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Abstract—In this paper, we present three different methods 
for implementing the Probabilistic Neural Network on a 
Beowulf cluster computer.  The three methods, Parallel Full 
Training Set (PFT-PNN), Parallel Split Training Set (PST-
PNN) and the Pipelined PNN (PPNN) all present different 
performance tradeoffs for different applications.   We present 
implementations for all three architectures that are fully 
equivalent to the serial version and analyze the tradeoffs 
governing their potential use in actual engineering applications.  
Finally we provide performance results for all three methods 
on a Beowulf cluster. 

I. INTRODUCTION 

The Probabilistic Neural Network (PNN), introduced 

by Specht [1], is an effective neural network architecture, 
derived from a sound theoretical framework.  It can 
effectively solve a variety of classification problems.  The 
PNN is an approximation of the well known Bayesian 
classifier.  The Bayesian classifier is the best classifier that 
can be designed to solve any classification problem. 
However, Bayesian classification has the drawback that it 
requires knowledge of the class conditional probabilities of 
the data involved.  In his paper, Specht uses the available 
data to estimate these class conditional probabilities. This 
approximation is based on the work by Parzen, who in his 
1965 paper [2], provided a formula for the calculation of 
these class conditional probabilities.  

 Like many neural network algorithms, the PNN has a 
training phase and a performance phase. PNN’s training 
phase has an obvious computational advantage compared to 
other neural network classification algorithms. In its training 
phase PNN needs to simply store all of the training data, 
which takes virtually no time, and quite often it is referred to 
as one-pass learning.  

The inexpensive training phase of the PNN comes at the 
expense of a much more computationally intensive 
performance phase. In PNN’s performance phase, in order 
for one to predict the label of a datum, whose label is 
unknown, some form of distance of this datum needs to be 
calculated to every data-point belonging to the training set. 
As a result, the number of computations required to produce 
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predictions for the labels of new data (belonging to a test set) 
is proportional to the number of points contained in the test 
set, the number of points contained in the training set (stored 
during PNN’s training phase) and the dimensionality of the 
data. Consequently, the computational complexity associated 
with the label predictions of the data in the test set becomes 
high quickly, especially for problems of high dimensional 
data with significant training and testing set sizes.  

To remedy this computational expense associated with the 
PNN’s performance phase, researchers have offered a 
variety of solutions. One of these solutions relies on first 
clustering the training data prior to using them in PNN’s 
training phase. Clustering reduces the number of training 
data-points that one has to deal with because it replaces 
groups of the original set of training points by their 
representatives. For instance, in [3], the author utilized 
Learning Vector Quantization (LVQ) clustering for grouping 
the training data.  Alternatively, in [4], the authors 
accomplished data clustering by using a Self Organizing 
Maps (SOM) algorithm.  Finally, the authors in  [5] make a 
comparison of three methods (LVQ, General Grouping 
Method, and the Reciprocal Neighbors method) for reducing 
the training set size.  It is worth pointing out that in [6], the 
focus is shifted from reducing the cardinality of the training 
set to reducing its dimensionality.  The author proposes an 
iterative feature reduction algorithm to be used, whereby 
features that are deemed to be excessively noisy or 
contributing little to the final classifications are removed. 
However, the reduction of the dimensionality of the training 
set is not expected to have as much of an effect on the 
PNN’s computational complexity as the reduction of the 
set’s cardinality through clustering.  

Whichever approach or approaches are followed for the 
reduction of PNN’s computational complexity in the 
performance phase, one cannot avoid classification problems 
where the size of the training dataset (even after clustering) 
is large, or the dimensionality of the data is high (because all 
dimensions are important). Furthermore clustering of the 
training data and reduction of data dimensionality does not 
reduce the complexity related with the number of data points 
in the test set. The situation of dealing with a large size test 
set for which label predictions are needed in real-time or 
almost real-time mode is still grim when the PNN algorithm 
needs to be engaged to produce these predictions. In this 
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case, PNN hardware implementations that speed-up its 
performance phase are usually employed.  In [7], the authors 
design an FPGA-based system for processing satellite 
imagery with the PNN.  The PNN was then able to 
outperform standard PC implementations by about an order 
of magnitude. 

