
Genetic Optimization of ART Neural Network Architectures

A. Kaylani, A. Al-Daraiseh, M. Georgiopoulos, M. Mollaghasemi, G. C. Anagnostopoulos, and A. S. Wu

Abstract— This paper focuses on the evolution of ARTMAP
architectures, using genetic algorithms, with the objective of
improving generalization performance and alleviating the ART
category proliferation problem. We refer to the resulting ar-
chitectures as GFAM, GEAM, and GGAM. We demonstrate
through extensive experimentation that evolved ARTMAP ar-
chitectures exhibit good generalization and are of small size,
while consuming reasonable computational effort to produce an
optimal or a sub-optimal network. Furthermore, we compare
the performance of GFAM, GEAM and GGAM with other
competitive ARTMAP architectures that have appeared in the
literature and addressed the category proliferation problem
in ART. This comparison indicates that GFAM, GEAM and
GGAM have superior performance (generalize better, are of
smaller size, and require less computations) compared with
other competitive ARTMAP architectures.

I. INTRODUCTION

Adaptive resonance theory was developed by Grossberg
(see [9]). Some of the ART architectures that have ap-
peared in the literature include Fuzzy ARTMAP (FAM) (see
[4]), Ellipsoidal ARTMAP (EAM) (see [1]), and Gaussian
ARTMAP (GAM) (see [11]). All of these ART architectures
possess a number of desirable properties, such as they
can solve arbitrarily complex classification problems, they
converge quickly to a solution (within a few presentations
of the list of input/output patterns belonging to the training
set), they have the ability to recognize novelty in the input
patterns presented to them, they can operate in an on-line
fashion (new input patterns can be learned by the ART
system without retraining with the old input/output patterns),
and they produce answers that can be explained with relative
ease.

One of the limitations of all the aforementioned ART
architectures is the category proliferation problem. A number
of researchers have addressed the category proliferation
problem in ART, and amongst them we single out the work in
[2], and [8], where different ways are introduced of allowing
the ART categories to encode patterns that are not necessarily
mapped to the same output (label). In this paper, we propose
the use of genetic algorithms (see [7]) to solve the category
proliferation problem in ART architectures, such as FAM,
EAM and GAM. In our approach, we start from a collection
of initially trained ART networks and evolve them using
a fitness function that emphasizes good generalization and
small network size. In an earlier work (see [6]) we evolved
a collection of trained FAM networks; in this work we evolve
FAM or EAM or GAM networks, we use a simpler fitness
function and simpler GA operators than the ones used in [6],

Michael Georgiopoulos is with the School of Electrical Engineering and
Computer Science, University of Central Florida, Orlando, FL 32816, USA
(phone: 407-823-5338; fax: 407-823-5835; email: michaelg@mail.ucf.edu).

and we provide a good justification for the GA parameter
values used.

The organization of the paper is as follows: In Section 2 we
discuss ART in as much detail as it is needed for the reader
to understand the evolution of ART architectures, which is
the main theme of our effort. In Section 3, we explain the
proposed approach to evolve ART architectures, from the
genotype representation scheme, to the fitness function used,
and from the special GA operators introduced, to the specific
selection of appropriate GA parameter values. In Section
4, we discuss the experiments conducted and analyze the
results produced. In Section 4, a thorough comparison of the
genetically engineered ART structures and other ARTMAP
architectures (see [2], [8]), which addressed the category pro-
liferation problem, are included. This comparison indicates
that GFAM, GEAM and GGAM compare favorably with
these other ART architectures in the literature. Finally, in
Section 5 we summarize our work and provide conclusive
remarks.

II. ART PRELIMINARIES

The Fuzzy ARTMAP (FAM) neural network architecture
was introduced by Carpenter and Grossberg in their seminal
paper [4]. Since its introduction, other ART architectures
have been introduced into the literature. The focus in this
paper is on Fuzzy ARTMAP and two other ART architec-
tures: Ellipsoidal ARTMAP (see [1]) and Gaussian ARTMAP
(see [11]). Our objective in this paper is to illustrate how we
can design ART architectures from a population of FAMs,
or EAMs, or GAMs. For simplicity we refer to all these
ART architectures as ART and we use their specific name
(FAM, or EAM or GAM) only when we want to discriminate
one from the other. Similarly, we refer to the genetically
optimized ART architectures as GART and we use their
specific name (GFAM, GEAM and GGAM) only when we
want to discriminate one from the other.

