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Abstract: – Fuzzy Simplified Adaptive Resonance Theory (Fuzzy SART) is proposed for clustering the 
normal vectors of coplanar triangles in a Triangulated Irregular Network (TIN) derived from raw, 
irregularly spaced LIDAR data.  The raw LIDAR data is triangulated using a greedy insertion 
triangulation algorithm.  The algorithm is modified to implement a proposed noise filtering technique 
which improves Fuzzy SART’s coplanar clustering performance.  Furthermore, several proposed 
preprocessing techniques, specifically scaling and translating the LIDAR data, are also implemented and 
were found to improve clustering accuracy.  Then, a proposed multiple or planar regression algorithm 
further refines the coplanar grouping by removing outliers and merging multiple clusters representing 
singular planes.  Finally, further refinement is achieved by calculating the intersection of the best fit roof 
planes and moving nearby points close to that intersection to exist at the intersection, resulting in straight 
roof ridges.   
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1)  Introduction 
 
The advent of Light Detection and Ranging 
(LiDAR) systems has spawned a new genre of 
reconstruction algorithms which explore using 
captured LiDAR data as an additional feasible 
source of information for 3D reconstruction.  
Most 3D Reconstruction algorithms typically 
group coplanar points together and then derive a 
model to approximate those points which yields 
minimum error from the original points.  
Rottensteiner and Briese, after distinguishing 
buildings from terrain via the method described 
in [10], detect roof planes via a curvature based 
segmentation technique, and then group those 
planes into polyhedral building models.  Chen 
et. al. in [2], segment buildings into coplanar 
sections, which are then processed by a patented 
Split-Merge-Shape (SMS) method to create 
building models.  Fujii and Arikawa use both 
LIDAR data and aerial images in [4].  After 
interpolating the LIDAR data to fixed intervals, 
the data is analyzed for line segments forming 
object contours.  In [8], Overby et. al make use 

of  a three-dimensional extension of the Hough 
transform for extracting planes from point cloud 
data.   

Several data driven 3D reconstruction 
algorithms currently exist in the literature 
([9],[6],[8],[7]) that utilize triangulated irregular 
networks (TINs) to construct model 
approximations of depicted urban and residential 
scenes.  A TIN is a 3-dimensional depiction of 
LIDAR point cloud data represented with a 
series of connected, non-overlapping triangles 
which have no intersecting edges.  Morgan and 
Habib in [9] use a region growing TIN 
algorithm, based on least-squares adjustment, to 
extract building facades from the transformed 
point cloud data (transformed to the triangulated 
feature space).  Chen et. al., in [8], also use a 
region growing TIN algorithm, considering both 
the height difference between triangles and the 
angle difference between normal vectors of 
neighboring triangles for merging criterion for 
planar approximation.  Hoffman however uses 
the clustering approach in [6] to group together 
triangles in the TIN that contain similar 

mailto:nshorter@mail.ucf.edu
mailto:kasparis@pegasus.cc.ucf.edu
http://www.nshorter.com/
http://people.cecs.ucf.edu/kasparis/


 

properties.  In [6], the position of each triangle is 
mapped out in spherical coordinates which are 
the dimensions of the triangles that are then 
clustered.   

The majority of the previously described 
algorithms, in addition to numerous other 3D 
reconstruction algorithms existent in the 
literature, ([2], [3], [4], [8],[9]) all share one 
particular trait in common: the algorithms 
interpolate the LIDAR data to fixed intervals to 
make use of conventional matrix processing 
methodologies.  As discussed in section 2.2, 
interpolation of the irregular points has 
significant drawbacks.   
 
 
2)  Problem Formulation 
 
Characteristics about the data set used are 
presented in section 2.1.  The disadvantages of 
interpolating LIDAR data are elaborated on in 
section 2.2.  Section 2.3 reports on the 
difficulties of clustering coplanar LIDAR points 
with TIN normal vectors.   
 
