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Abstract—Probabilistic Neural Networks (PNN) and General 
Regression Neural Networks (GRNN), both proposed by Specht, 
are well known architectures for classification and regression 
problems, respectively. They represent the knowledge by a 
simple but interpretable model, which approximates the 
optimal classifier / predictor in the sense of misclassification 
rate / mean square error, assuming random inputs. Both models 
require a preset parameter, called smoothing parameter, which 
can be uniform or variable among dimensions, instances, and/or 
classes. Previous research has shown that this parameter is, to 
some extent, important to the accuracy of both PNN and GRNN. 
Usually the smoothing parameter is chosen by cross-validation 
or clustering. In this paper, however, we demonstrate the 
difficulties of both these approaches, discuss the relationship 
between this parameter and some of the data statistics, and 
attempt to develop a fast approach to determine the optimal 
value of this parameter. We explain why this parameter can 
vary in a certain range, while maintaining the network’s 
accuracy, as most experiments have shown, and even provide 
the quantitative expression of this range. Finally, through 
experimentation we show that our approach, referred to as a 
gap-based estimation approach, is superior to the cross 
validation approach. 
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I. INTRODUCTION 

LASSIFICATION and regression are two types of 
common problems in science, technology, and even our 

daily life. Assuming that the inputs/outputs have a fixed and 
known relationship expressed by the conditional 
probabilities, it can be proven that the optimal classifier is the 
Bayes classifier and the optimal predictor is expressed by the 
conditional expected value of the output given the inputs. In 
practice, the probabilities representing the input/output 
relationship are not known but are estimated from the given 
training instances, by using legitimate approaches for their 
estimation. One such probability estimation approach is the 
Parzen window approach [1], extended by Cacoullos [2], 
which estimates the class conditional probabilities as sum of 
Gaussian functions centered at the training points with 
appropriately chosen widths (variances), designated from 
now on as smoothing parameters. Parzen’s approach works 
well under some reasonable assumptions regarding the choice 
of the smoothing parameters and when the training data 
becomes very large the approximation becomes equal to the 
actual class conditional probabilities. In the case though 
where the training data sets are of finite size (as it is usually 
the case in practice) the right choice of the smoothing 
parameters is essential for the good performance of the 
classifier. PNN, invented by Specht [3], approximates Bayes 
classifier where the class conditional probabilities are 
estimated by using the Parzen’s approach. GRNN, also 
invented by Specht, is the PNN’s regression counterpart [4]. 

One of the major issues associated with the PNN/GRNN is 
how to choose the smoothing parameter(s) involved in the 
Gaussian functions utilized to estimate the conditional 
probabilities. Specht suggested using cross validation to 
estimate the smoothing parameters in [5] and [6]. This 
approach, although simple, has two major difficulties: 

1) Choosing the right candidate values for validation is not 
as simple as one expects. Although the smoothing parameter 
represents the standard deviation in the Gaussian kernels, we 
show that in a one-dimensional example (i.e., each input has 
only one attribute), the smoothing parameter should be 
chosen less than the standard deviation of the observed 
instances. In fact, the optimal smoothing parameter can be 
much smaller than the standard deviation of the observed 
instances.  Consequently, the theoretical range of the optimal 
smoothing parameter is infinitely wide if one chooses the 
smoothing parameter based on the standard deviation only.  
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2) Cross-validation is very time-consuming. The time 
complexity of cross-validation in PNN/GRNN is 
O(D·PT·PV), where D is the dimensionality of the input, PT 
is the number of instances in the training set, and PV is the 
number of instances in the validation set. If N candidate 
smoothing parameters are examined, the time complexity of 
cross-validation is O(N·D·PT·PV). 

Another way of dealing with this issue of smoothing 
parameters is to cluster the training data and approximate the 
class conditional probabilities by Gaussian functions centered 
at the cluster points instead of the actual training points. The 
clustering of the data gives the additional capability of 
estimating the smoothing parameters of these Gaussian 
functions as the within-cluster standard deviations. 
Clustering procedures that have been used in the literature in 
relation to the PNN neural network are: LVQ approach [7], 
K-Means clustering [8], and mixture of Gaussians [9]. In this 
paper, we apply an unsupervised variant of Gaussian 
ARTMAP (GAM) [10] [11] to cluster the data. We call this 
clustering variant Gaussian ART (GART). Although this 
approach compresses the training data and may determine a 
better value for the smoothing parameter than 
cross-validation, it tends to deteriorate the estimate of the 
probability density functions (PDFs), as shown in this paper. 