We assume that the reader is familiar with the FAM, EAM
and GAM architectures. In this section we only provide
the necessary information that is needed to understand the
evolution of these ART structures, explained in detail in Sec-
tion 3. For instance, it is worth mentioning that the weights
(templates) in ART architectures represent compressed repre-
sentations of the input patterns presented to the ART network
during its training phase. These compressed representations
have a geometrical interpretation. In particular, every node
(category) in the category representation layer of Fuzzy
ARTMAP (FAM) has template weights that completely de-
fine the lower and upper endpoints of a hyperbox. This
hyperbox includes within its boundaries all the input patterns
that chose this category as their representative category in

1-4244-1380-X/07/$25.00 ©2007 IEEE

Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

4
I

2
I

3
I

1
I

ju

jv

Fig. 1. A hyperbox category representation in FAM. This hyperbox has
encoded patterns I1, I2, I3, I4. In the figure, the a portion of these input
patterns is depicted, as well as the lower end-point uj and the upper
endpoint vj of this hyperbox.

FAM’s training phase and were subsequently encoded by this
category. In Figure 1, we show the hyperbox of a category in
a FAM architecture (2-D example), with lower endpoint uj ,
and upper endpoint vj , and the input patterns (the I’s that it
has encoded). Also, every node (category) in the category
representation layer of Ellipsoidal ARTMAP (EAM) has
template weights that completely define an ellipsoid through
its center, direction of major axis, length of the major axis,
and ratio of lengths of minor axis to major axis in the
ellipsoid. This ellipsoid includes within its boundaries all the
input patterns that chose this category as their representative
category in EAM’s training phase and were subsequently
encoded by this category. In Figure 2, we show the ellipsoid
of a category in a EAM architecture (2-D example), with
center mj , direction of the major axis dj , length of the major
axis, represented by its radius rj (implied from the figure),
ratio of the lengths of minor axes to major axis µ (implied
from the figure), and the input patterns I’s that it has encoded.
Finally, every node (category) in the category representation
layer of Gaussian ARTMAP has template weights that define
the mean vector, the standard deviation vector of a multi-
dimensional Gaussian distribution, and the number of points
that are associated with this Gaussian distribution. The mean
vector of this Gaussian distribution and the standard deviation
vector of this Gaussian distribution are defined in terms
of the means and the standard deviations (across every
dimension) of the points that chose this node (category) as
their representative category, while the number of the points
associated with this Gaussian distribution are the number of
input patterns that chose this category as their representative
category. In Figure 3, we show the Gaussian distribution
of a category in a GAM architecture (1-D example), with
mean mj , standard deviation σj , number of points nj (in
our example nj = 4), and the input patterns (i.e., I’s) that it
has encoded.

It is also worth mentioning that the categories in FAM,
EAM and GAM are allowed to expand up to a point allowed
by a threshold, controlled by a network parameter denoted as
the baseline vigilance parameter ρ̄a. This parameter assumes
values in the interval [0, 1]. Small values of this parameter
allow the creation of large categories, while large values of
this parameter allow the creation of small categories. In the
one extreme when ρ̄a is equal to 0, a FAM or EAM category,
equal to the whole input space, could be created, while at the
other extreme when ρ̄a is equal to 1 only point categories are

4
I

3
I

jm

jd
2

I

1
I

Fig. 2. An ellipsoidal category representation in EAM. This ellipsoid has
encoded patterns I1, I2, I3, I4. In the figure, the center point mj and the
direction vector dj are shown, while the radius of the major axis, and the
ratio of lengths of minor to major axis are easily deduced from the figure.

