

 has

Abstract—In this paper, we present three different methods
for implementing the Probabilistic Neural Network on a
Beowulf cluster computer. The three methods, Parallel Full
Training Set (PFT-PNN), Parallel Split Training Set (PST-
PNN) and the Pipelined PNN (PPNN) all present different
performance tradeoffs for different applications. We present
implementations for all three architectures that are fully
equivalent to the serial version and analyze the tradeoffs
governing their potential use in actual engineering applications.
Finally we provide performance results for all three methods
on a Beowulf cluster.

I. INTRODUCTION

The Probabilistic Neural Network (PNN), introduced

by Specht [1], is an effective neural network architecture,
derived from a sound theoretical framework. It can
effectively solve a variety of classification problems. The
PNN is an approximation of the well known Bayesian
classifier. The Bayesian classifier is the best classifier that
can be designed to solve any classification problem.
However, Bayesian classification has the drawback that it
requires knowledge of the class conditional probabilities of
the data involved. In his paper, Specht uses the available
data to estimate these class conditional probabilities. This
approximation is based on the work by Parzen, who in his
1965 paper [2], provided a formula for the calculation of
these class conditional probabilities.

 Like many neural network algorithms, the PNN has a
training phase and a performance phase. PNN’s training
phase has an obvious computational advantage compared to
other neural network classification algorithms. In its training
phase PNN needs to simply store all of the training data,
which takes virtually no time, and quite often it is referred to
as one-pass learning.

The inexpensive training phase of the PNN comes at the
expense of a much more computationally intensive
performance phase. In PNN’s performance phase, in order
for one to predict the label of a datum, whose label is
unknown, some form of distance of this datum needs to be
calculated to every data-point belonging to the training set.
As a result, the number of computations required to produce

This work was supported in part by a National Science Foundation
(NSF) grant CRCD: 0203446, National Science Foundation grant
DUE:05254209, and a National Science Foundation Graduate Research
Fellowship,

predictions for the labels of new data (belonging to a test set)
is proportional to the number of points contained in the test
set, the number of points contained in the training set (stored
during PNN’s training phase) and the dimensionality of the
data. Consequently, the computational complexity associated
with the label predictions of the data in the test set becomes
high quickly, especially for problems of high dimensional
data with significant training and testing set sizes.

To remedy this computational expense associated with the
PNN’s performance phase, researchers have offered a
variety of solutions. One of these solutions relies on first
clustering the training data prior to using them in PNN’s
training phase. Clustering reduces the number of training
data-points that one has to deal with because it replaces
groups of the original set of training points by their
representatives. For instance, in [3], the author utilized
Learning Vector Quantization (LVQ) clustering for grouping
the training data. Alternatively, in [4], the authors
accomplished data clustering by using a Self Organizing
Maps (SOM) algorithm. Finally, the authors in [5] make a
comparison of three methods (LVQ, General Grouping
Method, and the Reciprocal Neighbors method) for reducing
the training set size. It is worth pointing out that in [6], the
focus is shifted from reducing the cardinality of the training
set to reducing its dimensionality. The author proposes an
iterative feature reduction algorithm to be used, whereby
features that are deemed to be excessively noisy or
contributing little to the final classifications are removed.
However, the reduction of the dimensionality of the training
set is not expected to have as much of an effect on the
PNN’s computational complexity as the reduction of the
set’s cardinality through clustering.

Whichever approach or approaches are followed for the
reduction of PNN’s computational complexity in the
performance phase, one cannot avoid classification problems
where the size of the training dataset (even after clustering)
is large, or the dimensionality of the data is high (because all
dimensions are important). Furthermore clustering of the
training data and reduction of data dimensionality does not
reduce the complexity related with the number of data points
in the test set. The situation of dealing with a large size test
set for which label predictions are needed in real-time or
almost real-time mode is still grim when the PNN algorithm
needs to be engaged to produce these predictions. In this

The authors are with the University of Central Florida, Orlando, FL

32816 USA (407-823-5338. All correspondence should be sent to Michael
Georgiopoulos at michaelg@mail.ucf.edu.

Methods for Parallelizing the Probabilistic Neural Network on a
Beowulf Cluster Computer

Jimmy Secretan, Michael Georgiopoulos, Ian Maidhof, Philip Shibly and Joshua Hecker

case, PNN hardware implementations that speed-up its
performance phase are usually employed. In [7], the authors
design an FPGA-based system for processing satellite
imagery with the PNN. The PNN was then able to
outperform standard PC implementations by about an order
of magnitude.

