
Gap-Based Estimation: Choosing the Smoothing Parameters for
Probabilistic and General Regression Neural Networks

M. Zhong, D. Goggeshall, E. Ghaneie, T. Pope, M. Rivera, M. Georgiopoulos,
G. Anagnostopoulos, M. Mollaghasemi, and S. Richie

Abstract—Probabilistic Neural Networks (PNN) and General
Regression Neural Networks (GRNN), both proposed by Specht,
are well known architectures for classification and regression
problems, respectively. They represent the knowledge by a
simple but interpretable model, which approximates the
optimal classifier / predictor in the sense of misclassification
rate / mean square error, assuming random inputs. Both models
require a preset parameter, called smoothing parameter, which
can be uniform or variable among dimensions, instances, and/or
classes. Previous research has shown that this parameter is, to
some extent, important to the accuracy of both PNN and GRNN.
Usually the smoothing parameter is chosen by cross-validation
or clustering. In this paper, however, we demonstrate the
difficulties of both these approaches, discuss the relationship
between this parameter and some of the data statistics, and
attempt to develop a fast approach to determine the optimal
value of this parameter. We explain why this parameter can
vary in a certain range, while maintaining the network’s
accuracy, as most experiments have shown, and even provide
the quantitative expression of this range. Finally, through
experimentation we show that our approach, referred to as a
gap-based estimation approach, is superior to the cross
validation approach.

Manuscript received December 9, 2005. This work was supported in part

by the National Science Foundation (NSF) under grants CRCD 0203446 and
CCLI 0341601.

M. Zhong is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816, USA (e-mail:
myzhong@ucf.edu).

D. Goggeshall was with the School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando, FL 32816, USA
(e-mail: david.coggeshall@gmail.com).

E. Ghaneie was with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816, USA (e-mail:
Ehsan.Ghaneie@gmail.com).

T. Pope was with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816, USA (e-mail:
ThomasPope@gmail.com).

M. Rivera was with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816, USA (e-mail:
mark.rivera@gmail.com).

M. Georgiopoulos is with the School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando, FL 32816, USA
(phone: (407) 823-5338, fax: (407) 823 5835; e-mail:
michaelg@mail.ucf.edu).

G. Anagnostopoulos is with the Department of Electrical and Computer
Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA
(e-mail: georgio@fit.edu).

M. Mollaghasemi is with the Department of Industrial Engineering and
Management Systems, University of Central Florida, Orlando, FL 32816,
USA (e-mail: mollagha@mail.ucf.edu).

S. Richie is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Orlando, FL 32816, USA (e-mail:
richie@mail.ucf.edu).

I. INTRODUCTION

LASSIFICATION and regression are two types of
common problems in science, technology, and even our

daily life. Assuming that the inputs/outputs have a fixed and
known relationship expressed by the conditional
probabilities, it can be proven that the optimal classifier is the
Bayes classifier and the optimal predictor is expressed by the
conditional expected value of the output given the inputs. In
practice, the probabilities representing the input/output
relationship are not known but are estimated from the given
training instances, by using legitimate approaches for their
estimation. One such probability estimation approach is the
Parzen window approach [1], extended by Cacoullos [2],
which estimates the class conditional probabilities as sum of
Gaussian functions centered at the training points with
appropriately chosen widths (variances), designated from
now on as smoothing parameters. Parzen’s approach works
well under some reasonable assumptions regarding the choice
of the smoothing parameters and when the training data
becomes very large the approximation becomes equal to the
actual class conditional probabilities. In the case though
where the training data sets are of finite size (as it is usually
the case in practice) the right choice of the smoothing
parameters is essential for the good performance of the
classifier. PNN, invented by Specht [3], approximates Bayes
classifier where the class conditional probabilities are
estimated by using the Parzen’s approach. GRNN, also
invented by Specht, is the PNN’s regression counterpart [4].

One of the major issues associated with the PNN/GRNN is
how to choose the smoothing parameter(s) involved in the
Gaussian functions utilized to estimate the conditional
probabilities. Specht suggested using cross validation to
estimate the smoothing parameters in [5] and [6]. This
approach, although simple, has two major difficulties:

1) Choosing the right candidate values for validation is not
as simple as one expects. Although the smoothing parameter
represents the standard deviation in the Gaussian kernels, we
show that in a one-dimensional example (i.e., each input has
only one attribute), the smoothing parameter should be
chosen less than the standard deviation of the observed
instances. In fact, the optimal smoothing parameter can be
much smaller than the standard deviation of the observed
instances. Consequently, the theoretical range of the optimal
smoothing parameter is infinitely wide if one chooses the
smoothing parameter based on the standard deviation only.