Due the popularity of inexpensive, coarse-grained parallel 
architectures such as Beowulf clusters, and computing grids, 
there has recently been a research emphasis into using this 
architectures for high performance, high volume data 
mining.  This is the approach that we follow in this paper. 
All the methods that we propose, to parallelize the PNN’s 
performance phase, are implemented on a Beowulf, coarse-
grained parallel architecture.  

It is worth mentioning that in [8], pipelined approaches to 
implement the training phases of several neural network 
architectures including, Fuzzy ARTMAP, Gaussian 
ARTMAP and Ellipsoidal ARTMAP were presented.  
Pipelining was used to reduce communication for optimal 
performance on high latency, low bandwidth interconnects.  
These designs provide a basis for the Pipeline PNN methods 
presented in this paper.  Related work that has appeared in 
the literature is the effort conducted in [9] where the author  
provides code for a Beowulf parallel image processing 
system using the algorithm that we call in this paper PFT-
PNN.  In this paper, in addition to the PFT-PNN 
implementation of the PNN on the Beowulf architecture, we 
implement two other parallelization methods, and we discuss 
their advantages and disadvantages.  

More specifically, in Section II we briefly discuss the 
PNN algorithm. In Section III we discuss, in detail, all the 
proposed PNN parallelization methods. In Section IV we 
compare experimentally these three parallelization methods 
and emphasize their advantages and disadvantages. Finally, 
in Section V we summarize our work and provide conclusive 
remarks and directions for further research.  

II. THE PNN ALGORITHM 
The PNN approximates the Bayesian Classifier.  From 

Bayes’ Theorem, we have that the a-posteriori probability 
that an observed datum x  has come from class j is given by 
the formula: 

)(/))()|(()|( xxx pcPcpcP jjj =  

In order to make effective use of this formula, we must 
calculate the a-priori probabilities )( jcP  and the class 

conditional probabilities )|( jcp x .  The a-priori probability 

can be obtained directly from the training data, that 
is, ∑= jjj PTPTcP /)( , where jPT  designates the 

number of points in the training data set that are of class j .  
The class conditional probability can be estimated by using 
the approximation formula provided in Parzen [2], that is 

=)|( jcxp

∑
= 










 −−
−

jPT

r

j
r

Tj
r

j
DD PT 1

22/ 2
)()(

exp
)2(

1
σσπ

XxXx
 

where D  is the dimensionality of the input patterns (data), 

jPT represents the number of training patterns belonging to 

class j , j
rX denotes the r-th such pattern, x is the input 

pattern to be classified, and σ  is the smoothing parameter. 
The PNN algorithm identifies the input pattern x  as 
belonging to the class that maximizes the above probability 
(for classification problems where the data are equally likely 
of belonging to any of the potential classes). The choice of 
the right σ parameter is beyond the scope of our work, and  
the assumption is made here that somehow the proper 
σ parameter been chosen.  If the σ parameters are different 
per dimension and class then we make a reference to a 
matrix of sigma values, denoted as σ ,. 

  Under the assumption that σ  has been appropriately 
chosen we are only concerned of loading the training data 
into memory, prior to the initiation of the PNN’s 
performance phase. Once the loading is complete, a set of 
class conditional probabilities (one for each class) is 
computed for each testing point.  The label of the testing 
point is determined by the highest class conditional 
probability (under the assumption that the a-priori 
probabilities for the different classes are equal).  If the 
classes are not equally probable the label of the testing point 
is the one maximizing the product of the a-priori 
probabilities and class conditional probabilities. Figure 1 
shows the pseudo-code of the standard PNN algorithm.  We 
first iterate over the testing points.  Then, iterating over each 
training point, we sum the formula across the dimensions.  
After each training point, we add this summation to the 
classProbabilities array.  For a particular testing point, once 
the training points have been iterated over, the 
classProbabilities has C entries, representing partially 
formed class conditional probabilities for each class.   The 
program then loops over this array and performs the rest of 
this computation (the division by the constant terms is only 
done once, at the time when the final summation is 
calculated).  After this, the FindArrayMax function returns 
the class for which this class-conditional probability is the 
maximum.  This is added to the results array. 

