
Parallelizing the Fuzzy ARTMAP Algorithm on a
Beowulf Cluster

Jimmy Secretan(*), José Castro(**), Michael Georgiopoulos(*),
Joe Tapia(*), Amit Chadha(*), Brian Huber(*), Georgios Anagnostopoulos(***), Samuel Richie(*)

(*) Dep. of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816
(**) Comp. Eng., Instituto Technologico de Costa Rica, Cartago, Costa Rica

(***) Dept of Electrical and Computer Engineering, Florida Institute of Technology, Melbourne, FL, 32901

Abstract— Fuzzy ARTMAP neural networks have been proven
to be good classifiers on a variety of classification problems.
However, the time that it takes Fuzzy ARTMAP to converge
to a solution increases rapidly as the number of patterns
used for training increases. In this paper we propose a coarse
grain parallelization technique, based on a pipeline approach, to
speed-up Fuzzy ARTMAP’s training process. In particular, we
first parallelized Fuzzy ARTMAP, without the match-tracking
mechanism, and then we parallelized Fuzzy ARTMAP with the
match-tracking mechanism. Results run on a Beowulf cluster
with a well known large database (Forrest Covertype database
from the UCI repository) show linear speedup with respect to
the number of processors used in the pipeline.

I. INTRODUCTION

Neural Networks have been used extensively and success-
fully to tackle a wide variety of problems. As computing
capacity and electronic databases grow, there is an increasing
need to process considerably larger databases. Neural network
algorithms can have a prohibitively slow convergence to a
solution, especially when they are trained on large databases.
Even one of the fastest (in terms of training speed) neural
network algorithms, the Fuzzy ARTMAP algorithm [3], and
its faster variations ([6], [9]) tend to converge slowly to a
solution as the size of the network increases.

One obvious way to address the problem of slow conver-
gence to a solution is by the use of parallelization. This paper
focuses on parallelization strategies for FAM on a Beowulf
cluster. A Beowulf cluster is a collection of standard PC work-
stations formed into a single, cohesive supercomputer by a
fast network and open source software. For many applications,
especially those of interest to the data mining community, the
Beowulf architecture offers unparalleled performance for the
price.

Regarding the parallelization of ART neural networks it
is worth mentioning the work by Manolakos [8] who has
implemented the ART1 neural network [4] on a ring of
processors, and the work of Malkani and Vassiliadis [7],
who have implementated Fuzzy-ARTMAP on a hypercube
architecture. In the latter paper, a hypercube topology is
utilized for transferring data to all of the nodes involved in
the computations. Each of the processors maintains a subset
of the architecture’s templates, and finds the template with
the maximum match in its local collection. Finally, in its d-
dimensional hypercube, it finds the global maximum through

d different synchronization operations. This can limit the
scalability of this approach.

The Fuzzy ARTMAP neural network has many desirable
characteristics, such as the ability to solve any classification
problem, the capability to learn from data in an on-line mode,
the advantage of providing interpretations for the answers that
it produces, the capacity to expand its size as the problem
requires it and the ability to recognize novel inputs, among
others. Due to all of its above properties it is worth in-
vestigating Fuzzy ARTMAP’s parallelization in an effort to
improve its convergence speed to a solution when it is trained
with large datasets. In this paper, our focus is to improve
the convergence speed of ART-like neural networks through
a parallelization strategy applicable for a pipeline structure
(Beowulf cluster). We chose to demonstrate the effectiveness
of our proposed parallelization strategy on Fuzzy ARTMAP
since, if we demonstrate its effectiveness for Fuzzy ARTMAP,
its extension to other ART structures can be accomplished
without much additional effort. This is due to the fact that
the other ART structures share a lot of similarities with
Fuzzy ARTMAP, and as a result, the proposed parallelization
approach can be readily extended to other ART variants.