4
I

2
I

3
I

1
I jm

j

Fig. 3. A Gaussian curve category representation in GAM. This Gaussian
distribution has encoded patterns I1, I2, I3, I4. In the figure, the center point
mj and the standard deviation vector σj of the Gaussian curve are shown,
while the number of points nj that this Gaussian curve represents is easily
deduced as being equal to 4.

formed. In GAM, small values of this parameter allow more
and more patterns to be encoded by a GAM category, while
large values of this parameter allow only a few patterns to be
encoded by a GAM category. It turns out that this parameter
has a significant effect on the number and type of categories
formed, and consequently it affects the performance of these
networks.

III. EVOLUTION OF ART ARCHITECTURES

In the rest of the paper we assume that for every clas-
sification problem we are provided with a training set, a
validation set, and a test set. The training set is used for
the training of GFAM, GEAM, and GGAM architectures
under consideration. The validation set is used to optimize
the produced GFAM, GEAM or GGAM network in ways
that will become apparent in the following text. Finally, the
test set is used to assess the performance of the optimized
GFAM, GEAM, or GGAM network created.

GFAM, GEAM, and GGAM are evolved FAM, EAM,
GAM networks, respectively, that are produced by applying,
repeatedly, genetic operators on an initial population of
trained FAM, EAM, or GAM networks. GFAM, GEAM,
GGAM use tournament selection with elitism, as well as
genetic operators, including crossover and mutation. In ad-
dition, GFAM, GEAM and GGAM use a special operator,
Catdel; this special operator is needed so that categories
could be destroyed in the ART architectures, thus leading
us, through evolution, to smaller ART structures.

In the process of discovering GFAM, GEAM or GGAM
we are starting from a population of trained FAM, EAM or
GAM networks that have been trained with different baseline
vigilance parameter values, and different orders of pattern
presentations of the training data (it has been a known fact
that performance in ART is affected by the order according
to which training data are presented to an ART architecture).

)(
1

p
a

w)(
2

p
a

w)(p
a

j
w)(p

a

N a
w

Chromosome p

)(p
a

ju)(p
a

jv)(pl j

Level 1

Level 2

Fig. 4. GFAM chromosome structure. At level 2, the category’s weight
wa

j contains the information about the lower end-point, ua
j , and the upper

end-point, va
j , of the hyperbox corresponding to the category, as well as

the label lj of the category.

To better understand how ART (FAM, or EAM, or GAM)
is genetically evolved, we resort to a step-by-step description
of this process. The genetic evolution of ART can be artic-
ulated through a sequence of basic steps, defined succinctly
below.

begin

1: Generate-Initial-Population()
2: Repeat
2.a. Evaluate-Fitness-And-Sort()
2.b. Selection()
2.c. CrossOver()
2.d. Catdel()
2.e. Mutate()

Until [max number of generations reached]

3. Return bestNetwork
end

Step 1: Generate Initial Population: The algorithm starts
by training Popsize ARTMAP networks (FAM, EAM or
GAM), each one of them trained with a different value of
the baseline vigilance parameter ρ̄a, and order of training
pattern presentation. In particular, we first define ρ̄inc

a =
ρ̄max

a −ρ̄min
a

Popsize−1 , and then the baseline vigilance parameter of
every network is determined by the equation ρ̄min

a + iρ̄inc
a ,

where i ∈ {1, 2, ..., Popsize − 1}. The choice parameter in
a FAM network was chosen to be equal to 0.1. The choice
parameter in EAM network was chosen to be equal to 0.01.
The initial value of the standard deviation γ in a GAM
network is chosen to be equal to 0.6. In our experiments with
GFAM and GEAM we chose ρ̄min

a = 0.1 and ρ̄max
a = 0.95,

while in our experiments with GGAM we chose ρ̄min
a = 0.1

and ρ̄max
a = 0.75. Once the Popsize networks are trained,

they need to be converted to chromosomes so that they can
be manipulated by the genetic operators. GFAM, GEAM
and GGAM use a real number representation to encode the
networks. Each chromosome consists of two levels, level
1 containing all the categories of the network, and level 2
containing the template parameters needed to represent every
category in level 1, as well as the label of every category
in level 1. The chromosome encoding is explained in more
detail in Figure 4 for GFAM, in Figure 5 for GEAM and in
Figure 6 for GGAM.
Step 2 (Apply Genetic Operators): In this step a GA is