Our approach attempts to determine a good estimate of the 
optimal smoothing parameters with a time complexity of 
O(D·PT). No cross-validation is required. This is a significant 
computational advantage and it also an advantage in practical 
situations, where the dataset given is small, and we do not 
have the luxury of defining a sizable cross-validation set. 

The organization of the paper is as follows: Chapter II 
introduces PNN and GRNN, including their clustered 
versions; Chapter III discusses the effect of the smoothing 
parameter on PNN and GRNN; Chapter IV describes our 
approach of choosing the smoothing parameter; Chapter V 
compares our approach of choosing the smoothing parameter 
to other commonly used approaches; Chapter VI provides a 
summary of our work and conclusive remarks. For the rest of 
the paper we assume that the reader is familiar with GAM. 

II. PRELIMINARIES 

A. Probability Neural Network (PNN) 
The Bayes classifier is based on the following formula for 

finding the class that a datum x belongs. 
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The above probabilities for every class j in our pattern 
classification task is calculated, and the datum x is classified 
as belonging to the class j that maximizes this probability. In 
order to calculate the above probabilities one needs to 
estimate the class conditional probabilities f(x|cj) and the 
a-priori probabilities P(cj) for every class j  (the calculation of 
f(x) is not needed because it is a common factor in all of these 
probabilities and can be cancelled out). The a-priori 

probabilities P(cj) are calculated from the given training data. 
The class conditional probabilities f(x|cj) can also be 
calculated from the training data by using the approximation 
suggested in [1]. In particular, the following approximation is 
utilized to estimate these class conditional probabilities in [3]:  
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where D is the dimensionality (number of attributes) of the 
input patterns, PTj represents the number of training patterns 
belonging to class j, Xr

j denotes the rth such training pattern, x 
is the input pattern to be classified, and σ is the smoothing 
parameter that we talked about earlier. It is pointed out in [2], 
that this estimation will approach asymptotically the real PDF 
if both the following equations are true: 
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Equation (2) is the basis of the PNN classifier. The 
smoothing parameter σ should be selected properly, as 
further discussed in Chapter III. In general, the smoothing 
parameters may depend on the dimension and the class of the 
data. For simplicity, we assume independence among 
attributes, so that the smoothing parameter does not become a 
matrix for each class. The above formula for the estimation of 
the class conditional probabilities now becomes. 
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where σ ij is the smoothing parameter across dimension i for 
the training points belonging to class j. 

B. General Regression Neural Network (GRNN) 
For regression problems, it is not difficult to prove that the 

solution minimizing the expected mean square error is the 
conditional expected value given below: 
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In practice, the joint PDF f (x,y) is estimated by: 
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Equations (6) and (7) indicate that E(y|x) can be estimated by: 
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where σ i is the smoothing parameter across dimension i. 



C. Clustered PNN and GRNN 
As shown above, both PNN and GRNN simply memorize 

all the training instances to perform classification or 
regression. To compress the training instances, one can 
cluster them and represent them by the clusters centers. Thus, 
each cluster center is essentially a training instance with a 
certain multiplicity. When applied to PNN/GRNN, we should 
expect the smoothing parameter to depend on the clusters. It 
is not difficult to modify (5) for PNN to the following: 
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where j
rN  is the multiplicity of, or the number of original 

training instances covered by, the rth cluster in class j, while 
j

irσ  and j
irX  are the smoothing parameter and the mean value 

of the ith dimension for the rth cluster in class j, respectively. 
Similarly, Clustered GRNN can be described by 
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III. ANALYSIS OF SMOOTHING PARAMETER IN 
ONE-DIMENSIONAL CASES 

A. Non-Clustered Cases 
For simplicity, let us first consider only one dimension and 

one class without clustering. In this case, (5) reduces to 
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It is not difficult to prove that: 
 ( ) ( ) 2ˆ σ+= XVARXVAR  (12)  
where the left hand side represents the expected value of the 
variance of the point x using the estimated PDF given in (11), 
and VAR(X) stands for the expected value of the variance of 
the point x using the true PDF. In order to produce an accurate 
estimate of the PDF, a necessary condition is: 
 )(XSTD<<σ  (13)  
where STD(X) is the unbiased standard deviation of X. This 
conclusion agrees with (3), since the standard deviation 
usually approaches a positive constant number when the 
number of instances goes to infinity. 