II. FUZZY ARTMAP ALGORITHM

The Fuzzy ARTMAP neural network and its associated
architecture was introduced by Carpenter and Grossberg in
their seminal paper [3]. Kasuba [6] and Taghi, Baghmisheh,
and Pavesic [9] presented a simplified version of the original
Fuzzy ARTMAP architecture that was equivalent to Fuzzy
ARTMAP for classification problems. In our paper, we have
implemented the simplified Fuzzy ARTMAP version from
Taghi, called SFAM2.0, that we refer to as FS-FAM or
alternately as Fuzzy ARTMAP. We assume that the reader
is familiar with the simplified Fuzzy ARTMAP architecture
consisting of an input layer, a category representation layer
(where compressed representations of the inputs are formed)
and an output layer.

FS-FAM can operate in two distinct phases: the
training phase and the performance phase. In the training
phase of FS-FAM a collection of input/output (such as
{

(I1, label(I1)), . . . , (Ir, label(Ir)), . . . , (IPT , label(IPT))
}

)
are repeatedly presented to FS-FAM until FS-FAM learns the
desired mappings from inputs to outputs (referred to as labels

of inputs). The training process in FS-FAM is succinctly
described in Taghi’s et al., paper [9]. We repeat it here to give
the reader a good, well-explained overview of the operations
involved in its training phase.

1) Find the nearest category in the category representation
layer of FS-FAM that ”resonates” with the input pattern.

2) If the labels of the chosen category and the input pattern
match, update the chosen category to be closer to the
input pattern.

3) Otherwise, reset the winner, temporarily increase the
resonance threshold (called vigilance parameter), and
try the next winner. This process is referred to as match-
tracking.

4) If the winner is uncommitted, create a new category
(assign the representative of the category to be equal
to the input pattern, and designate the label of the new
category to be equal to the label of the input pattern).

The nearest category to an input pattern Ir presented to FS-
FAM is determined by finding the category that maximizes the
function:

Tj(I
r,wj , α) =

|Ir ∧ wj |

α + |wj |
(1)

The resonance of a category is determined by examining if
the function, called vigilance ratio, and defined below

ρ(Ir,wj) =
|Ir ∧ wj |

|Ir|
(2)

satisfies the following condition:

ρ(Ir,wj) ≥ ρ (3)

If the label of the input pattern (Ir) is the same as the label
of the resonating category, then the category’s template (wj)
is updated as follows:

wj = wj ∧ Ir (4)

If the category j is chosen as the winner and it resonates, but
the label of this category wj is different than the label of the
input pattern Ir, then this category is reset and the vigilance
parameter ρ is increased to the level:

|Ir ∧ wj |

|Ir|
+ ε (5)

In the above equations the quantities α, ρ, and ε are FS-FAM
network parameters; α usually takes small positive values, ρ

is chosen as a value in the interval [0, 1], and ε is a very small
positive parameter.

In all of the above equations (equations (1)-(5)) there is
a specific operator involved, called fuzzy min operator, and
designated by the symbol ∧. Actually, the fuzzy min operation
of two vectors x, and y, designated as x∧y, is a vector whose
components are equal to the minimum of components of x

and y. Another specific operator involved in these equations

is designated by the symbol | · |. In particular, |x| is the size
of a vector x and is defined to be the sum of its components.

In the performance phase of FS-FAM, a test input is
presented to FS-FAM and the category node in FS-FAM that
has the maximum bottom-up input is chosen. The label of the
chosen category is the label that FS-FAM predicts for this test
input. By knowing the correct labels of test inputs, belonging
to a test set, we can calculate the classification error of FS-
FAM for this test set.

A simplification that can be applied to the FS-FAM algo-
rithm is the elimination of the match-tracking process. This
modification was originally proposed by Anagnostopoulos [1]
and turned out to yield improved classification performance on
some databases. Our interest in using this FS-FAM variant lies
in the fact that it simplifies the FS-FAM algorithm and allows
one to concentrate on the parallelization of the competition
loop in Fuzzy ARTMAP.

