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Summary. This chapter focuses on the evolution of ARTMAP architectures, us-
ing genetic algorithms, with the objective of improving generalization performance
and alleviating the ART category proliferation problem. We refer to the resulting
architectures as GFAM, GEAM, and GGAM. We demonstrate through extensive
experimentation that evolved ARTMAP architectures exhibit good generalization
and are of small size, while consuming reasonable computational effort to produce
an optimal or a sub-optimal network. Furthermore, we compare the performance of
GFAM, GEAM and GGAM with other competitive ARTMAP structures that have
appeared in the literature and addressed the category proliferation problem in ART.

1 Introduction

Adaptive resonance theory (ART) was developed by Grossberg (see [18]).
Some of the ART architectures that have appeared in the literature include
Fuzzy ARTMAP (FAM) (see [10]), Ellipsoidal ARTMAP (EAM) (see [1]),
and Gaussian ARTMAP (GAM) (see [36]). All of these ART architectures
possess a number of desirable properties, such as they can solve arbitrarily
complex classification problems, they converge quickly to a solution (within a
few presentations of the list of input/output patterns belonging to the training
set), they have the ability to recognize novelty in the input patterns presented
to them, they can operate in an on-line fashion (new input patterns can be
learned by the ART system without retraining with the old input/output
patterns), and they produce answers that can be explained with relative ease.

Since, Fuzzy ARTMAP’s inception in 1992, a number of ART related pa-
pers have appeared in the neural network literature, some of which (as the
ones mentioned above) modified the Fuzzy ARTMAP neural network so as
to improve its performance. A related, important contribution in the ART
literature is the one contributed by Petridis and Kaburlasos in 1998 ([31]),
where they introduced the Fuzzy Lattice Neural Network (FLNN), a cross
fertilization of fuzzy set theory and lattice theory, which can handle general
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types of data in addition to N -dimensional vectors. Most of the lattice work
of Kaburlasos is included in a recently published book by Springer Verlag (see
[21]) where a unified, cross-fertilizing approach for knowledge representation
and modeling based on lattice theory is presented with emphasis on cluster-
ing, classification and regression applications. Some of Kaburlasos’ recent work
related with fuzzy lattice reasoning (FLR), which is the algorithm/software
applied on a FLNN, can be found in [22].

The above references paint only an incomplete picture of the work that
researchers have contributed into the ART literature, since Fuzzy ARTMAP’s
inception. However, since our goal in this chapter is to focus on the category
proliferation problem in ART we are limiting, from this point on, our referrals
to papers that have addressed this ART problem. Quite often the category pro-
liferation problem in ART is connected with the issue of overtraining in ART.
Over-training happens when ART is trying to learn the training data perfectly
at the expense of degraded generalization performance (i.e., classification ac-
curacy on unseen data) and also at the expense of creating many categories
to represent the training data (leading to the category proliferation problem).
Categories in ART are formed in order to compress the input data prior to
mapping these compressed data to their respective outputs. The categories
in Fuzzy ARTMAP are hyperboxes, in Ellipsoidal ARTMAP are ellipsoids,
and in Gaussian ARTMAP they are Gaussian multi-dimensional probability
distributions represented by their center points and widths (means and stan-
dard deviations) across every dimension. A number of authors have tried to
address the category proliferation problem in ART. Amongst them we refer to
the work by Marriott and Harrison, 1995, (see [28]), where the authors elim-
inate the match tracking mechanism of Fuzzy ARTMAP when dealing with
noisy data; the work by Charalampidis et al., 2001 (see [13]), where the Fuzzy
ARTMAP equations are appropriately modified to compensate for noisy data;
the work by Verzi, et al., 2001 (see [35]), Anagnostopoulos, et al., 2002 and
2003 (see [2], [3]), and Gomez-Sanchez et al., (see [16], [17]), where different
ways are introduced of allowing the ART categories to encode patterns that
are not necessarily mapped to the same output (label); the work by Koufakou,
et al., 2001, (see [25]), where cross-validation is employed to avoid the over-
training/category proliferation problem in Fuzzy ARTMAP; and the work by
Carpenter, et al., 1998 (see [11]), Williamson, 1997 (see [37]), Parrado, et al.,
2003 (see [30]), where the ART structure is changed from the winner-take-all
to a distributed version and simultaneously slow learning is employed with
the intent of creating fewer ART categories and reducing the effect of noisy
patterns.

In this paper, we propose the use of genetic algorithms (see [15]) to solve
the category proliferation problem in ART architectures, such as FAM, EAM
and GAM.

Genetic algorithms (GAs) are a class of population-based stochastic search
algorithms that are developed from ideas and principles of natural evolution.
An important feature of these algorithms is their population based search
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strategy. Individuals in a population compete and exchange information with
each other in order to perform certain tasks. Genetic algorithms have been
extensively used to evolve artificial neural networks. For a thorough exposition
of the available research literature on evolving neural networks the interested
reader is advised to consult the work of Yao (see [40]), 1999. In [40], the
author distinguishes three different strategies in evolving neural networks.
The first strategy is the one used to search for the weights of the neural
network (see for example [32]). The second one is the one used to design the
structure of the network (see for example [27] where only the structures are
evolved, and [39], where both the structure and the interconnection weights
are evolved), and the third one is the one where the learning rules of the
neural network are evolved (see [19]). Furthermore, GAs may also be used to
select the features that are input to the neural network. Since the pioneering
work by Siedlecki and Sklanski (see [33]), genetic algorithms have been used
for many selection problems using neural networks (see [6], [38]), and other
classifiers, such as decision trees (see [4]), k-nearest neighbors (see [24]), and
Naive Bayes classifiers (see [20], [8]).

To the best of our knowledge, work that utilizes GAs and ART neural
network architectures is rather limited. For instance, in Liu, et al., 2003 (see
[26]), a GA algorithm was employed to appropriately weigh attributes of input
patterns before they were fed into the input layer of Fuzzy ARTMAP. The
results reported reveal that this attribute weighting was beneficial because
it produced a trained ART architecture of improved generalization. Further-
more, in Burton and Vladimirova, 1997 (see [7]), a Fuzzy ART neural network
is employed as a GA fitness function evaluator, however the brevity of the pub-
lished paper did not allow for the discussion of the details pertinent to this
work.

In our work here, we use GAs to evolve simultaneously the weights, as
well as the topology of the ART neural networks, such as FAM, EAM or
GAM. In contrast to the feed-forward neural networks that have been ex-
tensively evolved, the aforementioned ART neural networks have a number of
topological constraints, such as (a) they have one hidden layer of nodes, called
category representation layer, and (b) every interconnection weight value from
every node of the input layer to a node in the hidden layer is important (e.g.,
in FAM they are representing the minimum or the maximum of the values
of input patterns across every dimension that were encoded by this node).
Consequently, the only element of the ART’s topology that can be evolved
is the number of nodes in the category representation layer of the ART net-
work. Furthermore, in our application we start with a population of trained
ARTs, whose number of nodes in the hidden layer and the values of the in-
terconnection weights converging to these nodes are fully determined (at the
beginning of the evolution) by the ART’s training rules. To this initial pop-
ulation of ART networks, GA operators are applied to modify these trained
ART architectures (i.e., number of nodes in the hidden layer, and values of
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the interconnection weights) in a way that encourages better generalization
and smaller size architectures.