2.1  Data Set 
The Fairfield data set, used for this research 
effort, covers two square kilometers of both an 
urban and residential scene in Fairfield, 
Australia.  A LIDAR sensor and other systems 
used to procure the Fairfield Data Set were able 
to capture, for each laser point, the longitude, 
latitude, elevation, first return pulse, last return 
pulse and returned laser intensity.  The procured 
LIDAR data has an approximate point density of 
1 point per 1.3m2 and the aerial photography 
captured has 15 centimeter pixel resolution. 
 
2.1  LIDAR Interpolation Disadvantages 
In [3], Clode et. al., report the limits of their 
building detection technique and how 
interpolating the LIDAR points only adds to the 
inaccuracy and limitations of their method and 
all other methods using interpolated LIDAR 
data.  The accuracy in which a given algorithm 
can delineate building from non building regions 
is dependent on the laser footprint uncertainty.  
However, if the data is interpolated to fixed 
intervals, then the limitation of the accuracy is 
worsened.  With interpolation to fixed intervals, 
now a given algorithm’s uncertainty is a 
function of the laser foot print uncertainty and 
the point spacing interpolation combined.   
 

 
2.2  Depicting LIDAR with TINS 
Several of the aforementioned TIN 3D 
Reconstruction methods utilize a TIN generated 
from the LIDAR data and cluster the triangles 
existent in that TIN into coplanar regions.  The 
normal vectors of the coplanar triangles are very 
similar to one another and therefore are the 
attributes clustered.  However, the accuracy of 
even the most modern LIDAR sensor systems 
have limits of precision in their range to target 
measurements.  Noise is therefore existent in the 
data and causes havoc for algorithms attempting 
to cluster triangle normal vectors.  An ideal set 
of coplanar triangles is depicted in [Figure 1].  
However, noise introduces slight deviations in 
the elevation dimension [Figure 2], causing the 
normal vectors to deviate from their true value, 
limiting the practicality of clustering an irregular 
spaced TIN based on normal vectors.   

 
Figure 1 – Ideal normal TIN Vectors 

 
Figure 2 – Actual TIN Vectors 
 
 
3)  Problem Solution 
 
Section 3.1 elaborates on the TIN generation 
method implemented.  Section 3.2 describes 
what attributes of Fuzzy SART make it desirable 
for detecting coplanar LIDAR points.  Heuristic 
procedures which improve on the Fuzzy SART 
clustering presented in section 3.3.   

 2



 

 
 
3.1  Modified Greedy Insertion 
Triangulation 
Wang et. al. in [11] benchmark several 
triangulation processes on LIDAR data.  Among 
all of the triangulation methods tested, they 
found the sequential greedy insertion algorithm 
[5] performed the best in terms of accuracy.  The 
sequential greedy insertion algorithm 
simultaneously optimizes two adaptive cost 
functions:  (1) local Delaunay triangulation; (2) 
global point insertion.  The distances between all 
unused points and the existing generated TIN are 
calculated.  The point farthest from the 
generated TIN is then inserted into the TIN 
(hence the name greedy insertion).  After point 
insertion, all of the triangles surrounding the 
newly formed triangles are then checked to see 
if flipping their diagonals with adjacent triangles 
will further maximize the lesser internal angles 
of given pairs of triangles (Delaunay 
triangulation).   

It is important to note that Greedy 
Insertion inserts the points farthest away from a 
given triangle.  Therefore the most defining 
features in a given triangulated scene, such as 
break lines and building corner points, are the 
features triangulated first.  The very last points 
triangulated are points with the smallest errors, 
points existing on well defined planes.   

A novel method is therefore proposed to 
filter the triangulated data by absorbing points 
less then a given threshold to an already defined 
plane.  While the longitude and latitude 
dimensions were preserved, the elevation 
dimension of a candidate point was modified if 
it met the following conditions: the 
perpendicular distance, defined in (1), was less 
than .2 meters ( ) from the containing 
triangulated plane; and the pitch of the roof , 
defined in (2) and [