)(
1

p
a

w)(
2

p
a

w)(p
a

jw)(p
a

Na
w

Chromosome p

Level 1

Level 2)(p
a
jm)(p

a
jd)(pr

a
j)(p

a
j)(pl j

Fig. 5. GEAM chromosome structure. At level 2, the category’s weight
wa

j contains the information of the center, ma
j , the direction vector of the

major axis, da
j , the radius (half length) of the major axis, rj , and the ratio

of the lengths of the minor axes over the length of the major axis, µj , of
the ellipsoid corresponding to this category, as well as the label lj of the
category.

)(
1

p
a

w)(
2

p
a

w)(p
a

jw)(p
a

Na
w

Chromosome p

)(pl j

Level 1

Level 2
)(pm

a

j)(p
a
j)(pn

a
j

Fig. 6. GGAM chromosome structure. At level 2, the category’s weight
wa

j contains the information of the center of the Gaussian curve, ma
j , the

standard deviation vector of the Gaussian curve, σa
j , and the number of

points represented by the Gaussian curve, nj , as well as the label lj of the
category.

applied to the population of the ART trained networks.
Sub-step 2a (Fitness Evaluation): Calculate the fitness of
each ART chromosome (ART trained network). The fitness
function for the p-th ART network is denoted by Fit(p),
and it depends on the PCC(p) and Na(p) values of this
network. Note that, PCC(p) designates the percentage of
correct classification, exhibited by the p-th network, on the
validation set, while Na(p) is the number of categories of the
p-th network. The fitness function Fit(p) of the p-th network
is defined as follows:

Fit(p) = PCC(p)− 0.5(Na(p)− Catmin) (1)

Obviously, this fitness function increases as PCC(p)
increases or as Na(p) decreases. The value of Catmin

is chosen to be equal to the number of classes of the
classification problem at hand. It is evident from the fitness
equation that one percentage of better correct classification
of a network, or two categories less of a network increase the
fitness function by the same amount (i.e., by an amount of 1).
This one of the simplest ways of defining a fitness function
that depends on two measures (generalization of the network
and size of the network) and has been extensively adopted
in the classification literature (e.g., [3]).
Sub-step 2b (Selection): Initialize an empty generation re-
ferred to as the temporary generation. The algorithm searches
for the best NCbest chromosomes (i.e., the chromosomes
having the NCbest highest fitness values) from the current
generation and copies them to the temporary generation
without change.
Sub-step 2c (Cross-Over Operation): The remaining
Popsize−NCbest chromosomes in the temporary generation
are created by crossing over pairs of parents from the current
generation. The parents are chosen using a deterministic tour-
nament selection, as follows: Randomly select two groups of

)(
1

p
a

w)(
2

p
a

w)(
3

p
a

w)(
4

p
a

w)(
5

p
a

w

)'(
1

p
a

w)'(
2

p
a

w)'(
3

p
a

w)'(
4

p
a

w)'(
5

p
a

w

n

n'

p

p

)(
1

p
a

w)(
2

p
a

w)'(
4

p
a

w)'(
5

p
a

w

Fig. 7. GFAM, GEAM, GGAM Crossover implementation. In crossover
the weight vectors of chromosome p, with index smaller than or equal to
index n, and the weight vectors of chromosome p′ with index larger than
n′, are combined (concatenated) to produce a new chromosome.