C

mailto:myzhong@ucf.edu
mailto:david.coggeshall@gmail.com
mailto:Ehsan.Ghaneie@gmail.com
mailto:ThomasPope@gmail.com
mailto:mark.rivera@gmail.com
mailto:michaelg@mail.ucf.edu
mailto:georgio@fit.edu
mailto:mollagha@mail.ucf.edu
mailto:richie@mail.ucf.edu

2) Cross-validation is very time-consuming. The time
complexity of cross-validation in PNN/GRNN is
O(D·PT·PV), where D is the dimensionality of the input, PT
is the number of instances in the training set, and PV is the
number of instances in the validation set. If N candidate
smoothing parameters are examined, the time complexity of
cross-validation is O(N·D·PT·PV).

Another way of dealing with this issue of smoothing
parameters is to cluster the training data and approximate the
class conditional probabilities by Gaussian functions centered
at the cluster points instead of the actual training points. The
clustering of the data gives the additional capability of
estimating the smoothing parameters of these Gaussian
functions as the within-cluster standard deviations.
Clustering procedures that have been used in the literature in
relation to the PNN neural network are: LVQ approach [7],
K-Means clustering [8], and mixture of Gaussians [9]. In this
paper, we apply an unsupervised variant of Gaussian
ARTMAP (GAM) [10] [11] to cluster the data. We call this
clustering variant Gaussian ART (GART). Although this
approach compresses the training data and may determine a
better value for the smoothing parameter than
cross-validation, it tends to deteriorate the estimate of the
probability density functions (PDFs), as shown in this paper.

Our approach attempts to determine a good estimate of the
optimal smoothing parameters with a time complexity of
O(D·PT). No cross-validation is required. This is a significant
computational advantage and it also an advantage in practical
situations, where the dataset given is small, and we do not
have the luxury of defining a sizable cross-validation set.

The organization of the paper is as follows: Chapter II
introduces PNN and GRNN, including their clustered
versions; Chapter III discusses the effect of the smoothing
parameter on PNN and GRNN; Chapter IV describes our
approach of choosing the smoothing parameter; Chapter V
compares our approach of choosing the smoothing parameter
to other commonly used approaches; Chapter VI provides a
summary of our work and conclusive remarks. For the rest of
the paper we assume that the reader is familiar with GAM.

II. PRELIMINARIES

A. Probability Neural Network (PNN)
The Bayes classifier is based on the following formula for

finding the class that a datum x belongs.

 (|) ()
(|)

()
j j

j

f c P c
P c

f
=

x
x

x
 (1)

The above probabilities for every class j in our pattern
classification task is calculated, and the datum x is classified
as belonging to the class j that maximizes this probability. In
order to calculate the above probabilities one needs to
estimate the class conditional probabilities f(x|cj) and the
a-priori probabilities P(cj) for every class j (the calculation of
f(x) is not needed because it is a common factor in all of these
probabilities and can be cancelled out). The a-priori

probabilities P(cj) are calculated from the given training data.
The class conditional probabilities f(x|cj) can also be
calculated from the training data by using the approximation
suggested in [1]. In particular, the following approximation is
utilized to estimate these class conditional probabilities in [3]:

/ 2 2

1

() (1(|) exp
(2) 2

jPT j T j
r

j D D
rj

f c
PTπ σ σ=

⎡ ⎤− −
= −⎢ ⎥

⎣ ⎦
∑ x X x Xx)r (2)

where D is the dimensionality (number of attributes) of the
input patterns, PTj represents the number of training patterns
belonging to class j, Xr

j denotes the rth such training pattern, x
is the input pattern to be classified, and σ is the smoothing
parameter that we talked about earlier. It is pointed out in [2],
that this estimation will approach asymptotically the real PDF
if both the following equations are true:
 (3) lim 0

jPT
σ

→∞
=

 (4) lim
j

jPT
PT σ

→∞
= ∞

Equation (2) is the basis of the PNN classifier. The
smoothing parameter σ should be selected properly, as
further discussed in Chapter III. In general, the smoothing
parameters may depend on the dimension and the class of the
data. For simplicity, we assume independence among
attributes, so that the smoothing parameter does not become a
matrix for each class. The above formula for the estimation of
the class conditional probabilities now becomes.

 ()2

2
/ 2 1 1

1

1(|) exp
2(2)

j jPT D
i ir

j D
D r i ij

ij j
i

x X
f c

PT σπ σ = =

=

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

∑ ∑
∏

x
(5)

where σ ij is the smoothing parameter across dimension i for
the training points belonging to class j.