Due the popularity of inexpensive, coarse-grained parallel
architectures such as Beowulf clusters, and computing grids,
there has recently been a research emphasis into using this
architectures for high performance, high volume data
mining. This is the approach that we follow in this paper.
All the methods that we propose, to parallelize the PNN’s
performance phase, are implemented on a Beowulf, coarse-
grained parallel architecture.

It is worth mentioning that in [8], pipelined approaches to
implement the training phases of several neural network
architectures including, Fuzzy ARTMAP, Gaussian
ARTMAP and Ellipsoidal ARTMAP were presented.
Pipelining was used to reduce communication for optimal
performance on high latency, low bandwidth interconnects.
These designs provide a basis for the Pipeline PNN methods
presented in this paper. Related work that has appeared in
the literature is the effort conducted in [9] where the author
provides code for a Beowulf parallel image processing
system using the algorithm that we call in this paper PFT-
PNN. In this paper, in addition to the PFT-PNN
implementation of the PNN on the Beowulf architecture, we
implement two other parallelization methods, and we discuss
their advantages and disadvantages.

More specifically, in Section II we briefly discuss the
PNN algorithm. In Section III we discuss, in detail, all the
proposed PNN parallelization methods. In Section IV we
compare experimentally these three parallelization methods
and emphasize their advantages and disadvantages. Finally,
in Section V we summarize our work and provide conclusive
remarks and directions for further research.

II. THE PNN ALGORITHM
The PNN approximates the Bayesian Classifier. From

Bayes’ Theorem, we have that the a-posteriori probability
that an observed datum x has come from class j is given by
the formula:

)(/))()|(()|(xxx pcPcpcP jjj =

In order to make effective use of this formula, we must
calculate the a-priori probabilities)(jcP and the class

conditional probabilities)|(jcp x . The a-priori probability

can be obtained directly from the training data, that
is, ∑= jjj PTPTcP /)(, where jPT designates the

number of points in the training data set that are of class j .
The class conditional probability can be estimated by using
the approximation formula provided in Parzen [2], that is

=)|(jcxp

∑
= 










 −−
−

jPT

r

j
r

Tj
r

j
DD PT 1

22/ 2
)()(

exp
)2(

1
σσπ

XxXx

where D is the dimensionality of the input patterns (data),

jPT represents the number of training patterns belonging to

class j , j
rX denotes the r-th such pattern, x is the input

pattern to be classified, and σ is the smoothing parameter.
The PNN algorithm identifies the input pattern x as
belonging to the class that maximizes the above probability
(for classification problems where the data are equally likely
of belonging to any of the potential classes). The choice of
the right σ parameter is beyond the scope of our work, and
the assumption is made here that somehow the proper
σ parameter been chosen. If the σ parameters are different
per dimension and class then we make a reference to a
matrix of sigma values, denoted as σ ,.

 Under the assumption that σ has been appropriately
chosen we are only concerned of loading the training data
into memory, prior to the initiation of the PNN’s
performance phase. Once the loading is complete, a set of
class conditional probabilities (one for each class) is
computed for each testing point. The label of the testing
point is determined by the highest class conditional
probability (under the assumption that the a-priori
probabilities for the different classes are equal). If the
classes are not equally probable the label of the testing point
is the one maximizing the product of the a-priori
probabilities and class conditional probabilities. Figure 1
shows the pseudo-code of the standard PNN algorithm. We
first iterate over the testing points. Then, iterating over each
training point, we sum the formula across the dimensions.
After each training point, we add this summation to the
classProbabilities array. For a particular testing point, once
the training points have been iterated over, the
classProbabilities has C entries, representing partially
formed class conditional probabilities for each class. The
program then loops over this array and performs the rest of
this computation (the division by the constant terms is only
done once, at the time when the final summation is
calculated). After this, the FindArrayMax function returns
the class for which this class-conditional probability is the
maximum. This is added to the results array.