III. PARALLEL FS-FAM ARCHITECTURES

The design of the parallel FS-FAM implementation used in
this paper was somewhat inspired by the architecture in [8]. In
this paper, we present two variations of the parallel FS-FAM,
the parallel no match-tracking FS-FAM, and the parallel FS-
FAM (which includes match-tracking). While these parallel
implementations could be adapted to a physical pipeline/ring
network topology, the run environment was emulated by nodes
of the Beowulf cluster connected by a standard switch (star
topology). The different nodes of the Beowulf were logically
arranged in a pipeline, with the capability of bidirectional
communication with their neighbors. The input patterns to be
learned are read into the first node of the pipeline. Each node
in the pipeline has its own collection of templates, against
which the input patterns are compared. The input patterns are
sent in batches, whose size is an adjustable parameter of the
program. As a batch of inputs enters a node, it is processed
sequentially. That is, the processing always starts with the
first input pattern in the batch. The incoming patterns search
through the node’s collection of available templates. The
maximum template that meets the vigilance is then coupled
with the incoming input pattern. This coupling removes the
pattern from the available pool of templates for the node. In
all subsequent comparisons, if a better template is found, it is
switched out with the one currently coupled to the input. The
template comparisons proceed until the input pattern reaches
the end of the pipeline. At this point, if the chosen template is
mapped to the correct output, then learning of the pattern by
the template ensues. If on the other hand the chosen template
is mapped to the wrong output two different strategies are
implemented. In the no match-tracking FS-FAM case a new
template is added to the last node’s template list which learns
the designated input pattern. In the FS-FAM case the match-
tracking mechanism is enforced and the input pattern is re-
presented to the first node in the pipeline with an increased
vigilance value and the search for the right template starts all
over again. In addition to processing inputs the system is also
performing load balancing. New templates are created only at

the end stage of the pipeline. To achieve load balancing the
last node’s pool of excess templates, must be re-distributed
to other nodes, further upstream in the pipeline. At the time
that each node sends its input patterns and winning templates
forward through the pipeline, it also sends its excess templates
backward through the pipeline. An illustration of the flow of
input patterns and templates through the system can be seen
in figure 1. In this figure, the focus is on processor k and
the exchange of information (patterns and templates) between
processor k and its neighboring processors (i.e., processors
k − 1 and k + 1).

Fig. 1. Diagram to illustrate the exchange of input patterns and templates
in the Beowulf processor pipeline.

A. No Match-Tracking Parallel FS-FAM

As part of our previous research, we presented a parallel
pipelined version of the no match-tracking FS-FAM [5]. When
inputs reach the end of the pipeline in the no match-tracking
FS-FAM, they either update their associated templates or
create new templates. This is the final point for all inputs. And
as templates accumulate in the last processor in the pipeline,
they are load balanced in the way explained earlier. Because
of the lack of space in this paper, we refer the reader to
our previous work for more a thorough explanation of the
parallelization of the no match-tracking FS-FAM [5]. Note
that in [5], we presented proofs of the parallel no match-
tracking FS-FAM’s equivalence to its serial counterpart, as
well as description of some of its favorable load balancing
properties. Throughout the rest of this paper, we concentrate on
the generalization of the parallel no match-tracking FS-FAM
design for the case of the match-tracking FS-FAM. However,
we present scaling results for the no match-tracking FS-FAM
for comparison purposes.

B. Parallel FS-FAM with Match-Tracking

The parallel implementation of FS-FAM is shown in figure
2. The variables involved are as follows:

• n: number of processors in the pipeline.
• k: index of the current processor in the pipeline, k ∈

{0, 1, . . . , n − 1}.
• p: packet size, number of patterns sent downstream; 2p =

number of templates sent upstream.
• (I,w, T, ρ): 4-tuple corresponding to the format of the

elements that are packed downstream in the pipeline. I is
the input pattern, w is the current best candidate template
for input pattern I. T is the activation of the pattern with

the given template. And ρ is the current value of the
vigilance parameter for this input pattern.

• myTemplates: set of templates that belong to the current
processor.

• nodes: variable local to the current processor that holds
the total number of templates the process is aware of (its
own plus the templates of the other processors).

• myShare: amount of templates that the current processor
should not exceed.

• Wk−1: Ordered set of 4-tuples coming from the previous
processor in the pipeline.

• Wk+1: Set of templates (not 4-tuples) coming from the
next processor in the pipeline.

• W: Ordered set of 4-tuples going to the next processor
in the pipeline.