Note that setting σi to a large value can smooth out the ith 
attribute, making the corresponding marginal PDF constant 
(almost zero) in the whole space. We do not, however, 
consider this method beneficial, since it alters the PDF too 
much and it tends to scale the final PDF to almost zero for all 

classes if an attribute is not relevant to any class. Thus, when 
an attribute is completely noise, we still estimate the PDF as 
distributed in the range shown in the training set, which is 
large enough to smooth out this attribute given that the 
training set is representative. 

On the other hand, σi cannot be too small, or otherwise the 
PDF becomes spiky (consists of a number of impulse 
functions) at the training points and is almost zero at other 
places, which causes the over training problem. 

To understand the effect of the smoothing parameter better, 
consider an example where the training set is {-10, -9, …, 
10}, and is taken from a uniform distribution in the range 
[-10.5, 10.5]. (In practice, even if the points are uniformly 
distributed, the observed instances are not likely to be equally 
spaced; here we simply use this ideal case to demonstrate our 
idea and we will discuss the practical case later.) Fig. 1 shows 
the resulting estimated PDF in three typical cases. It verifies 
our previous statements. It also shows that the standard 
deviation is usually too large to be used as the smoothing 
parameter. In fact, this problem becomes even worse as the 
distribution is fixed and the number of instances is increased. 

(a) Reasonable Smoothing Parameter (σ=2) 

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

 

(b) Small Smoothing Parameter (σ=0.25) 
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(c) Reasonable Smoothing Parameter (σ=Standard Deviation=6.2) 
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Dash-dot line: desired (true) PDF 
Gray solid line: Gaussian function centered at a training point 
Black solid line: estimated PDF 

Fig. 1.  Estimates of PDF with various σ value (no clustering)



B. Clustered Case 
Suppose the previous training set with 21 instances is 

clustered, with each cluster containing the same number of 
instances. Fig. 2 shows the effect of the cluster size and the 
smoothing parameter on the PDF estimation. 

 
As shown above, neither the cluster standard deviation nor 

reasonable smoothing parameter in the previous example 
yields an accurate PDF for both the 3-clustered and the 
7-clustered case. Since clustering represents multiple 
instances by their mean value, and as a result loses 
considerable information, it is difficult to determine a good 
smoothing parameter quickly. 

IV. OUR APPROACH: GAP-BASED ESTIMATION 

A. Result from a Simple Model 
Fig. 1 indicates that the width of Gaussian kernels, which is 

directly controlled by the smoothing parameter, should be 
related to the gap between two nearest points. Our proposed 
approach, the Gap-based estimation, is originated from the 
following simple idea: when the training points are equally 
spaced in (-∞, 0], the estimated PDF should: 

1) Be almost constant on the left of the origin, and 
2) Drop to almost zero at the points on the right of the 

origin, although we allow a transition interval where the 
value drops from the constant value to the zero value. 

(a) 3 clusters, σ=2 
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(b) 3 clusters, σ=cluster standard deviation=2.16 
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(c) 7 clusters, σ=2 
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(d) 7 clusters, σ=cluster standard deviation=1 

−20 −15 −10 −5 0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

 

Dash-dot line: desired (true) PDF 
Gray solid line: Gaussian function centered at a training point 

(for better visualization, the Gaussian functions in each 
cluster are summed up instead of being overlapped) 

Black solid line: estimated PDF 

Fig. 2.  Estimates of PDF with various σ value (no clustering) 

Numerical solution of the above two constraints indicates 
that 0.69d<σ<2.18d, where d is the distance between two 
neighbors in the above model. In practice, the training points 
are seldom equally spaced even if uniform distributed, and 
thus we double the bounds as 1.38d<σ<4.36d. We usually 
choose σ=4d for better generalization. 

B. Sampling in Multi-Dimensional Space 
For multi-dimensional cases, we should standardize each 

dimension first so that each dimension has unity standard 
deviation before computing the gap, which prevents bias 
towards large-scale dimensions. In these cases, 
 ( ) ( ii XSTDd 5.0,4min=σ ) (14)  

where d is the average gap (roughly the average value of the 
minimum distance) between two input points after 
standardization and STD(Xi) is the standard deviation of the ith 
dimension before standardization. Note that 4d might be 
larger than 1 when the dimensions are not independent, which 
is a challenge to us since the assumption of (5) is violated. In 
this case, we replace 4d to 0.5 to retain the validity of (13). 