III. PARALLEL PNN ALGORITHMS 
In the course of parallelizing the performance phase of the 

PNN, we focused on three different parallelization methods.  
They all have different strengths and weaknesses.  Before 
providing the pseudo-code for these approaches, we 
introduce some necessary terminology (see Table I). 

A. Parallel Full Training Set PNN (PFT-PNN) 
The first approach may be the most obvious approach.  It 

is called the Parallel Full Training Set PNN, because each 



 
 

Procedure: SerialPNN(T , X, D, σ, PT)

real array classProbabilities;

real exponent;
integer array results;

foreach xk in T do
foreach Xr in X do

exponent = 0;

for i = 1 to D do
exponent += (xik − Xir)

2/σij;

classProbabilitiesj += exp(exponent);

foreach j in classProbabilities do

classProbabilitiesj /= (2π)D/2PTj

D∏

i=1
σij;

resultsi = FindArrayMax(classProbabilities);
return results;

1

 
Fig. 1.  Pseudo-code for the standard serial PNN algorithm 

 
TABLE I 

VARIABLES FOR PSEUDOCODE 

Statement Explanation 

C 
D 

Number of output class labels in the problem. 
Dimensionality of the data. 

σ  CxD, Matrix of sigma values. In our experiments 
all the entries of this matrix are the same, and 
equal to a fixed smoothing parameterσ . 

PT An array, indexed by class j,  containing the 
number of points in the training set that belong to 
a particular class. 

T Set of testing points. 
X Set of training points. 
k The processor id on which the program is 

currently running, with k = 0 being the root node. 
p Total number of processors on which the program 

is currently running. 
nodes A set (of size p) containing all of the 

computational nodes that are part of the currently 
running system. 

B Number of points in a batch.  When PST-PNN 
and PPNN nodes transfer testing points, they do 
so in sets of size B. 

batches The number of batches of size B into which the 
testing set is split. 

results An array of output class labels, resulting from the 
completion of the PNN test phase. 

classProbabilities An array of size C that contains the computed 
class conditional probabilities for a particular 
point. 

PR An array containing classProbabilities arrays for 
multiple testing points. 

 
node k of the p total nodes contains a copy of the entire 
training set.  Suppose there is a test set that needs to be 
processed by the PNN.  The test set is fully available at run 
time.  Results for this test set are not needed as they are 
available, but are acceptable to be received all at once.  The 
primary goal is to finish processing the entire test set as 
quickly as possible.  Also assume that the training set fits 
easily into the main memory of a single node.  If all of these 
requirements are met, it is possible to use the PFT-PNN.  In 
the PFT-PNN, after the full training set is broadcast to the 
nodes, the test set is then split up equally among the nodes.  

Note that this approach could be easily extended to a grid 
environment with heterogeneous nodes.  The 
calcPtsPerNode() function that is responsible for calculating 
the number of test points to be sent to the node could easily 
be modified to send a number of points to each node that is 
commensurate with its computational capability.  In parallel, 
the nodes evaluate their portion of the test set and send the 
results back to the master node.  Figure 2 illustrates the flow 
of training and testing points for the PFT-PNN. 

 
Fig. 2.  Diagram for data flow in the PFT-PNN. 

 
The pseudo-code for the PFT-PNN approach is given in 

figure 3.  At the root node, the entire training set is loaded 
into X by the LoadTrainingSet() function.  The function 
BroadcastSet() takes a set as an argument, broadcasting it 
from the root node, and receiving that set on all the other 
nodes. This is a tree structured communication, relying on 
all of the nodes to quickly propagate the information.  Once 
the training set has been received, then the root splits up the 
testing set and sends it out to the nodes.  The 
calcPtsPerNode() functions computes the number of testing 
points that a particular node should have.  The SendSet() 
function sends to the specified node a specified set.  The set 
it sends, in this case, is the one returned by 
LoadTestSetPortion() which returns the specified number of 
testing set points.  After this, the other nodes receive this set.  
Each node computes the standard Serial PNN and stores it in 
a local array.  Finally, the GatherResults() function 
executes, sending the results from  the non-root nodes and 
receiving and merging the results at the root node. 