four chromosomes each from the current generation, and use
as a parent, from each group, the chromosome with the best
fitness value in the group. If it happens that from both groups
the same chromosome is chosen then we choose from one
of the groups the chromosome with the second best fitness
value. For each parent, p, p′, a random cross-over point is
chosen n, n′. Then, all the categories with index greater
than n′ in the chromosome p′ and all the categories with
index less than or equal to index n in the chromosome with
index p are moved into an empty chromosome within the
temporary generation. Notice that crossover is done at level
1 of the chromosome. This operation is pictorially illustrated
in Figure 7.
Sub-step 2d (Category Deletion): The operator Catdel

deletes one of the categories of every chromosome (created
in Step 2c) with probability Pr(Catdel). If a chromosome is
chosen to have one of its categories deleted then this category
is picked randomly from the collection of the chromosome’s
categories; however if the number of categories for this
chromosome, due to deletion, falls below the designated
minimum number of categories Catmin the deletion is
prohibited.
Sub-Step 2e (Category Mutation): Every chromosome
created by step 2d gets mutated as follows:
In GFAM, with probability Pr(Mut) every category is
mutated. If a category is chosen to be mutated, either its u or
v endpoint is selected randomly (with 50% probability) and
then every component of this selected vector gets mutated
by adding to it a small number. This number is drawn from
a Gaussian distribution with mean 0 and standard deviation
0.01. If the component of the chosen vector becomes smaller
than 0 or greater than 1 (after mutation), it is set back to 0
or 1, respectively.
In GEAM, with probability Pr(Mut) every category is
mutated. If a category is chosen to be mutated, then every
component of the ellipsoidal center m gets mutated by
adding to it a small number. This number is drawn from
a Gaussian distribution with mean 0 and standard deviation
0.01. If the component of the chosen vector becomes smaller
than 0 or greater than 1 (after mutation), it is set back to 0
or 1, respectively. Furthermore, the mutated category’s axis
ratio µ or radius r is selected with 50% probability. We add
a small number, to the axis ratio or the radius, if they are
chosen to be mutated. The small number is drawn from a
Gaussian distribution with zero mean and standard deviation

0.01. However if µ, or r, due to mutation, become larger than
1, they are set back to the value of 1, while if they become
smaller than zero we set their value to 0.0001.
In GGAM, with probability Pr(Mut) every category is mu-
tated. If a category is mutated, its mean vector m, or standard
deviation vector σ is selected randomly (50% probability).
Then every component of this selected vector is mutated by
adding to it a small number. This number is drawn from
a Gaussian distribution with mean 0 and standard deviation
0.01. If the component of the chosen vector becomes smaller
than 0 or greater than 1 (after mutation), it is set back to 0
or 1, respectively.
Notice that mutation is applied at level 2 of the chromosome
structure. The label of the chromosome is not mutated be-
cause our initial GA population consists of trained networks,
and consequently we have a lot of confidence in the labels
of the categories that these trained networks have discovered
through the training process.
Step 3: If evolution has not reached the maximum number
of iterations, Genmax, replace the current generation with
the members of the temporary generation and go to step
2a. Otherwise calculate the performance of the best-fitness
network on the test set.

IV. EXPERIMENTS–RESULTS

We conducted a number of experiments to assess the
performance of the genetically engineered ART architectures.
There were two objectives for this experimentation. The
first one is to find proper values for the ranges of two of
the GA parameters, the probability of deleting a category,
Pr(Catdel), and the probability of mutating a category,
Pr(mut). The second objective is to compare GFAM,
GEAM and GGAM performance (for good parameter values)
to that of popular ART architectures, such as ssFAM, ssEAM,
ssGAM (see [2]) and micro-ARTMAP (see [8]).

A. Databases

We have experimented with 19 databases, 16 simulated
databases and 3 real databases. Each dataset in the database
was randomly divided into three subsets; training, validation
and testing. The simulated databases include 12 Gaussian
databases with 2-class, 4-class, and 6-class, and 5%, 15%,
25%, and 40% overlap between classes. The database de-
noted by 4Ci/Sq is a four circle in a square problem, a five
class classification problem. The probability of finding a data
point within a circle or inside the square and outside the
circles is equal to 0.2. The database denoted by 1Ci/Sq is
the benchmark one circle in a square problem, a two class
classification problem. The probability of finding a data point
within a circle or inside the square and outside the circle is
equal to 1/2. The database denoted by 30:70 is a one circle
in a square problem, a two class classification problem. The
probability of finding a data point within a circle or inside
the square and outside the circle is equal to 0.3 and 0.7,
respectively. The database denoted by 20:30:50 is two circles
in a square problem, a three class classification problem.
One of the circles is smaller than the other. The probability