• W′: Set of templates (not 4-tuples) going to previous
processor in the pipeline.

• class(I): class label associated with a given input pattern.
• class(w): class label associated with a given template.
• index(w): sequential index assigned to a template.
• newNodesk+1: number of new nodes (templates) that

were created and that processor k + 1 communicates
upstream in the pipeline.

• newNodes: number of new nodes (templates) that were
created and that processor k communicates upstream in
the pipeline.

For the sake of brevity, we omit the pseudocode for the
utility functions used here, but provide their high level de-
scriptions. For a more thorough explanation of these functions,
the reader is referred to [5]. To begin with, there are the
network communications functions. They behave exactly as
their names would indicate. The SENDNEXT functions, sends
data to the next processor in the pipeline, and so fourth.
The INIT function serves to initialize the variables and data
structures for the algorithm. The function FINDWINNER is
vital to the algorithm. This function searches through a set of
templates S to find if there exists a template wi that is a better
choice for representing I than the current best representative
w. If it finds one it swaps it with w, leaving w in S and
extracting wi from it.

Each processor in the pipeline will execute the algorithm of
figure 2 for as long as there are input patterns to be processed.
The input parameter k tells the process which stage of the
pipeline it is, where the value k varies from 0 to n − 1.
After initializing most of the values as empty we enter the
loop of lines 2 through 43. This loop continues execution
until there are no more input patterns to process. As before,
the first activity of each process is to create a packet of
excess templates to send back (line 3 to 5). Lines 6 to 9
correspond to the information exchange between contiguous
nodes in the pipeline. The function RECVNEXT on line 7,
does not do anything if the process is the last in the pipeline
(k = n − 1). The same is true for the function SENDPREV
when the process is the first in the pipeline (k = 0). On
the other hand, function SENDNEXT sends packets to the
first processor in the pipeline, when a given input pattern is

forced to engage the match-tracking mechanism. In this case,
the input pattern will increment its vigilance in its 4-tuple
and start afresh at the beginning of the pipeline (process 0).
The function RECVPREV does the normal procedure if it is
not the first process in the pipeline. If it is the first process
though, it will receive the pattern 4-tuples that come from
the last process in the pipeline (the ones that are engaged
in match-tracking), and read input patterns from the input
stream if the amount of match-tracking packets is less than
p. The fresh patterns from the input stream will be paired
with a dummy template called the uncommitted node with
index ∞ as their best representative so far. On all other cases
these functions do the obvious information exchange between
contiguous processes in the pipeline.

By sending the input patterns downstream in the pipeline
coupled with their current best representative template we
guarantee that the templates are not duplicated among different
processors and that we do not have multiple–instance consis-
tency issues. Also when exchanging templates between nodes
in the pipeline we have to be careful that patterns that are
sent downstream do not miss the comparison with templates
that are being sent upstream. This is the purpose of lines 11
to 13 (communication with the next one in the pipeline) and
lines 18-20 of PROCESS (communication with the previous
process in the pipeline). We loop through each 4-tuple (lines
11–13) to see if one of the templates, sent upstream, has a
higher activation (bottom-up input) than the ones that were
sent downstream; if this is true then the template will be
extracted from Wk+1. The net result of this is that Wk+1

ends up containing the templates that lost the competition, and
therefore the ones that process k should keep (line 13). The
converse process is done on lines 18 to 20. Here we compare
the pattern, template pairs 4-tuples that k − 1 sent upstream
in the pipeline with the templates in W ′ that process k sent
downstream in the pipeline. On line 20 we set our current
4-tuple to the winners of this competition. The set W ′ is
discarded since it contains the losing templates and therefore
the templates that process k − 1 keeps.