This is fully equivalent to the serial PNN.  A serial PNN 
algorithm will be run by node k, on the set kT .  Because 
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on the set T. 
We now calculate the computation and communication 

complexity of the PFT-PNN architecture.  First, the training 
set must be loaded and broadcast to all of the processor 
nodes, taking )( XDO  time.  We assume that the broadcast 

operation is tree structured and therefore it takes  



 
 

Procedure: PFTPNN(k, nodes, T, X, D, σ, PT)

Set Tk;

integer array results;
integer pointsPerNode;

if k == 0 then
X = LoadTrainingSet();

BroadcastSet(X);
if k == 0 then

foreach nodesi in nodes do
pointsPerNode = calcPtsPerNode(nodesi);

SendSet(nodesi,
LoadTestSetPortion(pointsPerNode));

else
nodeTestingPoints = ReceiveSet();

resultsi = SerialPNN( Tk, X, D, σ, PT);

GatherResults(results, resultsi);

1

 
Fig. 3.  Pseudo-code for the PFT-PNN parallel algorithm. 

 
|))|(log( XDO  operations.  Then we must send to each 

node its portion of the test set.  This operation is 
simply )( TDO .  After the test set has been broadcast, the 

serial PNN is executed in the standard way, requiring 
)/)(( pCDO TX operations.  Finally, the results are 

gathered back to the master node, which requires 
)( TO operations, because only a single label needs to be 

broadcast back for each test point.  This leads to a 
cumulative complexity of 

))log()/(( TTXTX ++++ DDpCDXDO . 

operations for the PTF-PPN approach.  For storage 
requirements, each node must store the training set and a 
portion of the testing set, with a storage complexity for each 
node of )/( pDDO TX + . 

B. Parallel Split Training Set PNN (PST-PNN) 
In this approach, the training set is initially split among 

the processor nodes, hence the name Parallel Split Training 
Set PNN.  If the training set is of large size, this approach 
allows for the training set to be more easily stored on a 
single processing node.  With training sets that are large 
relative to the node memory, the node may not be able to fit 
the full set or may have to do a great deal of swapping to the 
hard disk, slowing the computations significantly.  In 
batches of size B, test points are broadcast to all of the 
nodes.  This packet size B can be adjusted to modify the 
system’s latency and to accommodate the availability of 
data.  For instance, this may be used in a system where data 
arrives in bursts or as single points.  This method offers low 
latency for obtaining the label of a few test points.  The flow 
of data for the PST-PNN is pictorially illustrated in figure 4. 

In the PST-PNN pseudo-code in figure 4, the root node 

Procedure: PSTPNN(k, nodes, B, T, X, D, σ,
PT)

Set testBatch;
Set Xk;

integer array results;
real array PR;

integer batches;
integer pointsPerNode;

if k == 0 then
foreach nodesi in nodes do

pointsPerNode = calcPtsPerNode(nodesi);
SendSet(nodesi,

LoadTrSetPortion(pointsPerNode));

else
Xk = ReceiveSet();

batches = �|T|/B�;
for i = 1 to batches do

if k == 0 then
testBatch = LoadTestSetPortion(B);

BroadcastSet(testBatch);
PRi = PartialPNN( testBatch,X, D, σ, PT);

ReduceResults(results, PRi);

1

 
 

Fig. 4.  Pseudo-code for the PST-PNN parallel algorithm. 
 

starts by calculating the number of training points that each 
node will have (similar to the calcPtsPerNode()function 
mentioned previously).  The LoadTrSetPortion()function 
loads the specified number of points of the training set.  The 
SendSet() function then sends this subset to other nodes.  
The root node loads a batch of the testing set, and broadcasts 
this to all nodes.  Each node computes the function 
PartialPNN() which operates similarly to the SerialPNN() 
function except it stops short of making the final 
classification.  Instead it returns a set of classProbabilities 
arrays in iPR .  Finally, the ReduceResults function 
executes to send the partial results from the non-root node 
and receive and merge the results at the root node.  

This is fully equivalent to the serial PNN.  Every node 
receives an identical batch of testing points.  For each testing 
point in the set, on every node k, the following is calculated: 

 
Fig. 5.  Diagram for the data flow in PST-PNN. 
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set of training points in class j that are stored on node k.   
These class probabilities are summed together when they are 
returned to the root node.  This yields 
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formula.  The root node makes the decision based on this 
formula, giving the same results as the serial PNN. 