.2cD ≤ m

Figure 3], was less than 60 
degrees ( ).   60oθ ≤
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Without the constraint imposed on the roof plane 
pitch ( ), building edge points, which 
were not yet inserted/triangulated and less than 
.2 meters perpendicular distance from the 

building were being merged into the building’s 
edge, distorting the building outline.  The second 
constraint therefore confines points which only 
exist on a roof plane with a pitch ( ) to 
become merged with that existent roof plane.   
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Figure 3 – Pitch of Roof Plane (Theta) 

zdiffMX

mxZ

 
Figure 4 – Triangle Elevation Difference 
 
 This filtering technique was found to 
remove the noise depicted in [Figure 2] and 
therefore significantly improve normal vector 
triangulation clustering results.  Merging these 
noisy points’ elevation z-dimension reinforced 
the presence of existing roof plane clusters 
resulting in an improved clustering performance 
by Fuzzy SART.   
 Only the spherical coordinates of the 
normal vectors of roof triangles were passed to 
the Fuzzy SART clustering algorithm.  Triangles 
belonging to building walls and terrain were 
disregarded.  In order to distinguish roof 
triangles from all other triangles the following 
measures were implemented.  For all triangles, 
the difference in elevation between the two 
vertices farthest from one another in a given 
triangle is calculated (  in [zdiffMX Figure 4]).   
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All triangles having  greater than 2 

meters were isolated.  Then the average, 
zdiffMX

avgZ , 
of the z-dimension (elevation) of the highest 
vertex in a given triangle, mxZ  in [Figure 4], for 
all triangles with 2zdiffMX ≥ m  was taken.  All 
triangle centers must have an elevation greater 
than avgZ  in order to be considered as a 

candidate for a roof plane.  The avgZ - restriction 
implements the assumption that all the buildings 
are greater than 2 meters or 6 and ½ feet in 
height.   
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3.2  Fuzzy SART Clustering 
Due to co-planarity of triangles being defined as 
triangles sharing the same normal vectors, which 
are expressed in spherical coordinates, those 
spherical coordinate vectors are what is passed 
to the unsupervised clustering algorithm.  An 
optimal choice of a clustering algorithm, which 
will exploit the vectors being represented as 
spherical coordinates, is Fuzzy SART.   

One of the key features of Baraldi and 
Parmiggiani’s Fuzzy Simplified ART (SART) 
clustering algorithm [1] which makes it choice 
for this clustering problem is its activation 
function.  The Vector Degree of Match (or 
activation) function (3) consists of the product of 
two functions: the Module Degree of Match 
(MDM) (4) and the Angle Degree of Match 
(ADM) (5).  

( , ) ( , ) ( , )VDM T X MDM T X ADM T X= ⋅  (3) 
( , ) min{| | | |,| | | |}MDM T X T X X T=  (4) 

( , ) ( )/ADM T X π α π= −  (5) 
1cos ( ) /(| | | |)X T X Tα −= ⋅⎡ ⎤⎣ ⎦

 (6) 

Both of these functions, (4) and (5), have values 
that range from 0 to 1 corresponding to their 
input component similarity. In other words, 
MDM approaches unity as the two vectors 
inputted to the function approach equal 
magnitude.  As the inputs, the template vector T, 
or vector representing a given roof plane, and 
the input vector X, or vector representing a 
given triangle’s normal vector, approach the 
same orientation and direction, the ADM 
approaches unity.   

Fuzzy SART Contains two user defined 
parameters:  Tau, the approximate time it takes 
Fuzzy SART to learn patterns; and the Vector 
Degree of Math Threshold (VDMT).  The 

VDMT controls how conservative Fuzzy SART 
is when absorbing inputs to preexisting patterns.  
The VDMT ranges from 0 (where all inputs 
belong to the same pattern) to 1 (where all inputs 
are assigned to different patterns).  The VDMT 
was set to 0.7 to avoid Fuzzy SART from falsely 
accepting an input to a plane in which that input 
did not belong to (false positive).   
 Assuming the Vector Degree of Match 
Threshold (VDMT), also called the vigilance 
parameter, is held constant, the VDM function, 
applied to a vector pair T and X, defines a 
hyper-volume in bi-dimensional feature space 
[Figure 5].   