The primary competition loop is in lines 21 to 39. On line
22, we start by comparing the pertinent 4-tuples to the pro-
cessor’s main collection of templates with the FINDWINNER
function as described earlier. If it is on the last processor
(n−1), there are additional steps that must be taken. If the final
associated template is uncommitted, we add a new template to
the system (lines 25-27). We also remove the 4-tuple from W

(line 28), as we are done processing it. If a regular (committed)
template has been associated with the input in question, and
it maps to the correct class, then we update the template as
per the Fuzzy ARTMAP algorithm (lines 31 to 34). Again, as
before, the 4-tuple in question is removed from W (line 34). If
the labels of the input and template do not match, we must use
our match tracking mechanism (lines 35-38). We first increase
its associated vigilance (line 36). We then remove the template
that was associated with the input back into the processor’s
general pool and reset the template in the 4-tuple to be the
uncommitted node. Since this 4-tuple is not removed from W

as in the other cases, it remains to be sent back to processor
0, and start its competition loop all over again.

A processor continues until it receives nothing in Wk−1.
Finally, lines 45 and 46 of PROCESS make sure that the
templates that are sent upstream in the pipeline are not lost
after the pool of training input patterns that are processed is
exhausted.

IV. EXPERIMENTS

The database used for the testing the performance of both
the parallel no match-tracking FS-FAM and parallel FS-FAM
was the Forest CoverType database provided by Blackard
and donated to the UCI Machine Learning Repository. The
database consists of a total of 581,012 patterns, with each one
associated with 1 of 7 different forest tree cover types. The
number of attributes of each pattern is 54, but this number
is misleading since attributes 11 to 14 are actually a binary
tabulation of the attribute Wilderness-Area, and attributes 15
to 54 (40 of them) are a binary tabulation of the attribute
Soil-Type. The original database values are not normalized
to fit in the unit hypercube. Thus, we transformed the data to
achieve this. There are no omitted values in the data. Patterns 1
through 512,000 were used for training. The test set consisted
of patterns 561,001 to 581,000. Although lack of space does
not allow a comprehensive comparison of how different classi-
fication algorithms performed on this database, Blackard cites
performance of 70% for backpropagation neural networks and
58% for Linear Discriminant Analysis [2]. Training set sizes
of 1000 ·2i, where i ∈ {5, 6, 7, 8, 9} were used, that is 32,000
to 512,000 patterns were used for the training of parallel
no match-tracking FS-FAM and FAM. The test set size, as
mentioned above, was fixed at 20,000 patterns. The number
of processors in the pipeline varied from p = 1 to p = 32, in
powers of 2 (obviously the case of p = 1 corresponds to the se-
quential no match-tracking FS-FAM, and FS-FAM). To avoid
additional computational complexities in the experiments the
values of the ART network parameters ρ and α were fixed (i.e.,
the values chosen were ones that gave reasonable results). For
every combination of (p, PT)= (pipeline size, training set size)
values, we conducted 12 independent experiments (training
and performance phases), corresponding to different orders
of pattern presentations within the training set. All results
reported are averages over the 12 runs. All the tests where
conducted on the OPCODE Beowulf cluster at the Institute
for Simulation and Training, an institute affiliated with the
University of Central Florida. This cluster consists of 96 nodes,
with dual Athlon 1500+ processors and 512MB of RAM. The
implementation of the algorithm was done in C++ with the
MPI (Message Passing Interface) libraries. MPI provides a
simple interface for communication among processes running
on either one node or several different nodes. The runs were
done in such as way as to utilize half as many nodes as p. Thus,
there were two MPI processes per node, one per processor.

The metrics used to measure the performance of the
pipelined approach were:

Fig. 2: Pseudocode for the parallel FS-FAM.
Procedure: Process(k, n, ρ̄a, α, ε, p)
Init(p);1

