trained FAMs (corresponding to different values of
FAM network parameter settings) to obtain the FAM that
achieved the highest value of fitness. Finally, for GFAM an
additional element contributing to its computational complexity
is the evolution of the trained FAMs (for a number of
generations) and their performance assessment in order to
produce the FAM (at the last generation) that achieved the
highest fitness value. In the following, we produce estimates for
the computational complexity of each one of these elements.
Throughout this paper we have assumed that the reader is
familiar with the training phase of a FAM network, and this
assumption is necessary here, as well, where the computational
complexity calculation of a trained FAM is carried through.

Element 1: Training of FAM networks (for ssFAM and
GFAM)

We assume that the reader is familiar of how the training
of FAM works. During FAM’s training for each one of the
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training patterns in the training set (PT designates the number
of training patterns) we have to compute the match function
value of every category in the representation layer of FAM
(Na designates the number of categories in the representation
layer of FAM). Then for the categories that pass the vigilance
test (i.e., the value of their match function exceeds the value
of the vigilance parameter) we have to compute the values
of the choice function (at most Na categories will pass the
vigilance test). Eventually, once a category is found that passes
the vigilance test and attains the maximum of the choice
function values, its label is compared with the label of the input
pattern presented to FAM. If the label matches, learning ensues,
otherwise the process is repeated until we find a category in
FAM that passes the vigilance, attains the maximum value of
the choice function values and leads us to the correct label (the
one that the input pattern should be mapped to). Note that in
FAM, the number of categories, Na created is a portion of the
number of training patterns (designated as PT ) presented to
FAM. The process of presenting all the input patterns in the
training set and proceeding, as described above, is referred to
as one list presentation of FAM’s training phase. So, it is not
difficult to see that the computational complexity of one list
presentation in FAM is equal to

O(N 2
a ).

The entire training phase of FAM requires O(N 2
a ) computa-

tions for every list presentation. Hence, the computational com-
plexity of FAM’s training phase is equal to

O(N 2
a )

with the understanding that the constant of proportionality
involved in the O(N 2

a ) expression is the product of the number
of list presentations needed by FAM to converge to a solution,
and the number representing the ratio of training patterns in
the training set over number of categories created in the trained
FAM (note that this number could be one or two or even more
orders of magnitude large).

Element 2: Testing of FAM network (ssFAM)
In order to obtain the “best” ssFAM network (the

performance of this network has been reported in Table 3), we
have to train FAM for many parameter settings, and examine
the fitness of the produced trained networks on an independent
(rather than the training) set, referred to as the validation set.
Assume, that the number of patterns in the validation set is
equal to PV. Assume also that the number of parameter settings
used to identify the best ssFAM is equal to PS.

In testing a single ssFAM network we have (for every pattern
in the validation set) to go through the process of calculating the
value of the match function attained by each category (node) in
the trained FAM (this number was designated as Na). For all
those categories (nodes) that pass the vigilance test (i.e., the
value of their match function exceeds the vigilance parameter)
we also have to compute the value of the choice function,
attained by the category. Hence, the testing of a single FAM
network requires

PV · O(Na)

calculations. To test PS of these trained FAM networks we
obviously require

PS · PV · O(Na)

calculations.
Concluding, we can state that the total number of

calculations needed to produce the “best” ssFAM network is
equal to

PS · O(N 2
a ) + PS · PV · O(Na). (B.1)

Element 3: Evolution of trained FAMs, testing of evolved
FAMs (GFAM)

In the evolution of trained FAMs we start with Popsizetrained
FAMs that we intend to evolve, and for every generation in the
evolutionary process we evolve the chromosomes that represent
these trained FAMs. The evolution of these trained FAMs
involves (i) encoding the trained FAMs as chromosomes, (ii)
applying a number of GA operators on the FAM-chromosomes,
and (iii) decoding the FAM-chromosomes to FAMs. The
computational complexity of this evolution from one generation
of FAMs to the next generation of FAMs is equal to

O(Na).

The computational complexity of testing these evolved
FAMs in every generation is equal to

Popsize · PV · O(Na)

where Popsize was defined earlier as the number of
chromosomes in the GA population. Obviously, this process
(evolution of FAMs, testing of evolved FAMs) needs to be
repeated for as many times as the number of generations, which
was denoted asGenmax. Hence the computational complexity
required for the evolution of FAMs to come up with best fitness
FAM (in the last generation) is equal to:

Genmax · Popsize · PV · O(Na).

Concluding, we can now state that the total number of
calculations needed for the training, evolution and testing of
FAMs in the GFAM approach is equal to

Popsize · O(N 2
a ) + Genmax · Popsize · PV · O(Na). (B.2)

In comparing the computational complexities required to
produce the best ssFAM network and the GFAM network (Eqs.
(B.1) and (B.2)) we notice that:

• PS � Popsize, and
• PS > Genmax · Popsize.

As a reminder, in most of the experiments that we conducted
with the other (than GFAM) ART networks PS > 20,000. On
the other hand, Genmax = 500, Popsize = 20. Hence, the above
inequality statements are appropriately justified. The above two
observations assure us that GFAM is more computationally
efficient than the “best” ssFAM. Similar observations are valid
if we compare the computational complexity of GFAM and
the computational complexity associated with discovering the
“best” ssEAM and ssGAM.
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The computational complexity of the “best” safe micro-
ARTMAP (whose results are reported in Table 3) is similar
with the computational complexity of the “best” ssFAM,
with one, worth mentioning, distinction. In the training phase
of safe micro-ARTMAP the input patterns are presented to
the ART architecture only in the first list presentation. In
subsequent list presentations only a portion of these input
patterns are presented to safe micro-ARTMAP. However, safe
micro-ARTMAP requires some additional calculations during
its training phase. So, for all practical purposes, we can
still assume that the computational complexity of the training
phase of safe micro-ARTMAP can be represented by the
same formulas used to represent the computational complexity
of the training phase of FAM. Obviously, the computational
complexity of testing trained safe micro-ARTMAPs to discover
the best safe micro-ARTMAP is given by the same formula
used to discover the best trained FAM.
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