III. PARALLEL PNN ALGORITHMS
In the course of parallelizing the performance phase of the

PNN, we focused on three different parallelization methods.
They all have different strengths and weaknesses. Before
providing the pseudo-code for these approaches, we
introduce some necessary terminology (see Table I).

A. Parallel Full Training Set PNN (PFT-PNN)
The first approach may be the most obvious approach. It

is called the Parallel Full Training Set PNN, because each

Procedure: SerialPNN(T , X, D, σ, PT)

real array classProbabilities;

real exponent;
integer array results;

foreach xk in T do
foreach Xr in X do

exponent = 0;

for i = 1 to D do
exponent += (xik − Xir)

2/σij;

classProbabilitiesj += exp(exponent);

foreach j in classProbabilities do

classProbabilitiesj /= (2π)D/2PTj

D∏

i=1
σij;

resultsi = FindArrayMax(classProbabilities);
return results;

1

Fig. 1. Pseudo-code for the standard serial PNN algorithm

TABLE I

VARIABLES FOR PSEUDOCODE

Statement Explanation

C
D

Number of output class labels in the problem.
Dimensionality of the data.

σ CxD, Matrix of sigma values. In our experiments
all the entries of this matrix are the same, and
equal to a fixed smoothing parameterσ .

PT An array, indexed by class j, containing the
number of points in the training set that belong to
a particular class.

T Set of testing points.
X Set of training points.
k The processor id on which the program is

currently running, with k = 0 being the root node.
p Total number of processors on which the program

is currently running.
nodes A set (of size p) containing all of the

computational nodes that are part of the currently
running system.

B Number of points in a batch. When PST-PNN
and PPNN nodes transfer testing points, they do
so in sets of size B.

batches The number of batches of size B into which the
testing set is split.

results An array of output class labels, resulting from the
completion of the PNN test phase.

classProbabilities An array of size C that contains the computed
class conditional probabilities for a particular
point.

PR An array containing classProbabilities arrays for
multiple testing points.

node k of the p total nodes contains a copy of the entire
training set. Suppose there is a test set that needs to be
processed by the PNN. The test set is fully available at run
time. Results for this test set are not needed as they are
available, but are acceptable to be received all at once. The
primary goal is to finish processing the entire test set as
quickly as possible. Also assume that the training set fits
easily into the main memory of a single node. If all of these
requirements are met, it is possible to use the PFT-PNN. In
the PFT-PNN, after the full training set is broadcast to the
nodes, the test set is then split up equally among the nodes.

Note that this approach could be easily extended to a grid
environment with heterogeneous nodes. The
calcPtsPerNode() function that is responsible for calculating
the number of test points to be sent to the node could easily
be modified to send a number of points to each node that is
commensurate with its computational capability. In parallel,
the nodes evaluate their portion of the test set and send the
results back to the master node. Figure 2 illustrates the flow
of training and testing points for the PFT-PNN.

Fig. 2. Diagram for data flow in the PFT-PNN.

The pseudo-code for the PFT-PNN approach is given in

figure 3. At the root node, the entire training set is loaded
into X by the LoadTrainingSet() function. The function
BroadcastSet() takes a set as an argument, broadcasting it
from the root node, and receiving that set on all the other
nodes. This is a tree structured communication, relying on
all of the nodes to quickly propagate the information. Once
the training set has been received, then the root splits up the
testing set and sends it out to the nodes. The
calcPtsPerNode() functions computes the number of testing
points that a particular node should have. The SendSet()
function sends to the specified node a specified set. The set
it sends, in this case, is the one returned by
LoadTestSetPortion() which returns the specified number of
testing set points. After this, the other nodes receive this set.
Each node computes the standard Serial PNN and stores it in
a local array. Finally, the GatherResults() function
executes, sending the results from the non-root nodes and
receiving and merging the results at the root node.