For the time complexity of the PST-PNN, we first start 
with the splitting of the training set among all of the 
processor nodes.  This is an )( XDO operation.  Then, we 

have the broadcast, reduce loop that is executed batches 
times.  Over the course of this loop’s execution, the loading 
of testing set values will account for )( TDO operations.  

There will be a broadcast for each batch, 
totaling ))(log(( BDbatchesO .  Then, there is the partial 

PNN execution, with complexity )/( pDO XT .  Finally, 

there is the reduction that takes 
)))((log( batchesCBCBO + operations because it is a 

tree structured operation, taking the partial result arrays of 
the nodes and turning it into a final result.  After the tree 
structured gather, there is a final search for the maximum 
probability.  All of these calculations yield a complexity of 

++++ pDBDbatchesDDO /))(log(( XTTX
))( batchesCB  operations for the PST-PNN approach.  

Because each node only has to store a part of the training set, 
and batches of the testing set, the storage complexity per 
node is only )/( DBpDO +X . 

C. Pipelined PNN (PPNN) 
  In this architecture, communication time between nodes 

is minimized by allowing each node to communicate with its 
2 neighbors.   First of all, as in the PST-PNN, the training set 
is split evenly among the nodes.  Test points are loaded at 
the first node in the pipeline.  For each batch B, a partial list 
of class conditional probabilities is calculated.  This partial 
list and the test point batch are passed on to the next node in 
the pipeline that does the same for the batch with its set of 
training points.  A label is finally assigned at the end of the 
pipeline.  This requires only point to point communication as 
opposed to the switched communication of the other two 
methods. It is worth noting that this approach is similar to  
the approach used for the parallel implementation of Fuzzy 

ARTMAP and the no match tracking (NMT) Fuzzy 
ARTMAP (see  [8]).  Figure 6 shows the logical layout of 
the pipeline and the data flow between nodes. 

 
Fig. 6.  Diagram for data flow in the Pipeline PNN. 
 
The pseudo-code for the pipeline PNN is provided in figure 
7.  The first part of the Pipeline PNN works identically to the 
PST-PNN.  The loop, however, is different.  First, the 
testBatch is loaded by the root node.  All of the other nodes 
receive a test batch and their partially computed results from 
the neighbor with id k-1 through the RecvPrev() function.  
As in the PST-PNN, a partial classProbabilities array is 
computed based on the current testing batch and the node’s 
available training points.  The partial results returned are 
merged with the partial results received from the previous 
node.  Finally, if the node is not the last in the pipeline, these 
are sent on to the neighbor with id k+1.  If this is the last 
node in the pipeline, a final classification is made from the 
now complete class conditional probability array with the 
calcFinalResults() function. 
    This is computationally equivalent to the serial PNN.  At 
each node k (stage in the pipeline), the partial results of a 
particular input point x in batch i is given by 
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reflecting the fact that we add the partial results at every 
stage.  Because we split the training set fully among the 

nodes, then for every j, ∪
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partial results formula to be rewritten as 
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original formula on which the classification decision is 
made.  This same classification decision is made on the last 
node, p-1. 



 
 

Procedure: PipePNN(k, nodes, B, T, X, D, σ,
PT)

Set testBatch;
Set Xk;

integer array results;
real array PR;

integer batches;
integer pointsPerNode;

if k == 0 then
foreach nodesi in nodes do

pointsPerNode = calcPtsPerNode(nodesi);
SendSet(nodesi,

LoadTrSetPortion(pointsPerNode));

else
Xk = ReceiveSet();

batches = �|T|/B�;
for i = 1 to batches do

if k == 0 then
testBatch = LoadTestSetPortion(B);

else
RecvPrev(PRi, testBatch);

PRi += PartialPNN(testBatch,X, D, σ, PT);
if k == |nodes| − 1 then

resultsi = calcFinalResults(PRi);
else

SendNext(PRi, testBatch);

1

 
 

Fig. 7.  Pseudo-code for the pipeline PNN algorithm 
 

For the Pipeline PNN time complexity, we first start, as 
before with the splitting of the training set among all of the 
processor nodes, which is )( XDO .   Each node executes 

its loop batches times.  However, the last node waits p-1 
additional timesteps for the first computation to reach it.  
The communication at each cycle will take )(BDO .  Then, 
there is the partial PNN execution, with complexity 

)/( pDBO X on each processor, each cycle. There is also 

a final labeling of the batch, taking )(BCO .  All of these 
add up to yield a computational complexity of 

++−++ pDBBDpbatchesDO /)(1(( XX  

))BC operations for the pipeline approach.  As in PST-
PNN, the storage complexity per node is 

)/( DBpDO +X . 