Computing d directly has a high computational complexity 
of O(PT2). Therefore, we estimate d by sampling the points. 
We randomly choose M points, where M << PT when PT is 
large, and for each one (X) of these points we calculate the 
largest value of the minimum 2D distances to another small 
sample of N points, where N << PT when PT is large. 
However, two issues are raised due to sampling. 

First, if the points are distributed in clusters, it is possible 
that all the N points are in a different cluster than the X, which 
causes d to be estimated as the distance between clusters, 
despite the fact that we desire to obtain the local distance 
among the points in the same cluster. Nevertheless, we 
assume each cluster has the same number of points, which is 
at least 4C where C is the number of clusters. Hence, 
  (15)  24CPT ≥
In this case, if we set N to 4 , we can prove the 
probability that none of the N sampled points are in the same 
cluster as X does not exceed e

PT

-8=3.35×10-4. Even if some of 
the distances may be overestimated, they are not likely to 
affect the final result after the sampling is repeated M times. 

Secondly, the observed average gap d
__

 in the sampled set is 
not approximately the same as, but instead proportional to, 



the desired average gap d in the full data set. The constant of 
proportionality that connects d

__

 and d depends on the 
parameters PT, N, and v, where v is the number of degrees of 
freedom. In particular, we have shown that the actual 
relationship between d

__

 and d can be expressed by the 
following equation. 
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Equation (16) can be explained below: when N =PT, d
__

 = d; 
when the number of samples per degree of freedom is halved 
but Nj is still so large that the samples are representative, N 
=2vPT and d

__

 ≈ 2d. This also implies that under the same 
distribution with enough points, (PT)1/vd is a constant, which 
means (3) and (4) are satisfied if we apply (14) to set the 
smoothing parameter and v>1. When (14) is applied and v is 
1, (4) is not satisfied, but (4) is not a necessary condition for 
the estimated PDF to be asymptotically accurate. Our 
experiments show that our approach works very well on a 
one-dimensional database. 

As we have mentioned above, v means the number of 
degrees of freedom. For example, when the data points of the 
dataset are residing on the unit circle in a 2-D space, their 
attributes x and y can be expressed in terms of the angle of the 
(x, y) point with respect to the horizontal axis. As a result, in 
this case, although the data points are two dimensional, they 
have only one degree of freedom. 

Equation (16) is a single equation with two unknowns (that 
is, d that we want to compute, and v that is unknown). Ideally, 
two calculations of d

__

 with different values of sample sizes N 
would be sufficient to produce the needed value d and the 
unknown degrees of freedom v. Due to the randomness of the 
sampling procedure that leads to the computation of d, 
however, two calculations of d

__

 are not enough. For the 
databases we have experimented with, it turned out that five 
calculations of d

__

 are sufficient for the calculation of d. To 
calculate d from the five equations of the form depicted in 
(16), we utilized a least-square-error procedure. 

C. Application to Classification Problems 
So far we have discussed the one-class case. For 

classification problems, there are two ways to set the 
smoothing parameter:  

1) For each class, compute σij based on (14), only 
accessing the patterns in the corresponding class; 

2) Apply (14) to all patterns regardless of their classes and 
use the computed σi for all classes. 

Although the first method appears more reasonable, we 
argue that it is less beneficial because each class occupies 
only a subset of the training points and thus for each class, the 
estimate of d becomes less accurate after sampling (whose 
confidence relies on the data size), especially when (15) is 
violated. Our preliminary experiments verify our argument, 
although the corresponding results are not listed in this paper. 

V. EXPERIMENTS 

A. Experimental Procedures 
We compare the following approaches for choosing the 

smoothing parameters for both PNN and GRNN: 
Standard Deviation: set the sigma parameters as the 

standard deviation for each dimension without 
discriminating the class labels (which is much better 
than using the in-class standard deviations in our 
experiments, although the data are not shown here). 