This is fully equivalent to the serial PNN. A serial PNN
algorithm will be run by node k, on the set kT . Because

∪
1

0

−

=
=

p

k
k TT , this is equivalent to executing the serial PNN

on the set T.
We now calculate the computation and communication

complexity of the PFT-PNN architecture. First, the training
set must be loaded and broadcast to all of the processor
nodes, taking)(XDO time. We assume that the broadcast

operation is tree structured and therefore it takes

Procedure: PFTPNN(k, nodes, T, X, D, σ, PT)

Set Tk;

integer array results;
integer pointsPerNode;

if k == 0 then
X = LoadTrainingSet();

BroadcastSet(X);
if k == 0 then

foreach nodesi in nodes do
pointsPerNode = calcPtsPerNode(nodesi);

SendSet(nodesi,
LoadTestSetPortion(pointsPerNode));

else
nodeTestingPoints = ReceiveSet();

resultsi = SerialPNN(Tk, X, D, σ, PT);

GatherResults(results, resultsi);

1

Fig. 3. Pseudo-code for the PFT-PNN parallel algorithm.

|))|(log(XDO operations. Then we must send to each

node its portion of the test set. This operation is
simply)(TDO . After the test set has been broadcast, the

serial PNN is executed in the standard way, requiring
)/)((pCDO TX operations. Finally, the results are

gathered back to the master node, which requires
)(TO operations, because only a single label needs to be

broadcast back for each test point. This leads to a
cumulative complexity of

))log()/((TTXTX ++++ DDpCDXDO .

operations for the PTF-PPN approach. For storage
requirements, each node must store the training set and a
portion of the testing set, with a storage complexity for each
node of)/(pDDO TX + .

B. Parallel Split Training Set PNN (PST-PNN)
In this approach, the training set is initially split among

the processor nodes, hence the name Parallel Split Training
Set PNN. If the training set is of large size, this approach
allows for the training set to be more easily stored on a
single processing node. With training sets that are large
relative to the node memory, the node may not be able to fit
the full set or may have to do a great deal of swapping to the
hard disk, slowing the computations significantly. In
batches of size B, test points are broadcast to all of the
nodes. This packet size B can be adjusted to modify the
system’s latency and to accommodate the availability of
data. For instance, this may be used in a system where data
arrives in bursts or as single points. This method offers low
latency for obtaining the label of a few test points. The flow
of data for the PST-PNN is pictorially illustrated in figure 4.

In the PST-PNN pseudo-code in figure 4, the root node

Procedure: PSTPNN(k, nodes, B, T, X, D, σ,
PT)

Set testBatch;
Set Xk;

integer array results;
real array PR;

integer batches;
integer pointsPerNode;

if k == 0 then
foreach nodesi in nodes do

pointsPerNode = calcPtsPerNode(nodesi);
SendSet(nodesi,

LoadTrSetPortion(pointsPerNode));

else
Xk = ReceiveSet();

batches = �|T|/B�;
for i = 1 to batches do

if k == 0 then
testBatch = LoadTestSetPortion(B);

BroadcastSet(testBatch);
PRi = PartialPNN(testBatch,X, D, σ, PT);

ReduceResults(results, PRi);

1

Fig. 4. Pseudo-code for the PST-PNN parallel algorithm.

starts by calculating the number of training points that each
node will have (similar to the calcPtsPerNode()function
mentioned previously). The LoadTrSetPortion()function
loads the specified number of points of the training set. The
SendSet() function then sends this subset to other nodes.
The root node loads a batch of the testing set, and broadcasts
this to all nodes. Each node computes the function
PartialPNN() which operates similarly to the SerialPNN()
function except it stops short of making the final
classification. Instead it returns a set of classProbabilities
arrays in iPR . Finally, the ReduceResults function
executes to send the partial results from the non-root node
and receive and merge the results at the root node.

This is fully equivalent to the serial PNN. Every node
receives an identical batch of testing points. For each testing
point in the set, on every node k, the following is calculated:

Fig. 5. Diagram for the data flow in PST-PNN.