IV. EXPERIMENTS 

A. Hardware/Software 
To experiment with the different parallel PNN 

approaches, an implementation for each approach was done 
in C++ using the MPICH libraries for message passing.  A 
serial version of the algorithm was also implemented. 

All of versions of the PNN were run on the Cerberus 

Beowulf cluster at the University of Central Florida.  
Cerberus has 40 nodes, each with a 400Mhz Pentium II 
processor and 384MB of RAM.  They are connected 
together by a fast Ethernet switch and managed by a 
combination frontend/fileserver. 

B. Experimental Database 
The database used in the testing of the three different 

parallelization PNN  approaches, mentioned above, 
consisted of a 2-class, 16-dimensional Gaussian data with 
15% overlap between the data belonging to the two different 
classes.  The meaning of the 15% overlap is that if we were 
to design a Bayesian classifier to separate the 2-class data in 
this dataset the error rate of the Bayesian classifier would be 
15%. Two datasets were generated, to be alternately used for 
training and testing; one of size 512,000 data-points and the 
other of size 16,000 data-points.  Although this was an 
artificially generated database it is sufficient for the purposes 
of this paper. In this paper we are primarily concerned on 
comparing the speed of the three different PNN 
parallelization approaches, and because of that and the fact 
that all of these are equivalent to the serial algorithm, the 
actual dataset that we use to perform our experiments is not 
important. What is important is the dimensionality of the 
dataset and the size of the training/testing sets. 

C. Test Description 
In the first test, 16k training points were used, while the 

test set contained 32k, 128k and 512k points, respectively.  
Then, the size of the training set was kept fixed at 16k, while 
the size of the training set varied from 32k, to 128k and 
finally to 512k.  Each of these tests was done for 1, 2, 4, 8, 
16 and 32 number of processor nodes. 

For the second set of tests, we examined the latency of 
processing a single test data-point using the PST-PNN and 
the Pipelined PNN (after initial set up and loading of the 
training data was completed).  In this second set of tests we 
used a training set size of 512k points.  The PFT-PNN 
approach was omitted from these tests because the single test 
point can never be split among the nodes.  The number of 
nodes in this second set of tests was  1, 2, 4, 8, 16, 32. 

D. Parameters Chosen 
A nominal sigma (σ ) value of 0.5 over all dimensions 

and classes was chosen, because it worked well in the initial 
experimentation with the Gaussian dataset.  Because this 
paper only focuses on the computational efficiency of the 
PNN and not on its classification performance and because 
the 3 implementations are computationally equivalent to the 
serial PNN, no effort was expended to optimize sigma.    
Values of B that worked well were established by 
experimentation (20 for the PST-PNN approach and 5 for 
the Pipeline PNN approach).  

V. RESULTS 
The results obtained from the parallel runs were mostly 

expected.  For the PFT-PNN (figure 8), the scaling was 



 
 

mostly related to the product, XT (for a fixed D).  The 

higher this product was, the better the algorithm scaled for 
large numbers of processors.  This is not surprising, as the 
large computational tasks make up for the overhead of 
transmitting the training and partial testing sets. 

In the graph of the PST-PNN, figure 9, some interesting 
conclusions can be drawn.  As with the PFT-PNN, there is 
clearly some dependence between the linearity of the scaling 
and the size of the product XT .  However, there is a clear 

advantage to smaller testing sets and larger training sets.  
This can be presumably attributed to two effects.  First, there 
are fewer communications to split the training set among the 
nodes than the numerous separate communications to 
broadcast batches of testing points and receive their results.  
On the high latency, low bandwidth interconnect typical to 
clusters, less frequent communication is favored. Another 
effect is the role of the CPU’s cache in the computation.  In 
the single processor case, for each testing point, the 
algorithm must iterate over all of the training points.  This is 
typically significantly larger than the cache, and the training 
points are swapped frequently in and out. However, as the 
training points are split into smaller pieces shared among the 
nodes, it is possible to keep many of these in cache.  