It is worth reminding the reader that, as with many neural network archi-
tectures, the knowledge in ART is stored in its interconnection weights that
have a very interesting geometrical interpretation (see [9], [2]). In particular,
the interconnection weights in Fuzzy ARTMAP (converging to the nodes in
the hidden layer) represent the lower and upper end-points of hyper-rectangles
(referred to as categories) that enclose within their boundaries clusters of data
that are mapped to the same label. Furthermore, the interconnection weights
in Ellipsoidal ARTMAP represent the size and the direction of ellipsoids that
enclose within their boundaries clusters of data that are mapped to the same
label. Finally, the interconnection weights in Gaussian ARTMAP represent
the mean vectors and variance vectors of Gaussianly distributed data that are
mapped to the same label. Eventually, the evolution of these trained ARTs
produces ART architectures, referred to as GFAM, GEAM or GGAM. GFAM,
GEAM and GGAM are extracted from the last generation of the ART evolu-
tion, as the Fuzzy ARTMAP, Ellipsoidal ARTMAP, or Gaussian ARTMAP,
respectively, that attained the highest fitness value. The fitness value of an
ART network is defined in a way that attains higher values for better gener-
alizing and smaller size ART networks.

It is apparent that, in evolving neural network architectures, one has to
decide on the genotype representation scheme for the neural network architec-
ture under consideration, on the genetic operators used to evolve these neural
network architectures, and on the fitness function used to guide this evolution.
In this paper we address these issues in a manner that fits the characteristics
of the specific ART neural network, under consideration, and our ultimate
objective of reducing category proliferation in ART, while preserving good
generalization performance. In addition to successfully addressing the issues
related with the evolution of ART structures, mentioned above, we also com-
pare in this paper the final product of ART’s evolution with other approaches
proposed in the ART literature that also addressed the category proliferation
problem in ART. This comparison is based on the accuracy of the architectures
and size of the architectures produced by these techniques. This comparison
demonstrates that GFAM, GEAM, and GGAM perform well compared to a
number of other approaches proposed in the literature that have claimed that
they address the ART category proliferation problem.

The organization of this chapter is as follows: In section 2 we empha-
size some of the basics of the ART architectures (FAM, EAM, GAM). In
Section 3 we also provide the step-by-step description of the evolved ART
architectures, such as GFAM, GEAM and GGAM, and we introduce the fit-
ness function used for the evolution of ART architectures. In Section 4, we
describe the experiments and the datasets used to assess the performance of
GFAM, GEAM, and GGAM. In particular, in this section we explain the ex-
periments that we conducted to come up with good default parameter values
for the probability of category mutation, and for the probability with which
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a category is deleted in the evolution of ART architectures. Then for these
good default parameter values we assess the performance of these genetically
engineered architectures, and we offer performance comparisons between the
GFAM, GEAM and GGAM and other ART architectures that were proposed
as solutions for the category proliferation problem in ART. In Section 5, we
summarize our findings, and we offer some conclusive remarks.

2 ART Preliminaries

The Fuzzy ARTMAP (FAM) neural network architecture was introduced by
Carpenter and Grossberg in their seminal paper ( see [10]). Since its introduc-
tion, other ART architectures have been introduced into the literature and the
focus on this paper is on Fuzzy ARTMAP and two other ART architectures El-
lipsoidal ARTMAP (see [1]) and Gaussian ARTMAP (see [36]). Our objective
in this paper is to illustrate how we can design genetically engineered ART ar-
chitectures from a population of Fuzzy ARTMAPs, or Ellipsoidal ARTMAPs,
or Gaussian ARTMAPs. We assume that the reader is familiar with all these
ART architectures. In this section we will only describe the specifics of ART
architectures that are needed to understand the genetically engineered ART
structures, introduced in Section 3. For simplicity we refer to all these ART
architectures as ART and we use their specific name (FAM, or EAM or GAM)
only when we want to discriminate one from the other.
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Fig. 1. The block diagram of a FAM Architecture

The block diagram of an ART architecture is shown in Figure 1 (for FAM)
and Figure 2 (for EAM and GAM) . Notice that this block diagram is simpler
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Fig. 2. The block diagram of an EAM or GAM Architecture

than the block diagram of FAM, reported in Carpenter and Grossberg in 1992,
and it has been adopted by various researchers in the field (e.g., Kasuba,
1993 [23], as well as Taghi, et al., 2003 [34]) because it can completely and
succinctly describe the functionality of a variety of ART architectures, dealing
with classification problems. As the focus of our paper is on classification
problems, we also adopt this simpler ART architecture. The ART architecture,
depicted in Figures 1 (FAM) and 2 (EAM or GAM), has three major layers.
The input layer F a

1 where the input patterns (designated by I) are presented,
the category representation layer F a

2 , where compressed representations of
these input patterns (designated as wa

j ), are formed, and the output layer F b
2

that holds the labels of the categories formed in the category representation
layer. An additional layer, not shown in Figures 1 and 2, and designated
by F a

0 , is a pre-processing layer and its functionality is to pre-process the
input patterns, prior to their presentation to ART. The first level of ART
pre-processing takes the input vector and normalizes it so that each one of
its components lies in the interval [0, 1], and that is the only level of pre-
processing needed for EAM and GAM. The second level of pre-processing
(needed only for FAM) takes the normalized input vector, referred to as a
and complementary encodes it, by appending to it another vector, referred to
as ac. The complement of vector a is defined as

ac = (1− a(1), 1− a(2), ..., 1− a(Ma)) (1)

where

a = (a(1), a(2), ..., a(Ma)) (2)
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and Ma, in the above equations, stands for the dimensionality of the input
pattern of the pattern classification task under consideration. It is worth men-
tioning that the complementary encoding of the input patterns is necessary
for the successful operation of Fuzzy ARTMAP (for an explanation see [14]),
however it is not needed by either EAM or GAM. Therefore, in this paper we
assume that the inputs to FAM are normalized and complementary encoded,
while the inputs to EAM and GAM are simply normalized (see Figure 1 for
FAM, and Figure 2 for EAM and GAM). Note that normalization of inputs
prior to their presentation to a neural network is common practice in the
neural network literature.

ART can operate in two distinct phases: the training phase and the per-
formance (test) phase. The training phase of ART can be described as follows:
Given a set of inputs and associated label pairs, I1, label(I1), I2, label(I2), ...,
IPT , label(IPT) (called the training set), we want to train ART to map every
input pattern of the training set to its corresponding label. To achieve the
aforementioned goal we present the training set to the ART architecture re-
peatedly. That is, we present I1 to F a

1 , label(I1) to F b
2 , then I2 to F a

1 , label(I2)
to F b

2 , and finally, IPT to F a
1 , label(IPT )to F b

2 . We present the training set to
the ART network as many times as it is necessary for ART to correctly clas-
sify these input patterns. The task is considered accomplished (i.e., learning
is complete) when the weights in ART do not change during a training set
presentation, or after a specific number of list presentations is reached. The
performance phase of ART works as follows: Given a set of input patterns
(referred to as the test set), we want to find the ART output (label) produced
when each one of the aforementioned test patterns is presented at its layer.
In order to achieve this goal, we present the test set to the trained ART net-
work and we observe the network’s output. For the purposes of this paper, we
assume that the reader knows the details of the training/performance phases
in ART (FAM, EAM or GAM).

4
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Fig. 3. A hyperbox category representation in FAM. This hyperbox has encoded
patterns I1, I2, I3, I4. In the figure, the a portion of these input patterns is depicted,
as well as the lower end-point uj and the upper endpoint vj of this hyperbox.
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Fig. 4. An ellipsoidal category representation in EAM. This ellipsoid has encoded
patterns I1, I2, I3, I4. In the figure, the center point mj and the direction vector dj

are shown, while the radius of the major axis, and the ratio of lengths of minor to
major axis are easily deduced from the figure.
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Fig. 5. A Gaussian curve category representation in GAM. This Gaussian distri-
bution has encoded patterns I1, I2, I3, I4. In the figure, the center point mj and the
standard deviation vector σj of the Gaussian curve are shown, while the number of
points nj that this Gaussian curve represents is easily deduced as being equal to 4.