 
Figure 5:  Fuzzy SART Pattern Encoding Region 
 
The template T represents a cluster center or in 
this case an established roof plane vector.  The 
angle α   is derived from equations (5) and (6).  
The hyper arc volume encoding regions in which 
Fuzzy SART encodes its patterns with make it 
an optimal choice for clustering spherically 
represented normal vectors.  Coplanar normal 
vectors with slight deviations will accurately be 
captured by the pattern encoding regions. 
 Note that the cluster encoding regions 
formed are all circular about the origin.  All of 
the original building coordinates were originally 
all positive values.  It was found that the 
performance of Fuzzy SART for clustering the 
normal coplanar vectors improved if the 
building coordinates were shifted such that the 
building was centered at the origin.  Thus each 
dimension (longitude, latitude and elevation) 
was modified as follows: 

max min
min( ) ( )

2

d d
d d d X XX i X i X

⎛ ⎞−
= − +⎜ ⎟

⎝ ⎠
 (7) 

Where i represents the i-th point in the data set, 
d represents the dimension, and max

dX  and min
dX  

represents the maximum and minimum points in 
those dimensions, respectively.   
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Figure 6 – Not Shifted 
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Figure 7 - Shifted 
 

Consider the two building footprints 
depicted in [Figure 6] and [Figure 7].  Note that 
the difference between two of the normal 
vectors, N1 and N2, of two of the planes depicted 
in [Figure 6] is a difference in their magnitude, 
while their orientations are equal to one another.  
This difference converges to 0 as the building 
moves infinitely far from the origin.  However, 
if the building is translated to center at the 
origin, then the two aforementioned normal 
vectors, N1 and N2, now have the same 
magnitude but are 180 degrees out of phase from 
one another.  This further separates the planes 
from one another from the coplanar clustering 
perspective of Fuzzy SART, thus increasing 
Fuzzy SART’s clustering performance accuracy.   

After the building coordinates were 
converted to spherical coordinates, it was found, 
experimentally, that Fuzzy SART assigned more 
weight to dimensions with higher values 
compared to other dimensions when clustering.  
Therefore, in order for each dimension to 
receive an equal weight or significance when 

clustering, all the dimensions were scaled such 
that they existed within the same range.   
 
 
3.3  Heuristic Procedures 
Fuzzy SART only provides a rough clustering of 
the LIDAR points.  Furthermore, because the 
VDMT or vigilance parameter was set so high 
(0.7), Fuzzy SART winds up creating multiple 
clusters to represent a singular cluster.  Also, 
several outliers, existent in roof planes, must be 
dealt with.  In order to remove the outliers and 
merge planes depicting the same clusters, a best 
fit plane was calculated from the largest clusters 
existent in the clustered TIN.  Only clusters 
containing sufficient minimum number of 
members and having triangle centers existing 
above avgZ  are considered for best fit plane 
formation.  A multi or planar regression 
analysis, formulated by minimizing the sum of 
the squared error, is then done on all of the 
clusters passing the aforementioned restrictions.  
The proposed ‘planar’ regression algorithm 
solves for the planar coefficients that will 
construct a best fit plane for the LIDAR data 
points presented to it.  Consider the equation of 
a plane: 

0a x b y c z d⋅ + ⋅ + ⋅ + =  (8) 
After solving for z and making substitutions for 
the coefficients the following is formulated: 

0 1 2
a bdz x y x
c cc

yβ β β⎛ ⎞ ⎛ ⎞=− − ⋅ − ⋅ = + ⋅ + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (9) 

The sum of the squared error between an 
estimate of z and the actual value of z based on n 
points can be represented as follows: 

( ) 2

0 1 21 21

n
i i i

i
SSE z x xβ β β

=

⎡ ⎤= − + ⋅ + ⋅∑ ⎢ ⎥⎣ ⎦
 (10) 

The derivative of the sum of the squared error 
with respect to each coefficient is taken: 

( ) ( )0 1 21 210

2 1
n

i i i
i

SSE z x xβ β β
β =

∂ ⎡ ⎤= ⋅ − + ⋅ + ⋅ −∑⎢ ⎥⎣ ⎦∂
(11) 
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SSE z x xβ β β
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Then setting those derivatives equal to 0 yields 
the following system of equations: 

( ) ( )0 1 2
1

n
i i

n n i
n x yβ β β

=
⋅ + ⋅ + ⋅ =∑ ∑ ∑ iz  (14) 
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The above system of 3 equations with 3 
unknowns, or the planar 3 coefficients, can 
therefore be solved. 