Cross-Validation: the training set is divided equally to a 
learning set and a validation set. We evaluate 
σi=kSTD(Xi) for each attribute Xi, where k is chosen 
from {1/2, 1/4, 1/8, 1/16}, and STD(Xi) is computed in 
the previous step. The best k value is selected according 
to the performance on the validation set. The time for 
finding the smoothing parameters is defined as the total 
time for all the runs of PNN/GRNN. 

Clustering: run GART to cluster the training set. For PNN, 
we run GART for each class separately (which is 
remarkably faster than running GAM on the whole 
database). The initial standard deviation γ is set to 
STD(Xi) and the baseline vigilance ρ is set to 0.5 (in fact, 
we tested higher values of ρ, but they only spent more 
time without significant improvement in accuracy). It is 
known that GAM/GART is not sensitive to γ , as long as 
it is close to the final cluster standard deviation. The 
parameter ρ controls the size of the clusters: ρ = 0 
means arbitrarily large clusters are allowed, resulting in 
only one cluster for GRNN since all regression 
instances are treated as  in the same class; ρ = 1 means 
only zero-sized clusters can be created, reducing to the 
non-cluster case except when repeated training 
instances are present. The time for finding the sigma 
parameters is defined as the time elapsed in GART. 

Gap-Based Estimation: apply our approach. 
All algorithms, including PNN, GRNN, and GART, are 

coded efficiently in the same computer language (C/C++) and 
with the same interface (MATLAB MEX DLL). The 
recorded time does not include what is spent on file I/O or 
displaying to the screen. All experiments are carried out in the 
same and stable software environment. 

B. Databases 
The databases used in our experiments are listed in Table I. 

To demonstrate that the standard deviation is not directly 
related to the optimal sigma value, we created an artificial 
database Grass and Trees that contains only one attribute. 
The first class is uniformly distributed in [0, 1]. The second 
class has five clusters, centered at 0, 0.25, 0.5, 0.75, and 1, 
respectively. Each cluster has also uniform distribution with 
range 0.05. Both classes occupy 50% of the instances. It can 
be shown that the Bayes Classifier attains 90% accuracy on 
this database. Fig. 3 shows that it is difficult to guess the 
optimal sigma value using the standard deviation, while our 



(a) True PDF 
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(b) Gap-based Estimate 
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(c) Estimated PDF with σ=STD(X) 
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Black line: class 1; Gray line: class 2 

Figure 3: Estimates of the PDFs for Database “Grass and Trees” 

approach produces very accurate estimates. Note that the 
optimal smoothing parameter can be arbitrarily small when 
we increase the number of clusters in class 2 while 
maintaining, at the same time, its overall standard deviation. 

The rest of the databases are commonly used benchmark 
databases.  We selected the ones with sufficient size in order 
to make our results statistically significant. We downloaded 
all the other classification databases from [12], Friedman 
from [13], and Kinematics, Bank, and Computer from [14]. 
Following is the brief description of each database: 

The Iris database represents the classification task of iris 
plants. We introduced noise to generate enough points, and 
removed the two attributes with least correlation to the class. 

The Segmentation database is created from 7 outdoor 
images of different scenes. 3-by-3 sub-images are manually 
segmented from the 7 images and are classified with the 
image features. The third feature in the original database turns 
out to be constant and thus is removed in our experiments. 
This database contains only 210 training points, which is a 
representative test to our sampling methodology. 

The Page Blocks database consists of the attributes of page 
layouts in a document with various block types. The major 
class “text” occupies approximately 90% of the instances. 

The Abalone database is used for predicting the age of 
abalones. We removed the categorical attribute in the original 
database because it is not used on either PNN or GRNN. For 
PNN, we also grouped the outputs into three classes: 8 and 
lower, 9-10, 11 and greater, as other researchers have done in 

the past. The resulting classes, however, are still highly 
overlapped in the attribute space and current algorithms can 
attain only approximately 60% accuracy. 

The Satellite database provides the multi-spectral values 
extracted from satellite images corresponding to 6 types of 
soil (previously 7 types, one of which used to be “mixed soil” 
and was removed due to doubts about its validity). 

The Pen Digits database stores the information of 250 
digits. The attributes are obtained from the coordinates of the 
points after spatial sampling on the captured trajectories. 30 
writers contribute to the training set and 14 to the test set. 