B. General Regression Neural Network (GRNN)
For regression problems, it is not difficult to prove that the

solution minimizing the expected mean square error is the
conditional expected value given below:

 (,)
(|)

(,)

y f y dy
E y

f y dy

∞

−∞
∞

−∞

= ∫
∫

x
x

x
 (6)

In practice, the joint PDF f (x,y) is estimated by:

() ()

()()

22

2 2
1 10

1 / 2

0

exp
2 2

(,)
2

PT D
i irr

r i i

D
D

i
i

x Xy y

f y
PT

σ σ

π σ

= =

+

=

⎡ ⎤−−⎢ ⎥− −
⎢ ⎥
⎣ ⎦=

∑ ∑

∏
x

(7)

Equations (6) and (7) indicate that E(y|x) can be estimated by:

()

()

2

2
1 1

2

2
1 1

exp
2

(|)

exp
2

PT D
i ir

r
r i i

PT D
i ir

r i i

x X
y

E y
x X

σ

σ

= =

= =

⎡ ⎤−
⎢ ⎥−
⎢
⎣=

⎥
⎦

⎡ ⎤−
⎢ ⎥−
⎢ ⎥
⎣ ⎦

∑ ∑

∑ ∑
x

(8)

where σ i is the smoothing parameter across dimension i.

C. Clustered PNN and GRNN
As shown above, both PNN and GRNN simply memorize

all the training instances to perform classification or
regression. To compress the training instances, one can
cluster them and represent them by the clusters centers. Thus,
each cluster center is essentially a training instance with a
certain multiplicity. When applied to PNN/GRNN, we should
expect the smoothing parameter to depend on the clusters. It
is not difficult to modify (5) for PNN to the following:

()2

2
1 1

1

/ 2

1

exp
2

(|)
(2)

j

j

j
j irN D i

r
D j

jr i ir
ir

i
j N

D
jr

r

x XN

f c
N

σσ

π

= =

=

=

⎡ ⎤−⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

=

∑ ∑
∏

∑
x

(9)

where j
rN is the multiplicity of, or the number of original

training instances covered by, the rth cluster in class j, while
j

irσ and j
irX are the smoothing parameter and the mean value

of the ith dimension for the rth cluster in class j, respectively.
Similarly, Clustered GRNN can be described by

()

()

2

2
1 1

1
2

2
1 1

1

exp
2

(|)

exp
2

irPT D i
r r

D
r i ir

ir
i

irPT D i
r

D
r i ir

ir
i

x Xy N

E y
x XN

σσ

σσ

= =

=

= =

=

⎡ ⎤−⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

=
⎡ ⎤−⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎣ ⎦

∑ ∑
∏

∑ ∑
∏

x

(10)

III. ANALYSIS OF SMOOTHING PARAMETER IN
ONE-DIMENSIONAL CASES

A. Non-Clustered Cases
For simplicity, let us first consider only one dimension and

one class without clustering. In this case, (5) reduces to

 ()2

1/ 2 2
1

1() exp
(2) 2

PT
r

r

x X
f x

PTπ σ σ=

⎡ ⎤−
= −⎢

⎢ ⎥⎣ ⎦
∑ ⎥

(11)

It is not difficult to prove that:
 () () 2ˆ σ+= XVARXVAR (12)
where the left hand side represents the expected value of the
variance of the point x using the estimated PDF given in (11),
and VAR(X) stands for the expected value of the variance of
the point x using the true PDF. In order to produce an accurate
estimate of the PDF, a necessary condition is:
)(XSTD<<σ (13)
where STD(X) is the unbiased standard deviation of X. This
conclusion agrees with (3), since the standard deviation
usually approaches a positive constant number when the
number of instances goes to infinity.

Note that setting σi to a large value can smooth out the ith
attribute, making the corresponding marginal PDF constant
(almost zero) in the whole space. We do not, however,
consider this method beneficial, since it alters the PDF too
much and it tends to scale the final PDF to almost zero for all

classes if an attribute is not relevant to any class. Thus, when
an attribute is completely noise, we still estimate the PDF as
distributed in the range shown in the training set, which is
large enough to smooth out this attribute given that the
training set is representative.

On the other hand, σi cannot be too small, or otherwise the
PDF becomes spiky (consists of a number of impulse
functions) at the training points and is almost zero at other
places, which causes the over training problem.

To understand the effect of the smoothing parameter better,
consider an example where the training set is {-10, -9, …,
10}, and is taken from a uniform distribution in the range
[-10.5, 10.5]. (In practice, even if the points are uniformly
distributed, the observed instances are not likely to be equally
spaced; here we simply use this ideal case to demonstrate our
idea and we will discuss the practical case later.) Fig. 1 shows
the resulting estimated PDF in three typical cases. It verifies
our previous statements. It also shows that the standard
deviation is usually too large to be used as the smoothing
parameter. In fact, this problem becomes even worse as the
distribution is fixed and the number of instances is increased.