All points, with a perpendicular distance 
to a given best fit plane, less than a certain 
threshold, are then merged with the plane.  
Those points’ z-dimension (elevation) is 
decreased or increased till the points are existent 
exactly on the defined best fit plane.   

The intersections between the best fit 
roof planes are calculated.  All points existing 
within a certain threshold from that roof plane 
intersection are then moved to exist on the line 
formed by the best fit roof plane intersection, 
resulting in straight roof ridges.   
 
 
4)  Experimental Results 
 
The implemented algorithm was first tested on a 
simple cube test case and then subsequently on 
actual buildings.  The test case was generated by 
randomly inserting points with 0m and 10m 
elevation (with a +/- .1m standard deviation in 
elevation to simulate noise).  The triangulation 
noise filtering technique removed the .1 standard 
deviation and segmented the building as shown 
in [Figure 8]. 

In all of the buildings presented, all of 
the roof planes correspond to an arbitrary color 
other than red.  All of the triangles not belonging 
to a roof plane are colored red.  Therefore all 
triangles in the test case having a dark blue color 
correspond to the only existent roof plane in that 
structure.   

For all of the following actual building 
cases, the reconstructed buildings ([Figure 9], 
[Figure 10], [Figure 11], and [Figure 12]) and 
the accompanying digital aerial photographs 
([Figure 13], [Figure 14], [Figure 15], and 
[Figure 16]) are presented.   

In all of the non building roof triangles 
(red triangles), the building wall triangles were 
isolated from the surrounding terrain triangles.  
The surrounding terrain triangles were then 
filtered to remove small under sampled objects 
such as cars, trees, shrubs, etc.   
 

 
Figure 8 Test Case  
 

 
Figure 9 Building #1 3D Reconstruction 
 

 
Figure 10 Building #2 3D Reconstruction 
 



 

 
Figure 11 Building #3 3D Reconstruction 
 

 
Figure 12 Building #4 3D Reconstruction 
 

 
Figure 13 Building #1 
Aerial Photograph 

Figure 14 Building #2 
Aerial Photograph 

 
Figure 15 Building #3 
Aerial Photograph 
 

 
Figure 16 Building #4 
Aerial Photograph 
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5)  Conclusions and Future Work 
 
The presented algorithm performs fairly well on 
large buildings with simple roof structures.  The 
algorithm however is unable to accurately 
reconstruct small houses.  The small houses 
were only fractions in size of the buildings and 
contain as much as 5 times the number of roof 
planes.  The under sampled houses and 
consequently roof planes are unable to be 
accurately delineated by the Fuzzy SART 
clustering algorithm and therefore 3D 
reconstruction is not possible.  Had the sampling 
been higher, 3D reconstruction on the smaller 
houses may have been possible.   

In this paper we have proposed a 
number of preprocessing steps for 3D 
reconstruction from raw LIDAR data.  
Preliminary experimental results have shown 
that merging points with the proposed novel 
thresholding technique, during the generation of 
the LIDAR TIN, removes noise which causes 
the normal vectors to deviate from their ideal 
direction.  This in addition to translating the 
coordinates to center at the origin and scaling 
the dimensions such that they exist in the same 
range, significantly improves Fuzzy SART’s 
coplanar clustering performance.  Finally, the 
process of performing a multi (planar) 
regression analysis on the clustered planes and 
then merging all triangle centers within a certain 
distance from those best fit planes yielded even 
better results as outlying triangles and small roof 
top structures, unable to be reconstructed due to 
under sampling, were merged with those best fit 
planes. 
 This paper describes a work in progress.  
Exploration of further optimization of several 
portions of the implemented algorithm is 
currently underway.  Future research will be 
conducted in the following areas.  Other 
unsupervised learning algorithms, variations of 
ART and other algorithms such as single linkage 
clustering, ISODATA, etc. will be tested for 
their accuracy in delineating roof planes.  The 
presented research work concentrates on the 3D 
reconstruction aspects of recreating a given 
building.  Additional research will be done on 
distinguishing buildings from one another and 
autonomously isolating them.   
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