The Optical Digits database is also concerned with the 
recognition of handwritten digits, but without temporal 
information. The images are divided into sub-images and the 
number of pixels in each sub-image serves as an attribute. 
The data from 30 writers are used for training and those from 
the other 13 writers for testing. After two constant attributes 
are removed from the original database, there are still as many 
as 62 attributes. 

The Friedman database is artificial, first used in [15]. The 
output is defined as y=10sin(πx1x2)+20(x3-0.5)2+10x4+5x5+ε, 
where x1, x2, x3, x4, and x5 are independent attributes 
uniformly distributed in [0,1], while ε is Gaussian noise with 
zero mean and unity variance. 

The Kinematics database and the Pumadyn database are 
chosen from two families generated from the simulation of 
two different robot arms. They are concerned with the 
prediction of the end-effector from a target and the angular 

TABLE I 
STATISTICS OF DATABASES 

PNN 
Databases 

#Training 
Points 

#Test 
Points 

#Numerical 
Attributes #Classes %Minor 

Classes a

Grass and Trees 2000 4000 1 2 0.5 
Modified Iris 500 4800 2 2 0.49812 
Segmentation 210 2100 18 7 0.85714 
Page Blocks 2000 3473 10 5 0.10193 

Abalone 2088 2089 7 3 0.65677 
Satellite 4435 2000 36 6 0.7695 

Pen Digits 7494 3498 16 10 0.89623 
Optical Digits 3823 1797 62 10 0.89872 
 

GRNN 
Databases 

#Training 
Points 

#Test 
Points 

#Numerical 
Attributes 

Output 
Range b

Output 
Variance c

Friedman 400 1000 5 27.116 27.094 
Kinematics 4096 4096 8 1.4004 0.06853 
Pumadyn 4096 4096 8 24.091 31.41 

Bank 4096 4096 8 0.74548 0.023478
Abalone 2088 2089 7 26 10.544 

Computer 4096 4096 12 99 348.85 
aThe percentage of the minor classes is 1 minus the percentage of the 

major training class in the test set. This percentage represents the 
misclassification rate for the blind classifier, which always predicts the 
class as the major training class without considering the attributes). 

bThe output range reflects the output in the test set 
cThe output variance is computed as mean((y-m)2), where y is the 

outputs in the test set and m is the mean value of the outputs in the training 
set. This variance represents the mean-square-error of the blind predictor 
(that is, the predictor that always predicts the output as the mean training 
output without considering the attributes). 



acceleration, respectively. For both databases, we selected the 
non-linear version with 8 attributes and medium noise. 

The Bank database is generated from a simulator that 
simulates bank service. The task is to predict the fraction of 
customers who leave the bank because all queues are full. 

The Computer database consists of computer activity 
measures, such as the reading/writing rates. The task is to 
predict the portion of time that the CPUs run in user mode 
based on the various data transfer rates. 

C. Experimental Results 
All the results are shown in Table II. For PNN, although 

the computation of the standard deviation is usually too fast to 
be timed, it does not appear to be a good value for the 
smoothing parameters due to its poor accuracy (excluding the 
blind classifier), especially when the data are distributed in 
disconnected clusters (see the Grass and Trees database). 

The cross-validation approach works well in databases 
where the data corresponding to different classes are small in 
number and belong to a single connected cluster. 

The Clustering approach could work better than 
cross-validation in defining reasonable smoothing parameters 
when class data belong to disconnected clusters, but its 
accuracy is suspect, possibly due to the weak relationship 
between the optimal smoothing parameter and the cluster 
standard deviation, as illustrated in Fig. 2. Note that the 
accuracy is surprisingly low for Optical Digits. We examined 
the results and found that GART output exactly one cluster 
per training point, due to the high dimensionality, which 
means the distance among training points tends to be large. 
The cluster standard deviation is usually too small, because 
the same point is repeatedly chosen to construct a template.  

Our approach always yields an accuracy that is equal or 
close to the best one. Note that for the Grass and Trees 
database, its accuracy is almost the theoretical optimal one. 
Moreover, the time spent to produce the smoothing 
parameters with our approach is only greater than of the 
standard deviation, and it is scalable to large databases. The 
experiment also demonstrates that our approach is robust, 
whether or not the training set is noisy (as Grass and Trees, 
Modified Iris and the Friedman), small (as Segmentation), or 
high dimensional (which means possible dependency among 
attributes; see Optical Digits). 