As we mentioned above, the weights (templates) in ART create compressed
representations of the input patterns presented to the ART network during
its training phase. These compressed representations have a geometrical inter-
pretation. In particular, every node (category) in the category representation
layer of Fuzzy ARTMAP (FAM) has template weights that completely define
the lower and upper endpoints of a hyperbox. This hyperbox includes within
its boundaries all the input patterns that chose this category as their repre-
sentative category in FAM’s training phase and were subsequently encoded
by this category. In Figure 3, we show the hyperbox of a category in a FAM
architecture (2-D example), with lower endpoint uj , and upper endpoint vj ,
and the input patterns (the I’s that it has encoded). Also, every node (cat-
egory) in the category representation layer of Ellipsoidal ARTMAP (EAM)
has template weights that completely define an ellipsoid through its center,
direction of major axis, length of the major axis, and ratio of lengths of minor
axes to major axis in the ellipsoid. This ellipsoid includes within its bound-
aries all the input patterns that chose this category as their representative
category in EAM’s training phase and were subsequently encoded by this cat-
egory. In Figure 4, we show the ellipsoid of a category in a EAM architecture
(2-D example), with center mj , direction of the major axis dj , length of the
major axis, represented by its radius rj (implied from the figure), ratio of the
lengths of minor axes to major axis µ (implied from the figure), and the input
patterns I’s that it has encoded. Finally, every node (category) in the cate-
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gory representation layer of Gaussian ARTMAP has template weights that
define the mean vector, the standard deviation vector of a multi-dimensional
Gaussian distribution, and the number of points that are associated with this
Gaussian distribution. The mean vector of this Gaussian distribution and the
standard deviation vector of this Gaussian distribution are defined in terms
of the means and the standard deviations (across every dimension) of the
points that chose this node (category) as their representative category, while
the number of the points associated with this Gaussian distribution are the
number of points that chose this category as their representative category.
In Figure 5, we show the Gaussian distribution of a category in a GAM ar-
chitecture (1-D example), with mean mj , standard deviation σj , number of
points nj (in our example nj = 4), and the input patterns (i.e., I’s) that it
has encoded.
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Fig. 6. FAM Learning (2-D Example): (a) A category with 0 size; (b) Introducing
a new pattern I2, represented by a2; (c) The category expands to include a2; (d)
Since new pattern I3, represented by a3 is inside the category, it doesn’t change its
size; (e) New Pattern I4, represented by a4 is presented; (f) Since a4 is outside the
category, the category is expanded to include a4, within its boundaries

In essence, at the beginning of training, every category of FAM starts as a
trivial hyperbox (equal to a point) and subsequently it expands to incorporate
within its boundaries all the input patterns that in the training phase choose
this hyperbox as their representative hyperbox, and are encoded by it (see
Figure 6, where the category expansion of FAM is shown for an example
dataset). The size of hyperbox is measured as the sum of the lengths of its
sides.

Similarly, at the beginning of training, every EAM category starts as a
trivial ellipsoid (equal to a point) and subsequently it expands to incorporate
within its boundaries all the input patterns that in the training phase chose
this ellipsoid as their representative ellipsoid, and are encoded by it (see Figure
7, where the category expansion of EAM is shown for an example dataset).
The size of the ellipsoid is measured as the length of the major axis.

Finally, at the beginning of training, every category of GAM starts as
a collection of Gaussianly distributed data, with mean equal to the input
pattern that was first encoded by this category, and a small standard deviation
vector (part a of Figure 8); as training progresses in GAM this GAM category
is modified to incorporate the information of the additional input patterns
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Fig. 7. EAM Learning (2-D Example): (a) A category with 0 size; (b) Introducing
a new pattern I2; the category expands to include I2; (c) Introducing a new pattern
I3; since the category includes I3, it does not change its size; (d) Pattern I4 is
presented; since this pattern is outside the category, the category is expanded to
include I4 within its boundaries.
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Fig. 8. GAM Learning (a). A category with 0 size ; (b) Introducing a new pattern
I2 ; the category characteristics (mean, standard deviation, of the Gaussian curve,
as well as number of points encoded by the Gaussian curve) change to include the
new knowledge that the new input pattern brings.

that are encoded by it (see part b of Figure 8 for an illustration of how the
GAM category is modified for an example dataset). At any point in time
the mean vector of this Gaussian distribution, corresponding to a category, is
equal to the mean vector of all the input patterns encoded by the category,
and the variance vector of the Gaussian distribution is equal to the variance
vector corresponding to the input patterns that were encoded by the category.
The ability of the category to encode new input patterns depends on the
Mahalanobis distance of an input pattern from the mean/variance vectors of
the Gaussian distribution corresponding to the category.

It is also worth mentioning that the categories in FAM, EAM and GAM
are allowed to expand up to a point allowed by a threshold, controlled by a
network parameter denoted as the baseline vigilance parameter. This param-
eter assumes values in the interval [0, 1]. Small values of this parameter allow
the creation of large categories, while large values of this parameter allow the
creation of small categories. In the one extreme when ρ̄a is equal to 0, a FAM
or EAM category, equal to the whole input space, could be created, while at
the other extreme when ρ̄a is equal to 1 only point categories are formed.
In GAM, small values of this parameter allow more and more patterns to be
encoded by a GAM category, while large values of this parameter allow only
a few patterns to be encoded by a GAM category. It turns out that this pa-
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rameter has a significant effect on the number and type of categories formed,
and consequently it affects the performance of these networks.

The performance of ART networks is measured in terms of the number of
categories created in its training phase (small number of categories is good),
and how well it generalizes on unseen data (high generalization accuracy is
good). In the process of discovering GFAM, GEAM or GGAM we are starting
from a population of trained FAM, EAM or GAM networks that have been
trained with different baseline vigilance parameter values, and different orders
of pattern presentations of the training data (it has been a known fact that
performance in ART is affected by the order according to which training data
are presented to an ART architecture).

The performance of Fuzzy ARTMAP (Ellipsoidal ARTMAP) is also af-
fected by another network parameter called choice parameter. In the training
of the Fuzzy ARTMAP (Ellipsoidal ARTMAP) networks used in our experi-
ments, we fixed this choice parameter to the value of 0.1 (0.01). The perfor-
mance of Ellipsoidal ARTMAP is also affected by another network parameter
called length of minor to major axis parameter (denoted by the symbol µ),
and expressing the ratio of lengths of minor axes versus major axis of the el-
lipsoid that corresponds to an EAM category. In the training of the Ellipsoidal
ARTMAP networks used in our experiments, we fixed this choice parameter
to the value of 1. The performance of Gaussian ARTMAP is also affected by
another network parameter called initial variance parameter (denoted by the
symbol γ), and representing the initial variance of a GAM category (after it
has encoded a single input pattern). In the training of the Gaussian ARTMAP
networks used in our experiments, we fixed this choice parameter to the value
of 0.6.

3 Evolution of ART Architectures

In the rest of the paper we assume that for every classification problem we are
provided with a training set, a validation test, and a test set. The training set
is used for the training of GFAM, GEAM, and GGAM architectures under
consideration. The validation set is used to optimize the produced GFAM,
GEAM or GGAM network in ways that will become apparent in the following
text. Finally, the test set is used to assess the performance of the optimized
GFAM, GEAM, or GGAM network created.

GFAM, GEAM, and GGAM are evolved FAM, EAM, GAM networks, re-
spectively, that are produced by applying, repeatedly, genetic operators on an
initial population of trained FAM, EAM, or GAM networks. GFAM, GEAM,
GGAM use tournament selection with elitism, as well as genetic operators,
including crossover and mutation. In addition, GFAM, GEAM and GGAM
use a special operator, Catdel; this special operator is needed so that cate-
gories could be destroyed in the ART architectures, thus leading us, through
evolution, to smaller ART structures.
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To better understand how ART (FAM, or EAM, or GAM) is genetically
designed, we resort to a step-by-step description of this design. The genetic
design of ART can be articulated through a sequence of basic steps, defined
succinctly below. Before we proceed, appropriate terminology is needed and
is outlined in Appendix A.