(a) Reasonable Smoothing Parameter (σ=2)

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

(b) Small Smoothing Parameter (σ=0.25)
0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

−20 −15
0

−10 −5 0 5 10 15 20

(c) Reasonable Smoothing Parameter (σ=Standard Deviation=6.2)

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.05

0.02

0.03

0.04

Dash-dot line: desired (true) PDF
Gray solid line: Gaussian function centered at a training point
Black solid line: estimated PDF

Fig. 1. Estimates of PDF with various σ value (no clustering)

B. Clustered Case
Suppose the previous training set with 21 instances is

clustered, with each cluster containing the same number of
instances. Fig. 2 shows the effect of the cluster size and the
smoothing parameter on the PDF estimation.

As shown above, neither the cluster standard deviation nor

reasonable smoothing parameter in the previous example
yields an accurate PDF for both the 3-clustered and the
7-clustered case. Since clustering represents multiple
instances by their mean value, and as a result loses
considerable information, it is difficult to determine a good
smoothing parameter quickly.

IV. OUR APPROACH: GAP-BASED ESTIMATION

A. Result from a Simple Model
Fig. 1 indicates that the width of Gaussian kernels, which is

directly controlled by the smoothing parameter, should be
related to the gap between two nearest points. Our proposed
approach, the Gap-based estimation, is originated from the
following simple idea: when the training points are equally
spaced in (-∞, 0], the estimated PDF should:

1) Be almost constant on the left of the origin, and
2) Drop to almost zero at the points on the right of the

origin, although we allow a transition interval where the
value drops from the constant value to the zero value.

(a) 3 clusters, σ=2

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) 3 clusters, σ=cluster standard deviation=2.16

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) 7 clusters, σ=2

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

(d) 7 clusters, σ=cluster standard deviation=1

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

Dash-dot line: desired (true) PDF
Gray solid line: Gaussian function centered at a training point

(for better visualization, the Gaussian functions in each
cluster are summed up instead of being overlapped)

Black solid line: estimated PDF

Fig. 2. Estimates of PDF with various σ value (no clustering)

Numerical solution of the above two constraints indicates
that 0.69d<σ<2.18d, where d is the distance between two
neighbors in the above model. In practice, the training points
are seldom equally spaced even if uniform distributed, and
thus we double the bounds as 1.38d<σ<4.36d. We usually
choose σ=4d for better generalization.

B. Sampling in Multi-Dimensional Space
For multi-dimensional cases, we should standardize each

dimension first so that each dimension has unity standard
deviation before computing the gap, which prevents bias
towards large-scale dimensions. In these cases,
 () (ii XSTDd 5.0,4min=σ) (14)

where d is the average gap (roughly the average value of the
minimum distance) between two input points after
standardization and STD(Xi) is the standard deviation of the ith
dimension before standardization. Note that 4d might be
larger than 1 when the dimensions are not independent, which
is a challenge to us since the assumption of (5) is violated. In
this case, we replace 4d to 0.5 to retain the validity of (13).

Computing d directly has a high computational complexity
of O(PT2). Therefore, we estimate d by sampling the points.
We randomly choose M points, where M << PT when PT is
large, and for each one (X) of these points we calculate the
largest value of the minimum 2D distances to another small
sample of N points, where N << PT when PT is large.
However, two issues are raised due to sampling.

First, if the points are distributed in clusters, it is possible
that all the N points are in a different cluster than the X, which
causes d to be estimated as the distance between clusters,
despite the fact that we desire to obtain the local distance
among the points in the same cluster. Nevertheless, we
assume each cluster has the same number of points, which is
at least 4C where C is the number of clusters. Hence,
 (15) 24CPT ≥
In this case, if we set N to 4 , we can prove the
probability that none of the N sampled points are in the same
cluster as X does not exceed e

PT

-8=3.35×10-4. Even if some of
the distances may be overestimated, they are not likely to
affect the final result after the sampling is repeated M times.

Secondly, the observed average gap d
__

 in the sampled set is
not approximately the same as, but instead proportional to,

the desired average gap d in the full data set. The constant of
proportionality that connects d

__

 and d depends on the
parameters PT, N, and v, where v is the number of degrees of
freedom. In particular, we have shown that the actual
relationship between d

__

 and d can be expressed by the
following equation.

 d
N

PTd
v
1

⎟
⎠
⎞

⎜
⎝
⎛≈ (16)

Equation (16) can be explained below: when N =PT, d
__

 = d;
when the number of samples per degree of freedom is halved
but Nj is still so large that the samples are representative, N
=2vPT and d

__

 ≈ 2d. This also implies that under the same
distribution with enough points, (PT)1/vd is a constant, which
means (3) and (4) are satisfied if we apply (14) to set the
smoothing parameter and v>1. When (14) is applied and v is
1, (4) is not satisfied, but (4) is not a necessary condition for
the estimated PDF to be asymptotically accurate. Our
experiments show that our approach works very well on a
one-dimensional database.

As we have mentioned above, v means the number of
degrees of freedom. For example, when the data points of the
dataset are residing on the unit circle in a 2-D space, their
attributes x and y can be expressed in terms of the angle of the
(x, y) point with respect to the horizontal axis. As a result, in
this case, although the data points are two dimensional, they
have only one degree of freedom.