of finding a data point within the small circle, the large
circle, and outside the circles but inside the square is 0.2,
0.3, and 0.5, respectively. The Modified Iris Database, the
ABALONE database and the Pageblocks (PAGE) databases
were obtained from the UCI repository (see [10]), and more
details about these databases can be found there.

B. Selection of the GA Parameters

As we have mentioned above, the first objective of our
experimentation was devoted to the selection of good values
for the GA parameters: the probability of deleting an ART
category, Pr(Catdel), and the probability of mutating an
ART category, Pr(Mut). A statistically sound approach was
used to select good values of these GA parameters. The
details are omitted due to lack of space. The rest of the
GA parameters, such as Popsize, Genmax, and NCbest were
chosen equal to 20, 500, and 3, respectively, after limited
experimentation.

This analysis indicated that the best performing GA
parameter setting for GFAM is Pr(Catdel) = 0.1, and
Pr(Mut) = 0.4, the best performing GA parameter setting
for GEAM is Pr(Catdel) = 0.2, and Pr(Mut) = 0.4,
and the best performing GA parameter setting for GGAM
is Pr(Catdel) = 0.4, and Pr(Mut) = 0.1.

C. Comparison of GART with other ART Architectures

The second objective of our experimentation was to com-
pare GFAM, GEAM, and GGAM with other ART archi-
tectures that have previously appeared in the literature and
addressed the category proliferation problem in ART. The
ART architectures that we chose to compare GFAM, GEAM,
GGAM with are: ssFAM, ssEAM, ssGAM, and safe micro-
ARTMAP. The first three are based on the principle of semi-
supervision, discussed in [2]. Semi-supervision is a term
attributed to learning in an ART architecture (FAM, EAM
or GAM), where categories in ART are allowed to encode
patterns of different labels provided that the percentage of
patterns that belong to the plurality label exceed a certain
threshold. Safe micro-ARTMAP is a Fuzzy ARTMAP that
allows categories in Fuzzy ARTMAP to encode patterns that
are mapped to different labels. In safe micro-ARTMAP (see
[8]) though the mixture of labels allowed in a category, or
in all of the categories is controlled by the entropy of the
category or categories.

For each of the ssFAM, ssEAM, ssGAM, and safe micro-
ARTMAP networks, and for each of the 19 databases, we
performed a number of experiments with different settings
of their network parameter values. For each one of these
network parameter settings we calculated the resulting net-
work’s fitness function (we used the same fitness function
as the one utilized for the GART networks (see equation
1)). For the training of ssFAM, ssEAM, ssGAM, and safe
micro-ARTMAP we used the same training set as the one
used for the GART networks, and for the validation of the
performance of each of the ssFAM, ssEAM, ssGAM, and
safe micro-ARTMAP networks we used the same validation
set as the one used for the GART networks. The parameter

setting of the ssFAM, ssEAM, ssGAM, and safe micro-
ARTMAP network that maximized the fitness function was
chosen as the best parameter setting for the specific database;
the number of categories created by the ”best” parameter
setting network, and its corresponding percentage of correct
classification on the test set are reported in Table I.

The best parameter setting, identified in the previous sub-
section, for GFAM, GEAM, and GGAM was used for each
of the 19 databases. Ten (10) experiments per database were
conducted for 10 different initial seeds of the GA optimiza-
tion process. The network that produced the maximum value
of the fitness function, was deemed as ”best”. The number
of categories of the ”best” GFAM, GEAM and GGAM for
each database and its corresponding performance (PCC) on
the test set are reported in Table I. The PCC results shown
in Table I are truncated to one decimal place.

D. Observations from the Results

Some of the conclusions that can be deduced from the
comparative results, depicted in Table I, are emphasized
below.