The following pseudo-code shows the basic steps of GFAM, GEAM and
GGAM :

begin

1: Generate-Initial-Population()
2: Repeat
2.a. Evaluate-Fitness-And-Sort()
2.b. Selection()
2.c. CrossOver()
2.d. Catdel()
2.e. Mutate()

Until [max number of generations reached]

3. Return bestNetwork
end

Step 1: Generate Initial Population: The algorithm starts by training
Popsize ARTMAP networks (FAM, EAM or GAM), each one of them trained
with a different value of the baseline vigilance parameter ρ̄a, and order of
training pattern presentation. In particular, we first define ρ̄inc

a = ρ̄max
a −ρ̄min

a

Popsize−1 ,
and then the baseline vigilance parameter of every network is determined by
the equation ρ̄min

a + iρ̄inc
a , where i ∈ {1, 2, ..., Popsize− 1}. The choice param-

eter in a FAM network was chosen to be equal to 0.1. The choice parameter
in an EAM network was chosen to be equal to 0.01. The ratio of the length
of the minor axes to major axes in EAM was chosen equal to 1. The initial
value of the standard deviation γ in a GAM network is chosen to be equal
to 0.6. In our experiments with GFAM and GEAM we chose ρ̄min

a = 0.1 and
ρ̄max

a = 0.95, while in our experiments with GGAM we chose ρ̄min
a = 0.1 and

ρ̄max
a = 0.75.

We assume that the reader is familiar with how training of FAM, EAM and
GAM networks is accomplished, and thus the details here are omitted. Once
the Popsize networks are trained, they need to be converted to chromosomes
so that they can be manipulated by the genetic operators. The following is a
description of the encoding schemes used in GFAM, GEAM and GGAM:

• GFAM uses a real number representation to encode the networks. Each
FAM chromosome consists of two levels, level 1 containing all the categories
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of the FAM network, and level 2 containing the lower and upper endpoints
of the hyperboxes, representing every category in level 1, as well as the
label of every category in level 1 (see Figure 9). We denote a category
of a trained FAM network with index p, 1 ≤ p ≤ Popsize, by wp

j , where
wa

j (p) = (ua
j (p), (va

j (p))c, lj(p)), where ua
j (p), and va

j (p) are the lower and
upper endpoints of the hyperbox corresponding to this category, and lj(p)
is the label of this category.

)(1 p
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jv )( pl j
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Fig. 9. GFAM chromosome structure. At level 2, the category’s weight wa
j contains

the information about the lower end-point, ua
j , and the upper end-point, va

j , of the
hyperbox corresponding to the category, as well as the label lj of the category.

• GEAM also uses a real number representation to encode the networks.
Each EAM chromosome consists of two levels, level 1 containing all the
categories of the EAM network, and level 2 containing the center, direction,
radius of the major axis, the ratio of the minor axes to major axis of every
category (ellipsoid) in level 1, as well as the label of the category (see Figure
10). We denote the category of a trained EAM network with index p, 1 ≤
p ≤ Popsize, by wa

j (p) , where wa
j (p) = (ma

j (p),da
j (p), ra

j (p), µa
j (p), lj(p)).

The first four components of this vector are the center, direction of the
major axis, half length of the major axis, and ratio of the lengths of minor
axes to major axis of the ellipsoid that represents this category, while the
fifth component of this vector is the label of this category.

• GGAM also uses a real number representation to encode the networks.
Each GAM chromosome consists of two levels, level 1 containing all the
categories of the GAM network, and level 2 containing the mean, standard
deviation, number of training patterns, and the label of every category
(Gaussian curve) in level 1 (see Figure 11). We denote the category of a
trained GAM network with index p, 1 ≤ p ≤ Popsize, by wa

j (p) , where
wa

j (p) = (ma
j (p), σa

j (p), na
j (p), lj(p)) . The first three components of this

vector are the mean, standard deviation, and number of patterns that chose
this category as their representative category, while the fourth component
of this vector is the label of the category.

In this step, we eliminate all single-point categories in the trained networks,
referred to as cropping the chromosomes. Since our ultimate objective is to
design a network that reduces the network size and improves generalization
we discourage at this stage the creation of single-point categories. Our exper-
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Fig. 10. GEAM chromosome structure. At level 2, the category’s weight wa
j contains

the information of the center, ma
j , the direction vector of the major axis, da

j , the
radius (half length) of the major axis, rj , and the ratio of the lengths of the minor
axes over the length of the major axis, µj , of the ellipsoid corresponding to this
category, as well as the label lj of the category.

)(1 p
a

w )(2 p
a

w )( p
a

jw )( p
a

Na
w

Chromosome p

)( pl j

Level 1

Level 2)(pm
a

j )( pa
j )( pn

a
j

Fig. 11. GGAM chromosome structure. At level 2, the category’s weight wa
j con-

tains the information of the center of the Gaussian curve, ma
j , the standard devia-

tion vector of the Gaussian curve, σa
j , and the number of points represented by the

Gaussian curve, nj , as well as the label lj of the category.

iments have shown that cropping single-point categories is beneficial because
it speeds-up the convergence of the GA.

Step 2 (Apply Genetic Operators): In this step a GA is applied to the
population of the ART trained networks.

• Sub-step 2a (Fitness Evaluation): Calculate the fitness of each ART
chromosome (ART trained network). The fitness function for the p-th ART
network is denoted by Fit(p), and it depends on the PCC(p) and Na(p)
values of this network. Note that, PCC(p) designates the percentage of
correct classification, exhibited by the p-th network, on the validation set,
while Na(p) is the number of categories of the p-th network. The fitness
function Fit(p) of the p-th network is defined as follows:

Fit(p) = PCC(p)− 0.5(Na(p)− Catmin) (3)

Obviously, this fitness function increases as PCC(p) increases or as Na(p)
decreases. The value of Catmin is chosen to be equal to the number of
classes of the classification problem at hand. It is evident from the fitness
equation that one percentage of better correct classification of a network,
or two categories less of a network, increase the fitness function by the
same amount (i.e., by an amount of 1). This is one of the simplest ways of
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defining a fitness function that depends on two measures (generalization
of the network and size of the network) and has been extensively adopted
in the classification literature (e.g., see [5]).
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Fig. 12. GFAM, GEAM, GGAM Crossover implementation. In crossover the weight
vectors of chromosome p, with index smaller than or equal to index n, and the weight
vectors of chromosome p′ with index larger than n′, are combined (concatenated)
to produce a new chromosome.

• Sub-step 2b (Selection): Initialize an empty generation referred to as
the temporary generation. The algorithm searches for the best NCbest chro-
mosomes (i.e., the chromosomes having the NCbest highest fitness values)
from the current generation and copies them to the temporary generation
without change.

• Sub-step 2c (Cross-Over Operation): The remaining Popsize−NCbest

chromosomes in the temporary generation are created by crossing over
pairs of parents from the current generation. The parents are chosen us-
ing a deterministic tournament selection, as follows: Randomly select two
groups of four chromosomes each from the current generation, and use as
a parent, from each group, the chromosome with the best fitness value in
the group. If it happens that from both groups the same chromosome is
chosen then we choose from one of the groups the chromosome with the
second best fitness value. If two parents with indices p, p′ are crossed over,
two random numbers n, n′ are generated from the index sets 1, 2, ..., Na(p)
and 1, 2, ..., Na(p′), respectively. Then, all the categories with index greater
than index n′ in the chromosome with index p′ and all the categories with
index less than or equal to index n in the chromosome with index p are
moved into an empty chromosome within the temporary generation. No-
tice that crossover is done at level 1 of the chromosome. This operation is
pictorially illustrated in Figure 12.