Equation (16) is a single equation with two unknowns (that
is, d that we want to compute, and v that is unknown). Ideally,
two calculations of d

__

 with different values of sample sizes N
would be sufficient to produce the needed value d and the
unknown degrees of freedom v. Due to the randomness of the
sampling procedure that leads to the computation of d,
however, two calculations of d

__

 are not enough. For the
databases we have experimented with, it turned out that five
calculations of d

__

 are sufficient for the calculation of d. To
calculate d from the five equations of the form depicted in
(16), we utilized a least-square-error procedure.

C. Application to Classification Problems
So far we have discussed the one-class case. For

classification problems, there are two ways to set the
smoothing parameter:

1) For each class, compute σij based on (14), only
accessing the patterns in the corresponding class;

2) Apply (14) to all patterns regardless of their classes and
use the computed σi for all classes.

Although the first method appears more reasonable, we
argue that it is less beneficial because each class occupies
only a subset of the training points and thus for each class, the
estimate of d becomes less accurate after sampling (whose
confidence relies on the data size), especially when (15) is
violated. Our preliminary experiments verify our argument,
although the corresponding results are not listed in this paper.

V. EXPERIMENTS

A. Experimental Procedures
We compare the following approaches for choosing the

smoothing parameters for both PNN and GRNN:
Standard Deviation: set the sigma parameters as the

standard deviation for each dimension without
discriminating the class labels (which is much better
than using the in-class standard deviations in our
experiments, although the data are not shown here).

Cross-Validation: the training set is divided equally to a
learning set and a validation set. We evaluate
σi=kSTD(Xi) for each attribute Xi, where k is chosen
from {1/2, 1/4, 1/8, 1/16}, and STD(Xi) is computed in
the previous step. The best k value is selected according
to the performance on the validation set. The time for
finding the smoothing parameters is defined as the total
time for all the runs of PNN/GRNN.

Clustering: run GART to cluster the training set. For PNN,
we run GART for each class separately (which is
remarkably faster than running GAM on the whole
database). The initial standard deviation γ is set to
STD(Xi) and the baseline vigilance ρ is set to 0.5 (in fact,
we tested higher values of ρ, but they only spent more
time without significant improvement in accuracy). It is
known that GAM/GART is not sensitive to γ , as long as
it is close to the final cluster standard deviation. The
parameter ρ controls the size of the clusters: ρ = 0
means arbitrarily large clusters are allowed, resulting in
only one cluster for GRNN since all regression
instances are treated as in the same class; ρ = 1 means
only zero-sized clusters can be created, reducing to the
non-cluster case except when repeated training
instances are present. The time for finding the sigma
parameters is defined as the time elapsed in GART.

Gap-Based Estimation: apply our approach.
All algorithms, including PNN, GRNN, and GART, are

coded efficiently in the same computer language (C/C++) and
with the same interface (MATLAB MEX DLL). The
recorded time does not include what is spent on file I/O or
displaying to the screen. All experiments are carried out in the
same and stable software environment.

B. Databases
The databases used in our experiments are listed in Table I.

To demonstrate that the standard deviation is not directly
related to the optimal sigma value, we created an artificial
database Grass and Trees that contains only one attribute.
The first class is uniformly distributed in [0, 1]. The second
class has five clusters, centered at 0, 0.25, 0.5, 0.75, and 1,
respectively. Each cluster has also uniform distribution with
range 0.05. Both classes occupy 50% of the instances. It can
be shown that the Bayes Classifier attains 90% accuracy on
this database. Fig. 3 shows that it is difficult to guess the
optimal sigma value using the standard deviation, while our

(a) True PDF

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

(b) Gap-based Estimate

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

(c) Estimated PDF with σ=STD(X)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.4

0.5

0.6

0.7

0.8

0.9

Black line: class 1; Gray line: class 2

Figure 3: Estimates of the PDFs for Database “Grass and Trees”

approach produces very accurate estimates. Note that the
optimal smoothing parameter can be arbitrarily small when
we increase the number of clusters in class 2 while
maintaining, at the same time, its overall standard deviation.

The rest of the databases are commonly used benchmark
databases. We selected the ones with sufficient size in order
to make our results statistically significant. We downloaded
all the other classification databases from [12], Friedman
from [13], and Kinematics, Bank, and Computer from [14].
Following is the brief description of each database:

The Iris database represents the classification task of iris
plants. We introduced noise to generate enough points, and
removed the two attributes with least correlation to the class.

The Segmentation database is created from 7 outdoor
images of different scenes. 3-by-3 sub-images are manually
segmented from the 7 images and are classified with the
image features. The third feature in the original database turns
out to be constant and thus is removed in our experiments.
This database contains only 210 training points, which is a
representative test to our sampling methodology.