while continue do2

W ′ = {};3

while |myTemplates| > myShare do4

ExtractTemplate(myTemplates, W ′);5

SendNext(k, n, W);6

RecvNext(k, n, Wk+1, newNodesk+1);7

SendPrev(k, W ′, newNodes);8

RecvPrev(k, n, p, ρ̄a, α, Wk−1);9

newNodes= newNodesk+1;10

foreach (I, w, T, ρ) ∈ W do11

FindWinner(I, w, T, ρ, α, Wk+1);12

myTemplates= myTemplates∪ Wk+1;13

W = {};14

if |Wk−1| == 0 then15

continue= FALSE;16

else17

foreach (I, w, T, ρ) ∈ Wk−1 do18

FindWinner(I, w, T, ρ, α, W′);19

W = W ∪ { I, w, T, ρ };20

foreach (I, w, T, ρ) ∈ W do21

FindWinner(I, w, T, ρ, α, myTemplates);22

if k == n − 1 then23

if w == uncommitted then24

newTemplate= I;25

index(newTemplate) = newNodes+26

nodes;
myTemplates= myTemplates∪27

{newTemplate};
W = W - { I, w, T, ρ };28

newNodes= newNodes+ 1;29

else30

if class(I) == class(w) then31

w = I ∧ w;32

myTemplates= myTemplates∪33

{w};
W = W - { I, w, T, ρ };34

else35

ρ = ρ(I,w) + ε;36

myTemplates= myTemplates∪37

{w};
w = uncommitted;38

39

if newNodes> 0 then40

nodes= nodes+newNodes;41

myShare= d nodes
n

e;42

43

SendNext(k, n, W);44

RecvNext(k, n, Wk+1, newNodek+1);45

myTemplates= myTemplates∪ Wk+1;46

1) Classification performance of pipelined no match-
tracking FS-FAM and pipelined FS-FAM.

2) Size of the trained, pipelined, no match-tracking FS-
FAM and pipelined FS-FAM.

3) Speedup of pipelined no match-tracking FS-FAM and
FS-FAM compared to their sequential counterparts.

To calculate the speedup, we simply measured the CPU time
for each run.

V. RESULTS

The Forrest Covertype results are depicted in Tables I
and II (parallel no match-tracking FS-FAM and parallel FS-
FAM average classification performance and average number
of templates created), and in Figures 3 and 4 (speed-up of
the parallel FS-FAM versions compared to their sequential
counterparts). As seen in [1], the no match-tracking version
of the algorithm can yield increased classification performance
at the expense of creating more templates in the system. The
speed-up curves for the parallel no match-tracking FS-FAM
and, to a lesser degree, the ones for the FS-FAM exhibit a
linear behavior with respect to the number of processors in
the pipeline. The speed-up curves though level off after we
reach a certain number of processors in the pipeline for lower
values of training patterns in our training collection; this is
due to the fact that for smaller number of training patterns the
number of templates created is not large enough to justify the
usage of processors beyond a certain number. It is also worth
emphasizing that the speed-ups achieved by the no match-
tracking parallel FS-FAM are more impressive, compared to
the corresponding speed-ups attained by the parallel FS-FAM.
This result is also expected, since the number of templates that
the no match-tracking parallel FS-FAM creates is significantly
larger than the corresponding number of templates that the
parallel FS-FAM creates (at times 10 times as many). In
essence, the benefits of the proposed parallelization strategy
are more pronounced for larger datasets and/or larger ART
architectures.

The speedup curve for the FS-FAM has a spike toward
the beginning of the curve. The spike occurs as the scaling
goes up relatively well for p = 2 and then drops down to a
more moderate scaling trend for p ≥ 4. This is most likely
related to the cluster design itself. As mentioned earlier, the
cluster consists of dual processor nodes, with each processor
running a copy of the program. In the case with p=2, this
means both copies of the program were communicating on the
same motherboard, which is much faster than the fast Ethernet
network. This suggests that the parallel FS-FAM architecture’s
performance will improve by utilizing faster networking tech-
nologies. For 32k inputs, the graph is superlinear for the 2
processor case. It is very likely that this is because of caching.
For the dimensionality of the templates (108, 4-bytes floats),
and the average number of templates generated in this case
(1263.09), split up between two processors is equal to about
256k bytes. This means that in this case, the templates fit much
better into the cache than they did in the single processor case.

Examples (1000s) Avg. Classification Avg. Templates
32 70.29 5148.83
64 74.62 11096.66

128 75.05 22831
256 77.28 49359.33
512 79.28 100720.75

TABLE I
PARALLEL NO MATCH-TRACKING FS-FAM AVERAGE CLASSIFICATION

PERFORMANCE AND AVERAGE NUMBER OF TEMPLATES CREATED WITH

THE FORREST COVERTYPE DATA

Examples (1000s) Avg. Classification Avg. Templates
32 69.84 1263.09
64 73.26 2147.36

128 73.30 3346.64
256 73.93 5178.27
512 75.13 8013.82

TABLE II
PARALLEL FS-FAM AVERAGE CLASSIFICATION PERFORMANCE AND

AVERAGE NUMBER OF TEMPLATES CREATED WITH FORREST COVERTYPE

DATA.