• Sub-step 2d (Category Deletion): The operator Catdel deletes one of
the categories of every chromosome (created in Step 2c) with probabil-
ity Pr(Catdel). If a chromosome is chosen to have one of its categories
deleted then this category is picked randomly from the collection of the
chromosome’s categories; however if the number of categories for this chro-
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mosome, due to deletion, falls below the designated minimum number of
categories Catmin the deletion is prohibited.

• Sub-Step 2e (Category Mutation): Every chromosome created by step
2d gets mutated as follows:
– In GFAM, with probability Pr(Mut) every category is mutated. If a

category is chosen to be mutated, either its u or v endpoint is se-
lected randomly (with 50% probability) and then every component of
this selected vector gets mutated by adding to it a small number. This
number is drawn from a Gaussian distribution with mean 0 and stan-
dard deviation 0.01. If the component of the chosen vector becomes
smaller than 0 or greater than 1 (after mutation), it is set back to 0 or
1, respectively.

– In GEAM, with probability Pr(Mut) every category is mutated. If a
category is chosen to be mutated, then every component of the ellip-
soidal center m gets mutated by adding to it a small number. This
number is drawn from a Gaussian distribution with mean 0 and stan-
dard deviation 0.01. If the component of the chosen vector becomes
smaller than 0 or greater than 1 (after mutation), it is set back to 0
or 1, respectively. Furthermore, the mutated category’s axis ratio µ
or radius r is selected with 50% probability. We add a small number,
to the axis ratio or the radius, if they are chosen to be mutated. The
small number is drawn from a Gaussian distribution with zero mean
and standard deviation 0.01. However if µ, or r, due to mutation, be-
come larger than 1, they are set back to the value of 1, while if they
become smaller than zero we set their value to 0.0001.

– In GGAM, with probability Pr(Mut) every category is mutated. If a
category is mutated, its mean vector m, or standard deviation vector
σ is selected randomly (50% probability). Then every component of
this selected vector is mutated by adding to it a small number. This
number is drawn from a Gaussian distribution with mean 0 and stan-
dard deviation 0.01. If the component of the chosen vector becomes
smaller than 0 or greater than 1 (after mutation), it is set back to 0 or
1, respectively.
Notice that mutation is applied at level 2 of the chromosome structure.
The label of the chromosome is not mutated because our initial GA
population consists of trained networks, and consequently we have a lot
of confidence in the labels of the categories that these trained networks
have discovered through the training process.

Step 3: If evolution has not reached the maximum number of iterations,
Genmax, replace the current generation with the members of the temporary
generation and go to step 2a. Otherwise calculate the performance of the
best-fitness network on the test set.
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4 Experiments and Results

We conducted a number of experiments to assess the performance of the
genetically engineered ART architectures. There were two objectives for this
experimentation. The first one is to find proper values for the ranges of two
of the GA parameters, the probability of deleting a category, Pr(Catdel), and
the probability of mutating a category, Pr(mut). The second objective is to
compare GFAM, GEAM and GGAM performance (for good parameter values)
to that of popular ART architectures, such as ssFAM, ssEAM, ssGAM, and
micro-ARTMAP.

4.1 Databases

We have experimented with 19 databases, 16 simulated databases and 3 real
databases. Each dataset in the database was randomly divided into three sub-
sets; training, validation and testing. Each one of these datasets is described,
in more detail, in the text that follows.

• Gaussian Databases: (# 1-12) These are artificial databases, where
we created 2-dimensional data sets, Gaussianly distributed, belonging to
2-class, 4-class, and 6-class problems. In each one of these databases, we
varied the amount of overlap of data belonging to different classes. In
particular, we considered 5%, 15%, 25%, and 40% overlap. Note that 5%
overlap means that the optimal Bayesian Classifier would have 5% mis-
classification rate on the Gaussianly distributed data. There are a total
of 3x4=12 Gaussian databases. We refer to these databases as G#c-##
where the first number is the number of classes and the second number
is the percentage of class overlap. For example, G2c-05 means that the
Gaussian database is a 2-class and 5% overlap database.

• Structures within a Structure databases: These are artificial databases
that were inspired by the circle (structure) - in the - square (structure)
problem. This problem has been extensively examined in the ART, and
other than ART neural network literature. Four different datasets were
generated by changing the structures (type, number and probability) that
we were dealing with. The data-points within each structure of these arti-
ficial datasets are uniformly distributed within the structure. The number
of points within each structure is chosen in a way that the probability of
finding a point within this structure is equal to a pre-specified number.
Some of these artificial datasets were also considered in [30] where four
different ART architectures were compared, Fuzzy ARTMAP, FasART,
distributed Fuzzy ARTMAP, and distributed FasART.
4Ci/Sq (# 13): This is a four circle in a square problem, a five class
classification problem. The probability of finding a data point within a
circle or inside the square and outside the circles is equal to 0.2. We refer
to this database as 4Ci/Sq.
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1Ci/Sq (# 14): This is a one circle in a square problem, a two class
classification problem. The probability of finding a data point within a
circle or inside the square and outside the circle is equal to 1/2. The sizes
of the areas in the circle and outside the circle and inside the square are
the same. This is the benchmark circle in the square problem. We refer to
this database 1Ci/Sq.
1Ci/Sq/30:70 (# 15): This is a one circle in a square problem, a two
class classification problem. The probability of finding a data point within
a circle or inside the square and outside the circle is equal to 0.3 and 0.7,
respectively. The sizes of the areas in the circle and outside the circle and
inside the square are 0.3 and 0.7, respectively. This is a modified version
of the circle in the square problem. We refer to this database as 30:70.
2Ci/Sq/20:30:50 (# 16): This is two circles in a square problem, a
three class classification problem. One of the circles is smaller than the
other. The probability of finding a data point within the small circle, the
large circle, and outside the circles but inside the square is 0.2, 0.3, and
0.5, respectively. We refer to this database as 20:30:50.

• Modified Iris (MOD-IRIS) Database (# 17): In this database we
started from the IRIS dataset (see [29]) of the 150 data-points, 3-class
problem. We eliminated the data corresponding to the class that is linearly
separable from the other 2 classes. Thus, we ended up with 100 data-points.
From the four input attributes of this IRIS dataset we focused on only two
attributes (attribute 3 and 4) because they seem to have enough discrim-
inatory power to separate the 2-class data. Finally, in order to create a
reasonable size dataset from these 100 points (so we can reliably perform
cross-validation to identify the optimal ART, genetically engineered ART
networks) we created noisy data around each one of these 100 data-points
(the noise was Gaussian of zero mean and small variance) to end up with
approximately 10,000 points. We named this database Modified Iris. We
refer to this database as MOD-IRIS.

• Modified Abalone (ABALONE) Database (# 18): This database
is originally used for prediction of the age of an abalone (see [29]). It
contains 4177 instances, each with 7 numerical attributes, 1 categorical
attribute, and 1 numerical target output (age). We discarded the categor-
ical attribute in our experiments, and grouped the target output values
into 3 classes: 8 and lower (class 1), 9-10 (class 2), 11 and greater (class 3).
This grouping of output values has been reported in the literature before.
We refer to this database as ABALONE.

• Page Blocks (PAGE) Database (# 19): This database represents the
problem of classifying the blocks of the page layout in a document (see
[29]). It contains 5473 examples coming from 54 distinct documents. Each
example has 10 numerical attributes (e.g., height of the block, length of the
block, eccentricity of the block, etc.,) and one target (output) attribute,
representing the type of the block (text, horizontal line, graphic, vertical
line, and picture). One of the noteworthy points about this database is that
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its major class (text) has a high probability of occurring (above 80%). This
dataset has five classes, four of them make only 10% of the total instances.
We refer to this database as PAGE.

The summarized specifics of each one of the aforementioned databases are
depicted in Table 1.