The Page Blocks database consists of the attributes of page
layouts in a document with various block types. The major
class “text” occupies approximately 90% of the instances.

The Abalone database is used for predicting the age of
abalones. We removed the categorical attribute in the original
database because it is not used on either PNN or GRNN. For
PNN, we also grouped the outputs into three classes: 8 and
lower, 9-10, 11 and greater, as other researchers have done in

the past. The resulting classes, however, are still highly
overlapped in the attribute space and current algorithms can
attain only approximately 60% accuracy.

The Satellite database provides the multi-spectral values
extracted from satellite images corresponding to 6 types of
soil (previously 7 types, one of which used to be “mixed soil”
and was removed due to doubts about its validity).

The Pen Digits database stores the information of 250
digits. The attributes are obtained from the coordinates of the
points after spatial sampling on the captured trajectories. 30
writers contribute to the training set and 14 to the test set.

The Optical Digits database is also concerned with the
recognition of handwritten digits, but without temporal
information. The images are divided into sub-images and the
number of pixels in each sub-image serves as an attribute.
The data from 30 writers are used for training and those from
the other 13 writers for testing. After two constant attributes
are removed from the original database, there are still as many
as 62 attributes.

The Friedman database is artificial, first used in [15]. The
output is defined as y=10sin(πx1x2)+20(x3-0.5)2+10x4+5x5+ε,
where x1, x2, x3, x4, and x5 are independent attributes
uniformly distributed in [0,1], while ε is Gaussian noise with
zero mean and unity variance.

The Kinematics database and the Pumadyn database are
chosen from two families generated from the simulation of
two different robot arms. They are concerned with the
prediction of the end-effector from a target and the angular

TABLE I
STATISTICS OF DATABASES

PNN
Databases

#Training
Points

#Test
Points

#Numerical
Attributes #Classes %Minor

Classes a

Grass and Trees 2000 4000 1 2 0.5
Modified Iris 500 4800 2 2 0.49812
Segmentation 210 2100 18 7 0.85714
Page Blocks 2000 3473 10 5 0.10193

Abalone 2088 2089 7 3 0.65677
Satellite 4435 2000 36 6 0.7695

Pen Digits 7494 3498 16 10 0.89623
Optical Digits 3823 1797 62 10 0.89872

GRNN
Databases

#Training
Points

#Test
Points

#Numerical
Attributes

Output
Range b

Output
Variance c

Friedman 400 1000 5 27.116 27.094
Kinematics 4096 4096 8 1.4004 0.06853
Pumadyn 4096 4096 8 24.091 31.41

Bank 4096 4096 8 0.74548 0.023478
Abalone 2088 2089 7 26 10.544

Computer 4096 4096 12 99 348.85
aThe percentage of the minor classes is 1 minus the percentage of the

major training class in the test set. This percentage represents the
misclassification rate for the blind classifier, which always predicts the
class as the major training class without considering the attributes).

bThe output range reflects the output in the test set
cThe output variance is computed as mean((y-m)2), where y is the

outputs in the test set and m is the mean value of the outputs in the training
set. This variance represents the mean-square-error of the blind predictor
(that is, the predictor that always predicts the output as the mean training
output without considering the attributes).

acceleration, respectively. For both databases, we selected the
non-linear version with 8 attributes and medium noise.

The Bank database is generated from a simulator that
simulates bank service. The task is to predict the fraction of
customers who leave the bank because all queues are full.

The Computer database consists of computer activity
measures, such as the reading/writing rates. The task is to
predict the portion of time that the CPUs run in user mode
based on the various data transfer rates.

C. Experimental Results
All the results are shown in Table II. For PNN, although

the computation of the standard deviation is usually too fast to
be timed, it does not appear to be a good value for the
smoothing parameters due to its poor accuracy (excluding the
blind classifier), especially when the data are distributed in
disconnected clusters (see the Grass and Trees database).

The cross-validation approach works well in databases
where the data corresponding to different classes are small in
number and belong to a single connected cluster.

The Clustering approach could work better than
cross-validation in defining reasonable smoothing parameters
when class data belong to disconnected clusters, but its
accuracy is suspect, possibly due to the weak relationship
between the optimal smoothing parameter and the cluster
standard deviation, as illustrated in Fig. 2. Note that the
accuracy is surprisingly low for Optical Digits. We examined
the results and found that GART output exactly one cluster
per training point, due to the high dimensionality, which
means the distance among training points tends to be large.
The cluster standard deviation is usually too small, because
the same point is repeatedly chosen to construct a template.

Our approach always yields an accuracy that is equal or
close to the best one. Note that for the Grass and Trees
database, its accuracy is almost the theoretical optimal one.
Moreover, the time spent to produce the smoothing
parameters with our approach is only greater than of the
standard deviation, and it is scalable to large databases. The
experiment also demonstrates that our approach is robust,
whether or not the training set is noisy (as Grass and Trees,
Modified Iris and the Friedman), small (as Segmentation), or
high dimensional (which means possible dependency among
attributes; see Optical Digits).