∑
=

−−
k

jPT

r

j
r

Tj
r

1

2))2/()()exp((σXxXx where k
jPT is the

set of training points in class j that are stored on node k.
These class probabilities are summed together when they are
returned to the root node. This yields

∑∑
=

−

=

−−
k

jPT

r

j
r

Tj
r

p

k 1

2
1

0

))2/()()exp((σXxXx . Because we

split the training set fully among the nodes, for every class j

∪
1

0

−

=
=

p

k
j

k
j PTPT . Multiplying this by

))2/((1 2/
j

DD PTσπ then yields the original PNN

formula. The root node makes the decision based on this
formula, giving the same results as the serial PNN.

For the time complexity of the PST-PNN, we first start
with the splitting of the training set among all of the
processor nodes. This is an)(XDO operation. Then, we

have the broadcast, reduce loop that is executed batches
times. Over the course of this loop’s execution, the loading
of testing set values will account for)(TDO operations.

There will be a broadcast for each batch,
totaling))(log((BDbatchesO . Then, there is the partial

PNN execution, with complexity)/(pDO XT . Finally,

there is the reduction that takes
)))((log(batchesCBCBO + operations because it is a

tree structured operation, taking the partial result arrays of
the nodes and turning it into a final result. After the tree
structured gather, there is a final search for the maximum
probability. All of these calculations yield a complexity of

++++ pDBDbatchesDDO /))(log((XTTX
))(batchesCB operations for the PST-PNN approach.

Because each node only has to store a part of the training set,
and batches of the testing set, the storage complexity per
node is only)/(DBpDO +X .

C. Pipelined PNN (PPNN)
 In this architecture, communication time between nodes

is minimized by allowing each node to communicate with its
2 neighbors. First of all, as in the PST-PNN, the training set
is split evenly among the nodes. Test points are loaded at
the first node in the pipeline. For each batch B, a partial list
of class conditional probabilities is calculated. This partial
list and the test point batch are passed on to the next node in
the pipeline that does the same for the batch with its set of
training points. A label is finally assigned at the end of the
pipeline. This requires only point to point communication as
opposed to the switched communication of the other two
methods. It is worth noting that this approach is similar to
the approach used for the parallel implementation of Fuzzy

ARTMAP and the no match tracking (NMT) Fuzzy
ARTMAP (see [8]). Figure 6 shows the logical layout of
the pipeline and the data flow between nodes.

Fig. 6. Diagram for data flow in the Pipeline PNN.

The pseudo-code for the pipeline PNN is provided in figure
7. The first part of the Pipeline PNN works identically to the
PST-PNN. The loop, however, is different. First, the
testBatch is loaded by the root node. All of the other nodes
receive a test batch and their partially computed results from
the neighbor with id k-1 through the RecvPrev() function.
As in the PST-PNN, a partial classProbabilities array is
computed based on the current testing batch and the node’s
available training points. The partial results returned are
merged with the partial results received from the previous
node. Finally, if the node is not the last in the pipeline, these
are sent on to the neighbor with id k+1. If this is the last
node in the pipeline, a final classification is made from the
now complete class conditional probability array with the
calcFinalResults() function.
 This is computationally equivalent to the serial PNN. At
each node k (stage in the pipeline), the partial results of a
particular input point x in batch i is given by

∑
=

−−=
k

jPT

r

j
r

Tj
rikPR

1

2))2/()()exp((),(σXxXx

),1(ikP −+ , with 0),,0(=riP , and k
jPT being the set

of training points in class j that are stored on node k.
Finally,

∑∑
=

−

=

−−=
k

jPT

r

j
r

Tj
r

p

k

ipP
1

2
1

0

))2/()()exp((),(σXxXx ,

reflecting the fact that we add the partial results at every
stage. Because we split the training set fully among the

nodes, then for every j, ∪
1

0

−

=
=

p

k
j

k
j PTPT . This allows the

partial results formula to be rewritten as

∑
=

−−=
jPT

r

j
r

Tj
ripP

1

2))2/()()exp((),(σXxXx .

Multiplying this by))2/((1 2/
j

DD PTσπ gives the

original formula on which the classification decision is
made. This same classification decision is made on the last
node, p-1.