GFAM, GEAM and GGAM attain good performance on
all the datasets, and quite often, optimal performance. The
best performing network from the class of GART networks
is GGAM. GGAM and GEAM outperform GFAM on all
the structures, within structure problems. For all the other
problems the differences between GEAM, and GGAM versus
GFAM are not statistically significant. Furthermore, for most
datasets at least one (if not all) the GART networks perform
better (achieving higher PCC with fewer ART categories)
compared to other ART architectures tested (ssFAM, ssEAM,
ssGAM and safe micro-ARTMAP).

What is also worth pointing out is that the better per-
formance of the GART network is attained with reduced
computations as compared with the computations needed by
the alternate methods (ssFAM, ssEAM, ssGAM, safe micro-
ARTMAP). Specifically, the performance attained by ssFAM,
ssEAM, ssGAM and the safe micro-ARTMAP required train-
ing these networks for a large number of network parameter
settings (at least 22,000 experiments) and then choosing
the network that achieved the highest value for the fitness
function that we introduced earlier (through cross-validation).
In GFAM, GEAM and GGAM cases we trained only a small
number of these networks (Popsize = 20 of them), and we
evolved these trained ART networks for Genmax = 500
generations, resulting in fewer computations than the ones
needed for the ssFAM, ssEAM, ssGAM and safe micro-
ARTMAP networks.

V. CONCLUSIONS

In this paper, we have introduced yet another method
of solving the category proliferation problem in ART. This
method relies on evolving a population of trained ART
networks, such as FAM, EAM or GAM. The evolution of
trained ART networks creates an ART network, referred to
as GFAM, or GEAM or GGAM.

TABLE I
BEST RESULTS OBTAINED FROM GFAM, GEAM AND GGAM COMPARED TO BEST RESULTS OBTAINED FROM SAFE µARTMAP, SSFAM, SSEAM

AND SSGAM

Database GFAM GEAM GGAM Safe µAM ssFAM ssEAM ssGAM
Name PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat

G2c-05 95.4 2 95.3 2 95.3 2 95.2 2 94.7 2 94.6 2 94.6 2
G2c-15 85.3 2 85.2 2 85.2 2 85.0 2 85.5 2 85.2 2 85.5 2
G2c-25 75.2 2 75.2 2 75.2 2 74.9 2 75.0 2 75.1 2 75.0 2
G2c-40 62.0 2 61.8 2 61.7 2 61.4 3 59.5 2 59.5 2 59.5 3
G4c-05 95.1 4 95.0 4 95.0 4 95.0 4 94.5 5 94.9 4 95.5 4
G4c-15 84.7 4 84.6 4 84.7 4 83.2 4 82.7 4 82.0 4 83.4 6
G4c-25 75.0 4 75.1 4 75.3 4 74.5 4 70.3 9 72.9 4 72.3 21
G4c-40 59.9 4 59.8 4 75.3 4 58.9 4 57.8 7 54.7 7 59.5 14
G6c-05 94.8 6 94.7 6 94.8 6 92.3 6 87.2 8 93.4 6 94.6 8
G6c-15 84.8 6 85.1 6 85.2 6 80.9 6 80.5 6 82.0 7 83.4 9
G6c-25 74.3 6 74.1 6 74.4 6 67.9 6 70.2 15 71.4 7 71.2 13
G6c-40 60.1 6 59.9 6 60.0 6 54.0 6 55.1 17 49.3 7 55.1 13
4Ci/Sq 95.0 9 99.1 7 98.9 6 95.4 8 87.2 18 94.6 5 93.4 12
1Ci/Sq 97.7 7 99.6 3 99.8 2 94.7 8 92.9 8 97.0 8 91.0 8
30:70 97.9 6 99.9 2 99.9 2 96.8 8 93.2 8 97.1 8 92.3 8

20:30:50 97.5 5 98.1 3 99.5 3 97.2 6 90.2 12 97.0 3 95.6 9
MOD-IRIS 95.3 2 95.3 2 94.9 2 94.9 2 94.7 8 94.7 2 94.7 2
ABALONE 61.8 3 62.2 3 62.6 3 58.1 3 60.0 6 58.8 3 56.3 2