TABLE II 
EXPERIMENTAL RESULTS 

Misclassification Rate (%) Time (seconds) 
PNN 

Databases Blind 
Classifier 

Standard 
Deviation 

Cross 
Validation Clustering Gap-based 

Estimate 
Standard 
Deviation 

Cross 
Validation Clustering Gap-based 

Estimate 
Grass and Trees 50.00 38.63 15.60 34.975 10.60 0 0.578 0.094 0.047 

Modified Iris 49.81 6.19 5.38 5.1458 5.63 0 0.047 0.063 0.015 
Segmentation 85.71 14.38 10.52 20.238 10.81 0 0.031 0.031 0 
Page Blocks 10.19 5.79 4.06 36.165 4.78 0 1.156 32.203 0.157 

Abalone 65.68 37.10 35.47 40.211 35.38 0 1.015 2.922 0.125 
Satellite 76.95 13.00 9.55 13.25 9.70 0.031 16.063 48.328 2.141 

Pen Digits 89.62 8.38 2.57 5.8033 3.23 0.032 25.219 22.891 1.938 
Optical Digits 89.87 3.28 3.78 78.353 3.62 0.063 16.954 26.5 1.360 

(a) PNN Experiments 
 

Mean Square Error Time (seconds) 
GRNN 

Databases Blind 
Predicator 

Standard 
Deviation 

Cross 
Validation Clustering Gap-based 

Estimate 
Standard 
Deviation 

Cross 
Validation Clustering Gap-based 

Estimate 
Friedman 27.094 9.2244 4.3103 4.9986 4.2921 0 0.047 1.172 0.016 

Kinematics 0.06853 0.031563 0.014234 0.019119 0.014304 0.015 5.343 76.187 0.547 
Pumadyn 31.41 18.516 14.788 15.068 14.808 0 5.344 83.797 0.531 

Bank 0.023478 0.0061562 0.0025063 0.002003 0.0025669 0 5.297 147.33 0.531 
Abalone 10.544 6.22 5.1726 5.024 5.5133 0 1.25 18.782 0.156 

Computer 348.85 36.455 15.653 333.28 15.764 0.016 7.328 176.67 0.703 
(b) GRNN Experiments 

In the experiments with GRNN, we have exactly the same 
observations: using the standard deviation is fastest but most 
inaccurate; cross-validation has a reasonable accuracy while 
its time is non-scalable; clustering in unstable in accuracy and 
expensive in time; our approach is the second fastest one with 
almost best accuracy. 

VI. CONCLUSION 
In this paper we presented the Gap-based approach of 

estimating the smoothing parameters for both PNN and 
GRNN. Our approach was first analyzed for an ideal problem 
and then applied to more general problems. We utilized 
sampling techniques to reduce the computational complexity 
of finding the smoothing parameters to a linear function of the 
training data size. Our experiments have showed that our 
proposed approach, the gap-based estimate of the smoothing 
parameter, is superior to other commonly used approaches, 
such as cross-validation. It was demonstrated, through these 
experiments, that the gap-based estimate of the smoothing 
parameters produced a PNN/GRNN network with good 
accuracy. The amount of time required to produce the 



smoothing parameter estimates was of low computationally 
complexity, and scalable to larger problems.  

APPENDIX – PSEUDO CODE OF GAP-BASED ESTIMATION 

Parameters: 
Kmax: Maximum Repeat Times (natural number). Typical Kmax=4 
FM, FN: Sampling Factor (small positive number). Typical FM=8, FN=4 

Main Procedure: 
Compute STD(Xi) for i=1,2,…,D 
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If K<1 (which means PT is small) then 
d=AverageGap(M,PT) 

Else 

d
__
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End If 
σi=min(4d,0.5)STD(Xi) for i=1,2,…,D 

Subroutine AverageGap (M, N) 
For  Mm ,...,2,1=

Randomly choose a point X. 
For  Nn ,...,2,1=

Randomly choose a point Xn different from X. 
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End For 
Find the smallest 2D elements from  22

2
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1 ,..., mNmm ddd

Find the largest one (denoted by ) in the above elements 2
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End For 

Return [ ]2
mm
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Note: the smallest 2D elements for each m can be cached so that when 
we double N next time, only N more patterns have to be chosen, which 
halves the computational complexity. 