Table 1. Databases used for experimentation, and their characteristics

Database # Training # Validation # Test # Attri- # % Major
Name Instances Instances Instances butes Classes Class

1 G2c-05 500 5000 5000 2 2 50.0
2 G2c-15 500 5000 5000 2 2 50.0
3 G2c-25 500 5000 5000 2 2 50.0
4 G2c-40 500 5000 5000 2 2 50.0
5 G4c-05 500 5000 5000 2 4 25.0
6 G4c-15 500 5000 5000 2 4 25.0
7 G4c-25 500 5000 5000 2 4 25.0
8 G4c-40 500 5000 5000 2 4 25.0
9 G6c-05 504 5004 5004 2 6 16.7

10 G6c-15 504 5004 5004 2 6 16.7
11 G6c-25 504 5004 5004 2 6 16.7
12 G6c-40 504 5004 5004 2 6 16.7
13 4Ci/Sq 2000 5000 3000 2 5 20.0
14 1Ci/Sq 2000 5000 3000 2 2 50.0
15 30:70 2000 5000 3000 2 2 70.0
16 20:30:50 2000 5000 3000 2 3 50.0
17 MOD-IRIS 500 4800 4800 2 2 50.0
18 ABALONE 501 1838 1838 7 3 33.3
19 PAGE 500 2486 2487 10 5 83.2

4.2 Selection of the GA parameters

As we have mentioned above, part the first objective of our experimentation
was devoted to the selection of good values for the GA parameters: probability
of deleting an ART category, Pr(Catdel), and probability of mutating an
ART category, Pr(Mut). As it is evident from our prior discussion there
are a few other GA parameters that one has to carefully choose, such as
Popsize, Genmax, and NCbest; we did not perform exhaustive experimentation
to decide on the values of these parameters, but limited experimentation with
these parameters for some of the above databases showed that reasonable
choices for these parameters were: Popsize = 20, Genmax = 500, and NCbest =
3.

Our approach to select good values for the GA parameters Pr(Catdel),
and Pr(Mut) consisted of a number of steps delineated below:
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• Select GA Step 1: We selected four different values for the Pr(Catdel)
to experiment with. These were: 0.05, 0.1, 0.2, and 0.4. We also selected
four different values for the Pr(Mut) to experiment with. These were: 0.0,
0.1, 0.2, and 0.4. This resulted in 16 combinations of parameter settings
for Pr(Catdel), and Pr(Mut).

• Select GA Step 2: For each one of the 16 settings of the Pr(Catdel),
and Pr(Mut) parameters, and for each of the 19 databases, described in
an earlier section, we applied the GA optimization of FAMs, EAMs, and
GAMs, as delineated in Section 2, 10 different times (using a different
initial seed for the GA optimization). Consequently, for each database,
and each parameter setting, and each of the genetically engineered ART
algorithms we obtained 10 PCC and 10 Na numbers.

• Select GA Step 3: For each genetically engineered ART algorithm
(i.e., GFAM, GEAM, or GGAM), and each dataset, we chose the best-
performing (with respect to average validation PCC of the 10 experiments)
parameter setting. Then, we used ANOVA statistical tests to choose other
parameter settings that did not significantly differ (statistically) from the
best performing parameter setting. We marked these parameter settings
as good settings for this database and the associated GART (GFAM or
GEAM or GGAM) algorithm.

• Select GA Step 3: After we performed Step 3 for all databases and all ge-
netically engineered ART algorithms we counted the number of databases
for each GART algorithm for which a particular parameter setting was
deemed as “good” from the Select GA Step 3. Based on these counts we
recommended the best parameter setting for each GART algorithm, and
a range of acceptable parameter settings.

The following table (Table 2) summarizes the results for GFAM. Similar
tables have been produced for GEAM and GGAM but are omitted due to
lack of space. In Table 2 an entry of “1” for a database indicates that the
corresponding parameter setting performed well (with respect to the aver-
age PCC on the validation set). An underscored “1” entry indicates that the
corresponding parameter setting performed the best for this database (with
respect to the average PCC on the validation set). In Table 2 the “1” entries
corresponding to the Number of Categories criterion (actually average number
of categories criterion) are omitted to preserve the table’s clarity. However an
entry of “1” for the PCC resulted also in an entry of “1” for the Number of
Categories (not shown in Table 2). In Table 2 we designated with an asterisk
the parameter setting that performed best for this database (with respect to
the average Number of Categories criterion). A careful observation of the re-
sults shown in Table 2 indicate that any value of Pr(Catdel) in the interval
[0.2, 0.4], and any value of the Pr(Mut) in the interval [0.05, 0.4] gives good
results. Also, the results from Table 2 indicate that the best performing pa-
rameter setting for GFAM is Pr(Catdel) = 0.1, and Pr(Mut) = 0.4, since for
this parameter setting we observe the highest number of good performances
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(19), and best performances (7) of the associated GFAM (the count of the
best performances consider the best observed performances with respect to
the average PCC on the validation set or the average number of categories) .
Finally, we can also deduce from the results of Table 2 that a probability of
mutation equal to 0 is not recommended, since it always (for all databases)
results in a GFAM network that is not performing well.

From similar tables produced for GEAM and GGAM (omitted due to lack
of space) we can draw similar conclusions. In particular, a careful observation
of the GEAM results indicate that any value of Pr(Catdel) in the interval
[0.2, 0.4], and any value of the Pr(Mut) in the interval [0.05, 0.4] gives good
results for GEAM. Also, the best performing parameter setting for GEAM is
Pr(Catdel) = 0.2, and Pr(Mut) = 0.4, since for this parameter setting we
observe the highest number of good performances (19), and best performances
(6) of the associated GEAM. Finally, a probability of mutation equal to 0
is not recommended for GEAM, since it always (for all databases) results
in a GEAM that is not performing well. Additionally, a careful observation
of the GGAM results indicate that any value of Pr(Catdel) in the interval
[0.2, 0.4], and any value of the Pr(Mut) in the interval [0.05, 0.4] gives good
results for GGAM. Also, the best performing parameter setting for GGAM
is Pr(Catdel) = 0.4, and Pr(Mut) = 0.1, since for this parameter setting we
observe the highest number of good performances (19), and best performances
(4) of the associated GGAM. Finally, a probability of mutation equal to 0 is
not recommended for GGAM, since it always (for all databases) results in a
GGAM that is not performing well.

4.3 Comparison of GART with other ART architectures

The second objective of our experimentation was to compare GFAM, GEAM,
and GGAM with other ART architectures that have previously appeared in
the literature and addressed the category proliferation problem in ART.
The ART architectures that we chose to compare GFAM, GEAM, GGAM with
are: ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP. The first three are
based on the principle of semi-supervision, introduced by Anagnostopoulos, et
al., 2002, [2], and Verzi, et al., 2001, [35]. Semi-supervision is a term attributed
to learning in an ART architecture (FAM, EAM or GAM), where categories
in ART are allowed to encode patterns of different labels provided that the
percentage of patterns that belong to the plurality label exceed a certain
threshold. Safe micro-ARTMAP is a Fuzzy ARTMAP that allows categories
in Fuzzy ARTMAP to encode patterns that are mapped to different labels.
In safe micro-ARTMAP (see Gomez-Sanchez, et al., 2001, [16]) though the
mixture of labels allowed in a category, or in all of the categories is controlled
by the entropy of the category or categories.