Procedure: PipePNN(k, nodes, B, T, X, D, σ,
PT)

Set testBatch;
Set Xk;

integer array results;
real array PR;

integer batches;
integer pointsPerNode;

if k == 0 then
foreach nodesi in nodes do

pointsPerNode = calcPtsPerNode(nodesi);
SendSet(nodesi,

LoadTrSetPortion(pointsPerNode));

else
Xk = ReceiveSet();

batches = �|T|/B�;
for i = 1 to batches do

if k == 0 then
testBatch = LoadTestSetPortion(B);

else
RecvPrev(PRi, testBatch);

PRi += PartialPNN(testBatch,X, D, σ, PT);
if k == |nodes| − 1 then

resultsi = calcFinalResults(PRi);
else

SendNext(PRi, testBatch);

1

Fig. 7. Pseudo-code for the pipeline PNN algorithm

For the Pipeline PNN time complexity, we first start, as
before with the splitting of the training set among all of the
processor nodes, which is)(XDO . Each node executes

its loop batches times. However, the last node waits p-1
additional timesteps for the first computation to reach it.
The communication at each cycle will take)(BDO . Then,
there is the partial PNN execution, with complexity

)/(pDBO X on each processor, each cycle. There is also

a final labeling of the batch, taking)(BCO . All of these
add up to yield a computational complexity of

++−++ pDBBDpbatchesDO /)(1((XX

))BC operations for the pipeline approach. As in PST-
PNN, the storage complexity per node is

)/(DBpDO +X .

IV. EXPERIMENTS

A. Hardware/Software
To experiment with the different parallel PNN

approaches, an implementation for each approach was done
in C++ using the MPICH libraries for message passing. A
serial version of the algorithm was also implemented.

All of versions of the PNN were run on the Cerberus

Beowulf cluster at the University of Central Florida.
Cerberus has 40 nodes, each with a 400Mhz Pentium II
processor and 384MB of RAM. They are connected
together by a fast Ethernet switch and managed by a
combination frontend/fileserver.

B. Experimental Database
The database used in the testing of the three different

parallelization PNN approaches, mentioned above,
consisted of a 2-class, 16-dimensional Gaussian data with
15% overlap between the data belonging to the two different
classes. The meaning of the 15% overlap is that if we were
to design a Bayesian classifier to separate the 2-class data in
this dataset the error rate of the Bayesian classifier would be
15%. Two datasets were generated, to be alternately used for
training and testing; one of size 512,000 data-points and the
other of size 16,000 data-points. Although this was an
artificially generated database it is sufficient for the purposes
of this paper. In this paper we are primarily concerned on
comparing the speed of the three different PNN
parallelization approaches, and because of that and the fact
that all of these are equivalent to the serial algorithm, the
actual dataset that we use to perform our experiments is not
important. What is important is the dimensionality of the
dataset and the size of the training/testing sets.

C. Test Description
In the first test, 16k training points were used, while the

test set contained 32k, 128k and 512k points, respectively.
Then, the size of the training set was kept fixed at 16k, while
the size of the training set varied from 32k, to 128k and
finally to 512k. Each of these tests was done for 1, 2, 4, 8,
16 and 32 number of processor nodes.

For the second set of tests, we examined the latency of
processing a single test data-point using the PST-PNN and
the Pipelined PNN (after initial set up and loading of the
training data was completed). In this second set of tests we
used a training set size of 512k points. The PFT-PNN
approach was omitted from these tests because the single test
point can never be split among the nodes. The number of
nodes in this second set of tests was 1, 2, 4, 8, 16, 32.

D. Parameters Chosen
A nominal sigma (σ) value of 0.5 over all dimensions

and classes was chosen, because it worked well in the initial
experimentation with the Gaussian dataset. Because this
paper only focuses on the computational efficiency of the
PNN and not on its classification performance and because
the 3 implementations are computationally equivalent to the
serial PNN, no effort was expended to optimize sigma.
Values of B that worked well were established by
experimentation (20 for the PST-PNN approach and 5 for
the Pipeline PNN approach).