TABLE II
EXPERIMENTAL RESULTS

Misclassification Rate (%) Time (seconds)
PNN

Databases Blind
Classifier

Standard
Deviation

Cross
Validation Clustering Gap-based

Estimate
Standard
Deviation

Cross
Validation Clustering Gap-based

Estimate
Grass and Trees 50.00 38.63 15.60 34.975 10.60 0 0.578 0.094 0.047

Modified Iris 49.81 6.19 5.38 5.1458 5.63 0 0.047 0.063 0.015
Segmentation 85.71 14.38 10.52 20.238 10.81 0 0.031 0.031 0
Page Blocks 10.19 5.79 4.06 36.165 4.78 0 1.156 32.203 0.157

Abalone 65.68 37.10 35.47 40.211 35.38 0 1.015 2.922 0.125
Satellite 76.95 13.00 9.55 13.25 9.70 0.031 16.063 48.328 2.141

Pen Digits 89.62 8.38 2.57 5.8033 3.23 0.032 25.219 22.891 1.938
Optical Digits 89.87 3.28 3.78 78.353 3.62 0.063 16.954 26.5 1.360

(a) PNN Experiments

Mean Square Error Time (seconds)
GRNN

Databases Blind
Predicator

Standard
Deviation

Cross
Validation Clustering Gap-based

Estimate
Standard
Deviation

Cross
Validation Clustering Gap-based

Estimate
Friedman 27.094 9.2244 4.3103 4.9986 4.2921 0 0.047 1.172 0.016

Kinematics 0.06853 0.031563 0.014234 0.019119 0.014304 0.015 5.343 76.187 0.547
Pumadyn 31.41 18.516 14.788 15.068 14.808 0 5.344 83.797 0.531

Bank 0.023478 0.0061562 0.0025063 0.002003 0.0025669 0 5.297 147.33 0.531
Abalone 10.544 6.22 5.1726 5.024 5.5133 0 1.25 18.782 0.156

Computer 348.85 36.455 15.653 333.28 15.764 0.016 7.328 176.67 0.703
(b) GRNN Experiments

In the experiments with GRNN, we have exactly the same
observations: using the standard deviation is fastest but most
inaccurate; cross-validation has a reasonable accuracy while
its time is non-scalable; clustering in unstable in accuracy and
expensive in time; our approach is the second fastest one with
almost best accuracy.

VI. CONCLUSION
In this paper we presented the Gap-based approach of

estimating the smoothing parameters for both PNN and
GRNN. Our approach was first analyzed for an ideal problem
and then applied to more general problems. We utilized
sampling techniques to reduce the computational complexity
of finding the smoothing parameters to a linear function of the
training data size. Our experiments have showed that our
proposed approach, the gap-based estimate of the smoothing
parameter, is superior to other commonly used approaches,
such as cross-validation. It was demonstrated, through these
experiments, that the gap-based estimate of the smoothing
parameters produced a PNN/GRNN network with good
accuracy. The amount of time required to produce the

smoothing parameter estimates was of low computationally
complexity, and scalable to larger problems.

APPENDIX – PSEUDO CODE OF GAP-BASED ESTIMATION

Parameters:
Kmax: Maximum Repeat Times (natural number). Typical Kmax=4
FM, FN: Sampling Factor (small positive number). Typical FM=8, FN=4

Main Procedure:
Compute STD(Xi) for i=1,2,…,D

⎣ ⎦()
⎣ ⎦()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎥

⎢⎣
⎢=

=

=

N
PTKK

PTFPTN

PTFPTM

N

M

2max log ,min

 ,min

 ,min

If K<1 (which means PT is small) then
d=AverageGap(M,PT)

Else

d
__

k = AverageGap(M,2kN) for k=0, 1, 2, … , K

Solve the equations kk dd
N

PT
v

loglog
2

log1
=+⎟

⎠
⎞

⎜
⎝
⎛

 for k=0, 1, 2, … , K, treating

v
1 and as unknowns. dlog

End If
σi=min(4d,0.5)STD(Xi) for i=1,2,…,D

Subroutine AverageGap (M, N)
For Mm ,...,2,1=

Randomly choose a point X.
For Nn ,...,2,1=

Randomly choose a point Xn different from X.

()∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

D

i i

iin
mn XSTD

XX
d

1

2
2

End For
Find the smallest 2D elements from 22

2
2

1 ,..., mNmm ddd

Find the largest one (denoted by) in the above elements 2
md

End For

Return []2
mm

dmean

Note: the smallest 2D elements for each m can be cached so that when
we double N next time, only N more patterns have to be chosen, which
halves the computational complexity.