For each of the ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP net-
works, and for each of the 19 databases, we performed a number of experiments
with different settings of their network parameter values. For each one of these
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Table 2. Goodness of Parameter Settings for the GA parameters Pr(Catdel), and
Pr(Mut). An entry of “1” in the table indicates that the corresponding parameter
setting is good, while the lack of an entry “1” indicates that the parameter setting is
not good. The column before last counts the number of “1” entries for a particular
parameter setting that are good, while the last column counts the number of times
that a particular parameter setting is the best of all parameter settings (with respect
to the average PCC on the validation set or the average number of categories).
Entries are depicted for the PCC value and not for the number of categories value,
in order to avoid cluttering the table; however whenever there is a “1” or lack
of a “1” entry for the PCC value there is also a “1” or lack of a “1” entry for the
number of categories value. Underscored “1” entries in this table designate parameter
settings for which we obtained the best result related to the average PCC value, while
asterisks designate parameter settings for which we obtained the best result with
respect to the average number of categories value.
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Pr(Mut) = 0.1 Num Cats
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network parameter settings we calculated the resulting network’s fitness func-
tion (we used the same fitness function as the one utilized for the GART
networks (see equation 3)). For the training of ssFAM, ssEAM, ssGAM, and
safe micro-ARTMAP we used the same training set as the one used for the
GART networks, and for the validation of the performance of each of the ss-
FAM, ssEAM, ssGAM, and Safe micro-ARTMAP networks we used the same
validation set as the one used for the GART networks. The parameter setting
of the ssFAM, ssEAM, ssGAM, and safe micro-ARTMAP network that max-
imized the fitness function was chosen as the best parameter setting for the
specific database; the number of categories created by the “best” parameter
setting network, and its corresponding percentage of correct classification on
the test set are reported in Table 3.

In particular, the parameter settings that we experimented with ssFAM
were: baseline vigilance values ranging from 0 to 0.9 with step size of 0.1, choice
parameter values of 0.001 and 0.01, maximum allowable mixture threshold val-
ues ranging from 0 to 1 with step size of 0.1, and 100 different orders of pattern
presentations of the training data (resulting in 22,000 different parameter set-
tings). Furthermore, the settings for ssEAM were: baseline vigilance values
ranging from 0 to 0.9 with step size of 0.1, choice parameter values of 0.001
and 0.01, maximum allowable mixture threshold values ranging from 0 to 1
with step size of 0.1, minimum axes to maximum axis ratio values ranging from
0.1 to 1 with step size of 0.1, and 100 different orders of pattern presentations
of the training data (resulting in 220,000 different parameter settings). Also,
the settings for ssGAM were: baseline vigilance values ranging from 0 to 0.9
with step size of 0.1, initial standard deviation parameter ranging from 0.1 to
1 with step size of 0.1, maximum allowable mixture threshold values ranging
from 0 to 1 with step size of 0.1, and 100 different orders of pattern presenta-
tions of the training data (resulting in 110,000 different parameter settings).
Finally, the settings for safe micro-ARTMAP were: baseline vigilance values
ranging from 0 to 0.4 with step size of 0.2, baseline vigilance parameter values
of 0.001 and 0.01, 5 values for the maximum “all-categories” entropy thresh-
old, 6 different ratios of the values of the “categories” entropy threshold to
the “all-categories” entropy threshold, three values of the maximum allowable
expansion of a category, and 100 different orders of pattern presentations of
the training data (resulting in 90,000 different parameter settings).

The best parameter setting, identified in the previous sub-section, for
GFAM, GEAM, and GGAM was used for each of the 19 databases. Ten (10)
experiments per database were conducted for 10 different initial seeds of the
GA optimization process. The network that produced the maximum value of
the fitness function, was deemed as “best”. The number of categories of the
“best” GFAM, GEAM and GGAM for each database and its corresponding
performance (PCC) on the test set are reported in Table 3. The results shown
in Table 3 are truncated to one decimal place.
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Table 3. Best results obtained from GFAM, GEAM and GGAM compared to best
results obtained from Safe µARTMAP, ssFAM, ssEAM and ssGAM

Database GFAM GEAM GGAM Safe µAM ssFAM ssEAM ssGAM
Name PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat PCC Cat

G2c-05 95.4 2 95.3 2 95.3 2 95.2 2 94.7 2 94.6 2 94.6 2
G2c-15 85.3 2 85.2 2 85.2 2 85.0 2 85.5 2 85.2 2 85.5 2
G2c-25 75.2 2 75.2 2 75.2 2 74.9 2 75.0 2 75.1 2 75.0 2
G2c-40 62.0 2 61.8 2 61.7 2 61.4 3 59.5 2 59.5 2 59.5 3
G4c-05 95.1 4 95.0 4 95.0 4 95.0 4 94.5 5 94.9 4 95.5 4
G4c-15 84.7 4 84.6 4 84.7 4 83.2 4 82.7 4 82.0 4 83.4 6
G4c-25 75.0 4 75.1 4 75.3 4 74.5 4 70.3 9 72.9 4 72.3 21
G4c-40 59.9 4 59.8 4 75.3 4 58.9 4 57.8 7 54.7 7 59.5 14
G6c-05 94.8 6 94.7 6 94.8 6 92.3 6 87.2 8 93.4 6 94.6 8
G6c-15 84.8 6 85.1 6 85.2 6 80.9 6 80.5 6 82.0 7 83.4 9
G6c-25 74.3 6 74.1 6 74.4 6 67.9 6 70.2 15 71.4 7 71.2 13
G6c-40 60.1 6 59.9 6 60.0 6 54.0 6 55.1 17 49.3 7 55.1 13
4Ci/Sq 95.0 9 99.1 7 98.9 6 95.4 8 87.2 18 94.6 5 93.4 12
1Ci/Sq 97.7 7 99.6 3 99.8 2 94.7 8 92.9 8 97.0 8 91.0 8
30:70 97.9 6 99.9 2 99.9 2 96.8 8 93.2 8 97.1 8 92.3 8

20:30:50 97.5 5 98.1 3 99.5 3 97.2 6 90.2 12 97.0 3 95.6 9
MOD-IRIS 95.3 2 95.3 2 94.9 2 94.9 2 94.7 8 94.7 2 94.7 2
ABALONE 61.8 3 62.2 3 62.6 3 58.1 3 60.0 6 58.8 3 56.3 2

PAGE 96.7 5 95.0 5 96.2 5 92.9 5 87.9 3 93.8 2 94.3 5

4.4 Observations from the results

Some of the conclusions that can be deduced from the comparative results,
depicted in Table 3, are emphasized below.

• Observation 1 (Overall Performance of GART networks): GFAM,
GEAM and GGAM attain good performance on all the datasets, and quite
often, optimal performance (e.g., see performance of all the networks in the
Gaussian databases, and performance of GGAM on the structures-within-
structure problems, and on the real databases). The best performing net-
work from the class of GART networks (GFAM, GEAM, and GGAM) is
GGAM.

• Observation 2 (Comparative Performance of GART networks,
with respect to each other). GGAM and GEAM outperform the per-
formance of GFAM on all the structures, within structure problems. For
all the other problems the differences between GEAM, and GGAM versus
GFAM are not statistically significant.

• Observation 3 (Comparative Performance of GART networks
compared with ssFAM): ssFAM performs as well as the GART net-
works for the 2-class Gaussian datasets. For all the other datasets at least
one (if not all) the GART networks perform better (achieving higher PCC
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with fewer ART categories). The largest difference in PCC observed is
almost 12% (for the 4 Circle in the Square problem), while the largest ra-
tio of number of ssFAM versus GART categories is for the modified IRIS
problem (ratio of 4).

• Observation 4 (Comparative Performance of GART networks
compared with ssEAM): ssEAM performs as well as the GART net-
works for the 2-class Gaussian datasets. For all the other datasets at least
one (if not all) the GART networks perform better (achieving higher PCC
with fewer ART categories). The largest difference in PCC observed is more
than 10% (for the 6 class Gaussian problem with 40% overlap), while the
largest ratio of number of ssEAM versus GART categories is for Circle in
the Square problem (ratio of 4).