PAGE 96.7 5 95.0 5 96.2 5 92.9 5 87.9 3 93.8 2 94.3 5

We have experimented with a number of databases that
helped us identify good default parameter settings for the
evolution of FAM, EAM or GAM. We defined a fitness
function that gave emphasis to the creation of a small size
ART networks which exhibited good generalization. In the
evolution of ART trained networks, we used a unique (and
needed) category operator, referred to as Catdel operator
(this operator allowed us to evolve into ART networks of
smaller size). Our method for creating GFAM, GEAM and
GGAM resulted in a networks that performed well on a
number of classification problems, and on a few of them
it performed optimally.

Furthermore, GFAM was found to be superior to a number
of other ART networks (ssFAM, ssEAM, ssGAM, safe
micro-ARTMAP) that have been introduced into the liter-
ature to address the category proliferation problem in ART.
More specifically, GFAM, GEAM, and GGAM gave a better
generalization performance (in almost all problems tested)
and a smaller than or equal size network (in all problems
tested), compared to these other ART networks, requiring
reduced computational effort to achieve these advantages.
Finally, it is worth mentioning that the proposed approach
of genetically engineering ART architectures can be applied
to other exemplar-based neural network classifiers, such as
Radial Basis Function (RBF) Neural Networks (see chapter
4 of [5]).

ACKNOWLEDGMENT

This work was supported by the NSF grants: CRCD:
0203446, CCLI: 0341601, DUE: 05254209, and IIS:

0647120.

REFERENCES

[1] Anagnostopoulos GC (2001) Novel Approaches in Adaptive Reso-
nance Theory for Machine Learning. Unpublished Doctoral Thesis,
University of Central Florida, Orlando.

[2] G. C. Anagnostopoulos, M. Bharadwaj, M. Georgiopoulos, S. J.
Verzi and G. L. Heileman, “Exemplar-based Pattern Recognition via
Semi-Supervised Learning,” Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks (IJCNN ’03), vol.
4, pp. 2782–2787, July 20–24, Portland, Oregon.

[3] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone. Classifi-
cation and Regression Trees. Wadsworth, 1984.

[4] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds and
D. B. Rosen, “Fuzzy ARTMAP: A Neural Network Architectur for
Incremental Supervised Learning of Analog Multidimensional Maps,”
IEEE Transactions on Neural Networks vol. 3, pp. 698–713, 1992.

[5] C. Christodoulou and M. Georgiopoulos. Applications of Neural
Networks in Electromagnetics. Artech House, January 2001.

[6] A. Al-Daraiseh, M. Georgiopoulos, A. S. Wu, G. Anagnostopoulos,
and M. Mollaghasemi, “GFAM: A genetic optimization of Fuzzy
ARTMAP”, Proceedings of the 2006 WCCI Conference, Vancouver,
Canada, July pp. 16–21.

[7] D. E. Goldberg, Genetic Algorithms in search, optimization, and
Machine Learning, Addison-Wesley, Reading, MA

[8] E. Gomez-Sanchez, J. M. Cano-Izquierdo and J. Lopez-Coronado
“Safe-uARTMAP: A new solution for reducing category proliferation
in Fuzzy ARTMAP,” Proceedings of the International Joint Conference
on Neural Networks, 2001.

[9] S. Grossberg, “Adaptive Pattern Classification and Universal Recod-
ing, II: Feedback, Expectation, Olfaction, and Illusions,” Biological
Cybernetics vol. 23, pp. 187–202, 1976.

[10] D. J. Newman, S. Hettich, C. L. Blake and C. J.
Merz, UCI Repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html] Irvine, CA:
University of California, 1998.

[11] J. R. Williamson, “Gaussian ARTMAP: A Neural Network for Fast
Incremental Learning of Noisy Multidimensional Maps,” Neural Net-
works, vol. 9, pp. 881–897, 1996.

	Main Menu
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