The least-square-error solution to the linear equations can

be explicitly given as:
 () BAAA TT

d
v 1

log
1 −

=⎥
⎦

⎤
⎢
⎣

⎡
(17)

 ()

() ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

KK d

d

NPT

NPT

log

log
,

1log

1log 00

MMM BA

(18)

In practice, computing (ATA)-1ATB directly is not efficient in both

time and space. A recursive algorithm can be applied, which is

shown below.

()
() () ⎥

⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
=

−

1

0
0

1

00
1

0
0 log

log
,,

1log
1log

d
d

NPT
NPT TT PQPPPP

For k = 2, … , K

()[]1log kNPT=a

()() ()aPaPaPaPP 11 −
+−= TT

k
T dlogaQQ +=

End For

PQ=⎥
⎦

⎤
⎢
⎣

⎡
d

v
log
1

Note: the update of P is very simple because ()TPa is only 2-by-1,
()1+TaPa is a scalar, and ()aP is 1-by-2.

ACKNOWLEDGMENT
This work was supported in part by a National Science

Foundation (NSF) grant CRCD: 0203446. Georgios
Anagnostopoulos and Michael Georgiopoulos also
acknowledge the partial support from the NSF grant CCLI
0341601.

REFERENCES
[1] E. Parzen, “On estimation of probability density function and mode,”

Annals of Mathematical Statistics, vol. 33, pp. 1065-1073, 1962.
[2] T. Cacoullos, “Estimation of a multi-variate density,” Annals of the

Institute of mathematical Statistics (Tokyo), Vol. 18, No. 2, pp.
179-189, 1966.

[3] D. F. Specht, “Probabilistic Neural Networks and the Polynomial
Adaline as Complementary Techniques for Classification,” IEEE
Trans. Neural Networks, vol.1, no.1, pp.111-121, 1990.

[4] D. F. Specht, “A General Regression Neural Network,” IEEE Trans.
Neural Networks, vol.2, pp.568-576, 1991.

[5] D. F. Specht, “Enhancements to Probabilistic Neural Networks,” in
1992 Proc. IJCNN, vol. 1, pp. 761-768.

[6] D. F. Specht, “Experience with Adaptive Probabilistic Neural Networks
and Adaptive General Regression Neural Networks,” in 1994 Proc.
IEEE World Congress on Computational Intelligence, vol. 2, pp.
1203-1208.

[7] P. Burrascano, “Learning vector quantization for the Probabilistic
Neural Network,” IEEE Tran. Neural Networks, vol. 2, pp. 458-461,
1991.

[8] H. G. C. Traven, “A neural network approach to statistical pattern
classification by ‘semi-parametric’ estimation of probability density
functions,” IEEE Trans. Neural Networks, vol. 2, pp. 366-377, 1991.

[9] M-L. Tseng, “Integrating Neural Networks with Influence Diagrams for
Multiple Sensor Diagnostic Systems,” Ph.D. Dissertation, University of
California at Berkley, 1991.

[10] J. R. Williamson, “Gaussian ARTMAP: A Neural Network for Fast
Incremental Learning of Noisy Multi-Dimensional Maps,” Neural
Networks, vol. 9, no. 5, pp. 881-897, 1996.

[11] J. R. Williamson, “A constructive, incremental-learning network for
mixture modeling and classification,” Neural Computation, vol. 9, pp.
1517-1543, 1997.

[12] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. (1998). UCI
Repository of machine learning databases, Department of Information
and Computer Science, University of California, Irvine, CA. Available:
http://www.ics.uci.edu/~mlearn/MLRepository.html

[13] KEEL (Knowledge Extraction based on Evolutionary Learning)
Datasets, Available: http://sci2s.ugr.es/keel-dataset/

[14] Delve (Data for Evaluating Learning in, Valid Experiments), University
of Toronto, Toronto, Ontario, Canada. Available:
http://www.cs.toronto.edu/~delve/

[15] J. Friedman, “Multivariate adaptive regression splines (with
discussion),” Ann. Stat., vol. 19, pp. 1–141, 1991.

http://www.ics.uci.edu/%7Emlearn/MLRepository.html
http://sci2s.ugr.es/keel-dataset/
http://www.cs.toronto.edu/%7Edelve/

	I. INTRODUCTION
	II. Preliminaries
	A. Probability Neural Network (PNN)
	B. General Regression Neural Network (GRNN)
	C. Clustered PNN and GRNN
	III. Analysis of Smoothing Parameter In One-dimensional Cases
	A. Non-Clustered Cases
	B. Clustered Case

	IV. Our Approach: Gap-Based Estimation
	A. Result from a Simple Model
	B. Sampling in Multi-Dimensional Space
	C. Application to Classification Problems

	V. Experiments
	A. Experimental Procedures
	B. Databases
	C. Experimental Results

	VI. Conclusion