VI. SUMMARY/CONCLUSIONS

We have produced a pipelined implementation of the no
match-tracking FS-FAM and FS-FAM algorithms. This im-
plementation can be extended to other ART architectures that
have similar competitive structure as FS-FAM. It can also be
extended to other neural network architectures that are desig-
nated as ”competitive” neural networks, such as PNNs, RBFs,
as well as other ”competitive” classifiers. We have introduced
and proven a number of theorems (see [5]) that show that the
pipeline implementations of FS-FAM are efficient and correct.
These theorems were omitted due to lack of space, but the
interested reader can consult [5] for more details. We believe
that our objective of appropriately implementing FS-FAM on
the Beowulf cluster has been accomplished, as evidenced by
Figures 3 and 4.

ACKNOWLEDGMENT

José Castro would like to thank the Computer Research
Center of the Technological Institute of Costa Rica, the Insti-
tute of Simulation and Training (IST) and the Link Foundation
Fellowship program for partially funding this project. This
work was also supported in part by the National Science Foun-
dation under grants # CRCD:0203446 and # CCLI:0341601.

REFERENCES

[1] G. C. Anagnostopoulos, “Putting the utility of match tracking in fuzzy
ARTMAP to the test,” in Proceedings of the Seventh International
Conference on Knowledge–Based Intelligent Information Engineering,
vol. 2, University of Oxford, UK. KES’03, 2003, pp. 1–6.

[2] J. A. Blackard, “Comparison of neural networks and discriminant analysis
in predicting forest cover types,” Ph.D. dissertation, Department of Forest
Sciences, Colorado State University, 1999.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

512,000 patterns
256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Fig. 3. Speedup of the parallel NMT-FS-FAM algorithm for differing
numbers of processors and input patterns.

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

512,000 patterns
256,000 patterns
128,000 patterns
64,000 patterns
32,000 patterns

Fig. 4. Speedup of the parallel version of the FS-FAM algorithm for differing
numbers of processors and input patterns.

[3] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B.
Rosen, “Fuzzy ARTMAP: A neural network architecture for incremental
learning of analog multidimensional maps,” IEEE Transactions on Neural
Networks, vol. 3, no. 5, pp. 698–713, September 1992.

[4] G. A. Carpenter, S. Grossberg, and J. H. Reynolds, “Fuzzy ART: An
adaptive resonance algorithm for rapid, stable classification of analog pat-
terns,” in International Joint Conference on Neural Networks, IJCNN’91,
vol. II, IEEE/INNS Inc. Seattle, Washington: IEEE–INNS–ENNS, 1991,
pp. 411–416.

[5] J. Castro, J. Secretan, M. Georgiopoulos, R. Demara, G. Anagnostopou-
los, and A. Gonzalez, “Pipelining of fuzzy ARTMAP without matchtrack-
ing: Correctness, performance bound, and Beowulf evaluation,” Neural
Networks (under review).

[6] T. Kasuba, “Simplified Fuzzy ARTMAP,” AI Expert, pp. 18–25, Novem-
ber 1993.

[7] A. Malkani and C. A. Vassiliadis, “Parallel implementation of the Fuzzy
ARTMAP neural network paradigm on a hypercube,” Expert Systems,
vol. 12, no. 1, pp. 39–53, 1995.

[8] E. S. Manolakos, Parallel Architectures for Neural Networks: Paradigms
and Implementations. IEEE Computer Society Press and John Wiley &
Sons, 1998, ch. Parallel Implementation of ART1 Neural Networks on
Processor Ring Architectures.

[9] M. Taghi, V. Baghmisheh, and N. Pavesic, “A fast simplified Fuzzy
ARTMAP network,” Neural Processing Letters, vol. 17, pp. 273–316,
2003.