V. RESULTS
The results obtained from the parallel runs were mostly

expected. For the PFT-PNN (figure 8), the scaling was

mostly related to the product, XT (for a fixed D). The

higher this product was, the better the algorithm scaled for
large numbers of processors. This is not surprising, as the
large computational tasks make up for the overhead of
transmitting the training and partial testing sets.

In the graph of the PST-PNN, figure 9, some interesting
conclusions can be drawn. As with the PFT-PNN, there is
clearly some dependence between the linearity of the scaling
and the size of the product XT . However, there is a clear

advantage to smaller testing sets and larger training sets.
This can be presumably attributed to two effects. First, there
are fewer communications to split the training set among the
nodes than the numerous separate communications to
broadcast batches of testing points and receive their results.
On the high latency, low bandwidth interconnect typical to
clusters, less frequent communication is favored. Another
effect is the role of the CPU’s cache in the computation. In
the single processor case, for each testing point, the
algorithm must iterate over all of the training points. This is
typically significantly larger than the cache, and the training
points are swapped frequently in and out. However, as the
training points are split into smaller pieces shared among the
nodes, it is possible to keep many of these in cache.

This allows additional speedup over the single processor,
in some cases outweighing the overhead of the parallel
algorithm and leading to super-linear scaling. An effect
similar to that of the PST-PNN is seen for the Pipeline PNN
in figure 10. The splitting of the training set allows some of
the same caching benefits.

For products XT that are too small, larger pipelines

make less sense in terms of scaling, because the overhead of
starting up the pipeline becomes too great.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Sp
ee

du
p

Number of Processors

Speedup of PFT-PNN on Gaussian 15% Overlap

32k training, 16k testing
128k training, 16k testing
512k training, 16k testing

16k training, 32k testing
16k training, 128k testing
16k training, 512k testing

Fig. 8. Speedup of PFT-PNN for 15% overlap Gaussian database.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Sp
ee

du
p

Number of Processors

Speedup of PST-PNN on Gaussian 15% Overlap

32k training, 16k testing
128k training, 16k testing
512k training, 16k testing

16k training, 32k testing
16k training, 128k testing
16k training, 512k testing

Fig. 9. Speedup of PST-PNN for 15% overlap Gaussian database.

 In figure 11, we compare all three implementations in
scenarios where they all have 512k training points and 16k
testing points, as well as 16k training points and 512 testing
points.
 For the 512k training point scenario, all three architectures
appeared to perform similarly. However, their performances
diverge for the scenario of 16k training points and 512k
testing points. The pipeline PNN has the greatest advantage,
because of its efficient communication and, in our case,
greater ability to retain frequently used training points in
cache. The PFT-PNN performs well also, which is not
surprising because of infrequent communication
requirements. However, it becomes evident that the frequent
broadcasts and gather operations affect the scaling of the
PST-PNN approach. The large number of testing points
used in this experiment makes this effect more evident.

Figure 12 shows the latency of testing a single point with
512k training points. The pipeline PNN and PST-PNN are
shown. The PFT-PNN, as specified before, is omitted,
because running a single point on the PFT-PNN is
equivalent to executing the serial version of the algorithm.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Sp
ee

du
p

Number of Processors

Speedup of Pipeline-PNN on Gaussian 15% Overlap

32k training, 16k testing
128k training, 16k testing
512k training, 16k testing
16k training, 32k testing

16k training, 128k testing
16k training, 512k testing

Fig. 10. Speedup of Pipeline-PNN for 15% overlap Gaussian database.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

Sp
ee

du
p

Number of Processors

Speedup of 3 Methods Compared

PFT-PNN, 512k train, 16k test
PFT-PNN, 16k, 512k test

PST-PNN 512k train, 16k test
PST-PNN, 16k training, 512k test

PPNN, 512k train, 16k test
PPNN, 16k train, 512k test

Fig. 11. Comparison of all three approaches for 512k training points and
16k testing points as well as 16k training points and 512k testing points.
Note that, while all 6 cases are shown, the lines are closely overlaid.