  
The least-square-error solution to the linear equations can 

be explicitly given as: 
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In practice, computing (ATA)-1ATB directly is not efficient in both 

time and space. A recursive algorithm can be applied, which is 

shown below. 
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Note: the update of P  is very simple because ( )TPa  is only 2-by-1, 
( )1+TaPa  is a scalar, and ( )aP  is 1-by-2. 

 

ACKNOWLEDGMENT 
This work was supported in part by a National Science 

Foundation (NSF) grant CRCD: 0203446. Georgios 
Anagnostopoulos and Michael Georgiopoulos also 
acknowledge the partial support from the NSF grant CCLI 
0341601. 

REFERENCES 
[1] E. Parzen, “On estimation of probability density function and mode,” 

Annals of Mathematical Statistics, vol. 33, pp. 1065-1073, 1962. 
[2] T. Cacoullos, “Estimation of a multi-variate density,” Annals of the 

Institute of mathematical Statistics (Tokyo), Vol. 18, No. 2, pp. 
179-189, 1966. 

[3] D. F. Specht, “Probabilistic Neural Networks and the Polynomial 
Adaline as Complementary Techniques for Classification,” IEEE 
Trans. Neural Networks, vol.1, no.1, pp.111-121, 1990. 

[4] D. F. Specht, “A General Regression Neural Network,” IEEE Trans. 
Neural Networks, vol.2, pp.568-576, 1991. 

[5] D. F. Specht, “Enhancements to Probabilistic Neural Networks,” in 
1992 Proc. IJCNN, vol. 1, pp. 761-768. 

[6] D. F. Specht, “Experience with Adaptive Probabilistic Neural Networks 
and Adaptive General Regression Neural Networks,” in 1994 Proc. 
IEEE World Congress on Computational Intelligence, vol. 2, pp. 
1203-1208. 

[7] P. Burrascano, “Learning vector quantization for the Probabilistic 
Neural Network,” IEEE Tran. Neural Networks, vol. 2, pp. 458-461, 
1991. 

[8] H. G. C. Traven, “A neural network approach to statistical pattern 
classification by ‘semi-parametric’ estimation of probability density 
functions,” IEEE Trans. Neural Networks, vol. 2, pp. 366-377, 1991. 

[9] M-L. Tseng, “Integrating Neural Networks with Influence Diagrams for 
Multiple Sensor Diagnostic Systems,” Ph.D. Dissertation, University of 
California at Berkley, 1991. 

[10] J. R. Williamson, “Gaussian ARTMAP: A Neural Network for Fast 
Incremental Learning of Noisy Multi-Dimensional Maps,” Neural 
Networks, vol. 9, no. 5, pp. 881-897, 1996. 

[11] J. R. Williamson, “A constructive, incremental-learning network for 
mixture modeling and classification,” Neural Computation, vol. 9, pp. 
1517-1543, 1997. 

[12] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. (1998). UCI 
Repository of machine learning databases, Department of Information 
and Computer Science, University of California, Irvine, CA. Available: 
http://www.ics.uci.edu/~mlearn/MLRepository.html 

[13] KEEL (Knowledge Extraction based on Evolutionary Learning) 
Datasets, Available: http://sci2s.ugr.es/keel-dataset/ 

[14] Delve (Data for Evaluating Learning in, Valid Experiments), University 
of Toronto, Toronto, Ontario, Canada. Available: 
http://www.cs.toronto.edu/~delve/ 

[15] J. Friedman, “Multivariate adaptive regression splines (with 
discussion),” Ann. Stat., vol. 19, pp. 1–141, 1991. 

http://www.ics.uci.edu/%7Emlearn/MLRepository.html
http://sci2s.ugr.es/keel-dataset/
http://www.cs.toronto.edu/%7Edelve/

	I. INTRODUCTION 
	II. Preliminaries 
	A. Probability Neural Network (PNN) 
	B. General Regression Neural Network (GRNN) 
	C. Clustered PNN and GRNN 
	III. Analysis of Smoothing Parameter In One-dimensional Cases 
	A. Non-Clustered Cases 
	B. Clustered Case 

	IV. Our Approach: Gap-Based Estimation 
	A. Result from a Simple Model 
	B. Sampling in Multi-Dimensional Space 
	C. Application to Classification Problems 

	V. Experiments 
	A. Experimental Procedures 
	B. Databases 
	C. Experimental Results 

	VI. Conclusion 