• Observation 5 (Comparative Performance of GART networks
compared with ssGAM): ssGAM performs as well as the GART net-
works for the 2-class Gaussian datasets. For all the other datasets at least
one (if not all) the GART networks perform better (achieving higher PCC
with fewer ART categories). The largest difference in PCC observed is
more than 8% (for the 1 Circle in the Square problem), while the largest
ratio of number of ssGAM versus GART categories is for the four Gaussian
dataset with 25% overlap problem (ratio larger than 5).

• Observation 6 (Comparative Performance of GART networks
compared with safe micro-ARTMAP): Safe micro-ARTMAP per-
forms as well as the GART networks for the 2-class, and 4-class Gaussian
datasets. For all the other datasets at least one (if not all) the GART net-
works perform better (achieving higher PCC with fewer ART categories).
The largest difference in PCC observed is more than 6% (for the 6 class
Gaussian dataset with 25% overlap), while the largest ratio of number
of safe micro-ARTMAP versus GART categories is for the Circle in the
Square problem (ratio of 4).

What is also worth pointing out is that the better performance of the
GART network is attained with reduced computations as compared with
the computations needed by the alternate methods (ssFAM, ssEAM, ss-
GAM, safe micro-ARTMAP). Specifically, the performance attained by ss-
FAM, ssEAM, ssGAM and the safe micro-ARTMAP required training these
networks for a large number of network parameter settings (at least 22,000
experiments) and then choosing the network that achieved the highest value
for the fitness function that we introduced earlier (through cross-validation).
In GFAM, GEAM and GGAM cases we trained only a small number of these
networks (Popsize = 20 of them), compared to the large number of net-
works trained in the ssFAM, ssEAM, ssGAM or micro-ARTMAP cases (at
least 22,000). Furthermore, in GFAM, GEAM and GGAM cases we evolved
the trained networks Genmax = 500 times, each evolution requiring cross-
validating Popsize = 20 networks. Hence, the total number of networks cross-
validated in the ssFAM, ssEAM, ssGAM and micro-ARTMAP cases were at
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least 22,000, while in the GFAM, GEAM and GGAM networks were 10,000;
furthermore the networks cross-validated in the ssFAM, ssEAM, ssGAM, and
micro-ARTMAP cases have higher number of category nodes than the ones
cross-validated in the GFAM, GEAM and GGAM cases. As a result, we can ar-
gue that the improved performance (smaller number of nodes and better gen-
eralization) of GFAM, GEAM, and GGAM, compared with ssFAM, ssEAM,
ssGAM, and micro-ARTMAP, is achieved with reduced computational effort.

5 Conclusions

Adaptive Resonance Theory (ART) neural networks have been introduced
into the literature by Carpenter, Grossberg and their colleagues at Boston
University, as well as other researchers in the field. The consensus with ART
networks is that they converge fast to a solution for arbitrary classification
problems they can provide explanations for the answers that they produce,
they can function in an on-line training mode, and they solve effectively a
variety of classification problems. However, all these benefits sometimes come
at the expense of unnecessarily creating (at times) too many categories to
solve the problem at hand, referred to as the category proliferation problem in
ART. This problem is more acute when ART is confronted with classification
problems that deal with noisy or highly overlapping data. To alleviate this
problem a number of researchers have proposed solutions such as ssFAM,
ssEAM (see Anagnostopoulos, et al., 2002 and 2003, [2], [3], and Verzi, et
al., 2001, [35]), ssGAM (see Chalasani, 2005 [12]), Safe micro-ARTMAP (see
Gomez, et al., 2001, [16]), dFAM (Carpenter, et al., 1998, [11]), FasART, and
dFasART (Parado-Hernandez, et al., 2003, [30]), to mention only a few.

In this paper, we have introduced yet another method of solving the cat-
egory proliferation problem in ART. This method relies on evolving a popu-
lation of trained ART networks, such as FAM, EAM or GAM. The evolution
of trained ART networks creates an ART network, referred to as GFAM, or
GEAM or GGAM.

We have experimented with a number of databases that helped us identify
good default parameter settings for the evolution of FAM, EAM or GAM. We
defined a fitness function that gave emphasis to the creation of a small size
ART networks which exhibited good generalization. In the evolution of ART
trained networks, we used a unique (and needed) category operator, referred
to as Catdel operator (this operator allowed us to evolve into ART networks of
smaller size). The ART network identified at the end of the evolutionary pro-
cess (last generation) was the FAM, EAM or GAM network that attained the
highest fitness value (referred to as GFAM, GEAM, or GGAM, respectively).
Our method for creating GFAM, GEAM and GGAM resulted in a networks
that performed well on a number of classification problems, and on a few of
them it performed optimally (see our observations in earlier sections).
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Furthermore, GART networks were found to be superior to a number of
other ART networks (ssFAM, ssEAM, ssGAM, safe micro-ARTMAP) that
have been introduced into the literature to address the category prolifera-
tion problem in ART. More specifically, GFAM, GEAM, and GGAM gave a
better generalization performance (in almost all problems tested) and a
smaller than, or equal, size network (in all problems tested), compared to
these other ART networks, requiring reduced computational effort to
achieve these advantages. More specifically, in some instances the difference
in classification performance of GFAM, GEAM, and GGAM with these other
ART networks quite significant (as high as 12%). Also, in some instances the
ratio of the number of categories created by these other ART networks, com-
pared to the categories created by GFAM, GEAM or GGAM was large (as
high as 5).
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Appendix A: Definitions

GFAM: It denotes the genetically engineered Fuzzy ARTMAP architecture.
GEAM: It denotes the genetically engineered Ellipsoidal ARTMAP architec-
ture.
GGAM: It denotes the genetically engineered Gaussian ARTMAP architec-
ture.
GART: It is a generic name referring to the genetically engineered ART
architectures, as a whole, such as GFAM, GEAM, and GGAM.
ssFAM: It denotes the semi-supervised Fuzzy ARTMAP architecture. For
more details see [2], [3].
ssEAM: It denotes the semi-supervised Ellipsoidal ARTMAP architecture.
For more details see [2], [3].
ssGAM: It denotes the semi-supervised Gaussian ARTMAP architecture.
For more details see [12].
Safe micro-ARTMAP: It the ART architecture introduced by Gomez-
Sanchez, et al., in 2001 (see [16]).
ρ̄a; Baseline Vigilance Parameter: One of the parameters of the Fuzzy
ARTMAP (FAM), Ellipsoidal ARTMAP (EAM) and Gaussian ARTMAP
(GAM) architectures that controls the size of the categories created in FAM,
EAM and GAM.
Choice Parameter: One of the parameters of the Fuzzy ARTMAP (FAM)
and Ellipsoidal ARTMAP (EAM) architectures that controls the value of
bottom-up input of a category in FAM or EAM.
γ; Initial Standard Deviation Parameter: One of the parameters of the
Gaussian ARTMAP architecture that controls the initial width of the Gaus-
sian probability distribution of a GAM category.
µ; Minor Axes to Major Axis Parameter: One of the parameters of the
Ellipsoidal ARTMAP architecture that defines the ratio of the minor axes to
major axis of the ellipsoidal categories in the EAM architecture.
m; Center of a Category: One of the parameters that describes a category
in EAM or GAM. In EAM it corresponds to the center of the ellipsoidal cat-
egory, while in GAM it corresponds to the center of the Gaussian probability
distribution, representing a GAM category.
d; Direction Vector of a Category: One of the parameters that describes
a category in EAM. It corresponds to the direction of the major axis of the
ellipsoid.
r; Radius of a Category: One of the parameters that describes a category
in EAM. It is equal to the half length of the major axis.
σ; Standard Deviation Vector of a Category: One of the parameters
that describes a category in GAM. The components of this vector define the
standard deviation of the Gaussian distribution across every dimension of the
input pattern space.
n; Number of Patterns Encoded by a Category: One of the parameters
that describes a category in GAM.