 As expected, we see that the latency drops with a greater
number of processors in the PST-PNN, because comparison
against portions of the training set happen concurrently.
However, it is clear that this effect is diminishing as the
overhead of broadcasting the points and merging the results
begins to overshadow the speedup gained by the parallelism.
In the pipeline PNN, the latency of processing a single point
is approximately constant. The computational task of each
processor becomes smaller, but these tasks are not done
concurrently, thus eliminating the advantages of parallelism
when a single test point is processed.

VI. SUMMARY/CONCLUSIONS
 We have designed and implemented three different
approaches for the parallelization of the PNN’s performance
phase. In the PFT-PNN approach each node has a complete
copy of the training set and processes a portion of the testing
set. In the PST-PNN approach each node has a portion of the
training set and the entire testing set (received in batches)
and merging of the results is required. In the PPNN approach

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35

La
te

nc
y

(s
)

Number of Processors

Latency for a Single Test Point and 512k Training Points

PST-PNN
Pipeline-PNN

Fig. 12. Latency for a single testing point and 512k training points.

 each node has a portion of the training set and processes the

testing set in a pipeline fashion.
All three of these approaches show reasonable scaling. In

a production system utilizing PNN, a decision of which
architecture to use is dependent on the problem at hand. If
there are very few points to split up amongst the processor
nodes, the overhead of any of the parallel algorithms will
overshadow the speedup. If there are large batches of test
points to process, with reasonably sized training sets, the
PFT-PNN can provide efficient processing that is easy to
control and implement. For training sets that are
prohibitively large to fit in a single node’s memory, either
the PST-PNN or the Pipeline PNN may be more beneficial.
If a very large training set is used with the PFT-PNN or
serial approaches, the amount of memory swapping of the
training data will significantly reduce the performance of the
algorithm. Finally, if points are needed in a low latency
fashion, the PST-PNN approach is the algorithm of choice.

Future work will include speed-up analysis of the
proposed parallelization approaches on a more extensive set
of databases. In addition, these algorithms will be extended
to heterogeneous grid environments. The nature of the way
the PNN processes points allows easy load balancing of the
PNN on multiple heterogeneous nodes.

REFERENCES

[1] D. F. Specht, "Probabilistic Neural Networks," Neural Networks,

vol. 3, pp. 109-118, 1990.
[2] E. Parzen, "On estimation of probability density function and

mode," Annals of Mathematical Statistics, vol. 33, pp. 1065-
1073, 1962.

[3] P. Burrascano, "Learning vector quantization for the
probabilistic neural network," IEEE Transactions on Neural
Networks, vol. 2, pp. 458-461, 1991.

[4] J. Chen, H. Li, S. Tang, and J. Sun, "A SOM-based probabilistic
neural network for classification of ship noises," presented at
Communications, Circuits and Systems and West Sino
Expositions, IEEE 2002 International Conference, 2002.

[5] M. H. Hammond, C. J. Riedel, S. L. Rose-Pehrsson, and F. W.
Williams, "Training set optimization methods for a probabilistic
neural network," Chemometrics and Intelligent Laboratory
Systems, vol. 71, pp. 73-78, 2004.

[6] C.-Y. Tsai, "An iterative feature reduction algorithm for
probabilistic neural networks," Omega, vol. 28, pp. 513-524,
2000.

[7] M. A. Figueiredo and C. Gloster, "Implementation of a
probabilistic neural network for multi-spectral image
classification on an FPGA based custom computing machine,"
presented at Proceedings of the 5th Brazilian Symposium on
Neural Networks, 1998.

[8] J. Secretan, J. Castro, M. Georgiopoulos, J. Tapia, A. Chadha, B.
Huber, and G. Anagnostopoulos, "Parallelizing the Fuzzy
ARTMAP Algorithm on a Beowulf Cluster," presented at
International Joint Conference on Neural Networks, Montreal,
Quebec, Canada, 2005.

[9] K. D. Underwood, W. Ligon, and R. Sass, "An Analysis of the
Cost Effectiveness of an Adaptable Computing Cluster," Cluster
Computing, vol. 7, pp. 357-371, 2004.