This allows additional speedup over the single processor, 
in some cases outweighing the overhead of the parallel 
algorithm and leading to super-linear scaling.  An effect 
similar to that of the PST-PNN is seen for the Pipeline PNN 
in figure 10.  The splitting of the training set allows some of 
the same caching benefits.  

For products XT that are too small, larger pipelines 

make less sense in terms of scaling, because the overhead of 
starting up the pipeline becomes too great.    
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Fig. 8. Speedup of PFT-PNN for 15% overlap Gaussian database. 
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Fig. 9.  Speedup of PST-PNN for 15% overlap Gaussian database. 
 
   In figure 11, we compare all three implementations in 
scenarios where they all have 512k training points and 16k 
testing points, as well as 16k training points and 512 testing 
points.  
   For the 512k training point scenario, all three architectures 
appeared to perform similarly.  However, their performances 
diverge for the scenario of 16k training points and 512k 
testing points.  The pipeline PNN has the greatest advantage, 
because of its efficient communication and, in our case, 
greater ability to retain frequently used training points in 
cache.  The PFT-PNN performs well also, which is not 
surprising because of infrequent communication 
requirements.  However, it becomes evident that the frequent 
broadcasts and gather operations affect the scaling of the 
PST-PNN approach.  The large number of testing points 
used in this experiment makes this effect more evident.  

Figure 12 shows the latency of testing a single point with 
512k training points.  The pipeline PNN and PST-PNN are 
shown.  The PFT-PNN, as specified before, is omitted, 
because running a single point on the PFT-PNN is 
equivalent to executing the serial version of the algorithm.   
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Fig. 10.  Speedup of Pipeline-PNN for 15% overlap Gaussian database. 
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Fig. 11. Comparison of all three approaches for 512k training points and 
16k testing points as well as 16k training points and 512k testing points.  
Note that, while all 6 cases are shown, the lines are closely overlaid. 
 
   As expected, we see that the latency drops with a greater 
number of processors in the PST-PNN, because comparison 
against portions of the training set happen concurrently.  
However, it is clear that this effect is diminishing as the 
overhead of broadcasting the points and merging the results 
begins to overshadow the speedup gained by the parallelism.  
In the pipeline PNN, the latency of processing a single point 
is approximately constant.  The computational task of each 
processor becomes smaller, but these tasks are not done 
concurrently, thus eliminating the advantages of parallelism 
when a single test point is processed.  

VI. SUMMARY/CONCLUSIONS 
   We have designed and implemented three different 
approaches for the parallelization of the PNN’s performance 
phase. In the PFT-PNN approach each node has a complete 
copy of the training set and processes a portion of the testing 
set. In the PST-PNN approach each node has a portion of the 
training set and the entire testing set (received in batches) 
and merging of the results is required. In the PPNN approach 
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Fig. 12.  Latency for a single testing point and 512k training points. 

 
 each node has a portion of the training set and processes the 

testing set in a pipeline fashion. 
All three of these approaches show reasonable scaling.  In 

a production system utilizing PNN, a decision of which 
architecture to use is dependent on the problem at hand.  If 
there are very few points to split up amongst the processor 
nodes, the overhead of any of the parallel algorithms will 
overshadow the speedup.  If there are large batches of test 
points to process, with reasonably sized training sets, the 
PFT-PNN can provide efficient processing that is easy to 
control and implement.  For training sets that are 
prohibitively large to fit in a single node’s memory, either 
the PST-PNN or the Pipeline PNN may be more beneficial.  
If a very large training set is used with the PFT-PNN or 
serial approaches, the amount of memory swapping of the 
training data will significantly reduce the performance of the 
algorithm.  Finally, if points are needed in a low latency 
fashion, the PST-PNN approach is the algorithm of choice. 

Future work will include speed-up analysis of the 
proposed parallelization approaches on a more extensive set 
of databases.  In addition, these algorithms will be extended 
to heterogeneous grid environments.  The nature of the way 
the PNN processes points allows easy load balancing of the 
PNN on multiple heterogeneous nodes. 
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