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ABSTRACT
The decision tree classifier is a well-known methodology
for classification. It is widely accepted that a fully grown
tree is usually over-fit to the training data and thus should
be pruned back. In this paper, we analyze the overtraining
issue theoretically using an the k-norm risk estimation ap-
proach with Lidstone’s Estimate. Our analysis allows the
deeper understanding of decision tree classifiers, especially
on how to estimate their misclassification rates using our
equations. We propose a simple pruning algorithm based
on our analysis and prove its superior properties, including
its independence from validation and its efficiency.
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1 Introduction

Prediction and decision making are frequently used in real
world applications. In making decisions, sometimes we
need to know not only the best decision (the one with the
least risk) but also the associated risk or, if the risk is not
deterministic, the range of the risk. For example, compare
the following outputs regarding the class of an input that is
presented to the classifier.

1. Choosing class 1 has the lowest misclassification rate;
2. Choosing class 1 has the lowest misclassification rate

that is approximately 0.4;
3. Choosing class 1 has the lowest misclassification rate

that lies in the range 0.6± 0.1.

Obviously, the last classifier gives the most complete
information among the three. In this paper, we focus on
decision tree classifiers. Through the analysis conducted in
this paper we are not only able to provide the optimal tree
prediction, but also able to calculate the reliability of this
prediction. Furthermore, we propose a pruning algorithm,
referred to as k-norm pruning algorithm, which has the fol-
lowing properties: it has clear theoretical interpretation, it

does not require cross-validation or a separate validation
set, it can find the optimal tree within one traversal of the
tree, and it has a simple implementation.

The rest of this paper is organized as follows. We first
provide a literature review on decision tree error rate esti-
mation and pruning (Section 2). Then, the necessary back-
ground knowledge on Lidstone’s Law of Succession is cov-
ered in Section 3. In Section 4, we apply Lidstone’s Law
of Succession in the estimation of misclassification rates in
decision trees, as well as the corresponding variance that
serves as an indicator of the reliability of the output. Based
on our analysis, we introduce the appropriate equations to
estimate the tree’s prediction accuracy and a pruning algo-
rithm with the properties, mentioned above. We summarize
our work in Section 5.

2 Related Work

One of the most classical decision trees is CART, proposed
by Breiman et al., which established the framework (in-
cluding the impurity measures and the pruning process) for
future decision trees [1]. C4.5, one of the successors of
CART, was introduced nine years later and has been widely
used as a decision tree classifier to solve a variety of prob-
lems [16]. Although many issues have been raised since the
introduction of decision trees, in this paper we only focus
on the pruning and the related error rate estimations.

It is well-known that a classifier over-adapted to the
training set tends to generalize poorly, when it is confronted
with unseen instances. For a tree, although one could grow
a full tree to obtain nearly 100% accuracy on the train-
ing data set, the tree would contain so many redundant
nodes (those covering only a few instances) that the de-
cision boundaries are far from optimal. On the other hand,
Breiman et al., pointed out that it is difficult to set a stop-
ping criterion to terminate the growing process to avoid
generating redundant nodes (see [1], page 37). The main
reason is the difficulty to foresee the performance of fu-



ture splits compared to current ones, which implies that no
proper thresholds can be used to decide whether to stop.
Thus, it has been widely accepted that one should grow the
tree to the full size and prune it back. A number of prun-
ing algorithms have been proposed, such as the Minimal
Cost-Complexity Pruning (CCP) in CART (see [1], page
66), the Minimum Error Pruning (MEP) (see [15, 2]), the
Error Based Pruning (EBP) in C4.5 (see [16], page 37),
the Reduced Error Pruning (REP), the Pessimistic Error
Pruning (PEP) (see [17] for both REP and PEP), the MDL-
Based Pruning [14], the Classifiability Based Pruning [3],
the Pruning using Backpropagation Neural Networks [9],
etc. Some of the pruning algorithms are briefly analyzed
and empirically compared in [4].

The ultimate problem in tree pruning is the estimation
of the accuracy of unseen data. An independent validation
set or cross-validation is one way to remedy this problem
(see CCP [1] and REP [17] for example). Nevertheless,
when the database is small, k-fold cross validation is not
reliable either; when the database is large, this approach is
computationally complex. For this reason, various estima-
tions of error rates without validation are proposed (such as
EBP [16], and MEP [15]) and compared (e.g., see [4]).

In the last decade, most researchers focused on the
maximum likelihood estimation with confidence intervals
(see [16, 12, 5, 8, 13, 7]); they produced a considerable
number of results in computing the confidence upper bound
of the error rate and the application in tree pruning. Most
of their results do not make any assumption on the data
distribution and do not require any validation, due to the
nature of the maximum likelihood estimation. In their
approaches, however, the confidence intervals are usually
misinterpreted: if [0.8,0.9] is a 90% confidence interval of
the error rate, it does not mean that at 90% probability the
error rate is between 0.8 and 0.9 (see [18], page 342 for
a more detailed clarification). Therefore, any confidence
interval is merely a heuristic to estimate the error rate.

Some other researchers applied a-posterior estima-
tions rather than the maximum likelihood estimation. A
typical example is MEP [15, 2], where the authors ap-
plied Lidstone’s Law of Succession, which is a widely ac-
cepted alternative to the maximum likelihood estimation
in statistics and is derived from the Bayesian theories as-
sumption Dirichlet prior distributions. The authors use the
a-posterior expected value to estimate the error rate. Un-
fortunately it turns out that MEP tends to under-prune a
tree (see [4]). We argue that the application of Lidstone’s
Law of Succession is a reasonable choice since it yields in-
terpretable results rather than heuristics, but the a-posterior
expected value alone is too optimistic because it does not
represent any reliability (see Subsection 4.4 for an exam-
ple and Theorem 2 for a mathematical statement). Based
on this observation, we propose the k-norm estimation to
incorporate reliability metrics, with both theoretical inter-
pretation and useful properties (e.g., no validation is re-
quired, and the optimal pruned tree can be found with a
single traversal of the tree).

3 Lidstone’s Law of Succession

An important issue in decision trees, as well as many
other classifiers, is the estimation of the class probabilities
given a set of training instances. To be more general, Let
Φh(h = 1, 2, · · · ,H) be H mutually exclusive and col-
lectively exhaustive events. Let ph denote P [Φh] and Nh

denote the number of occurrences of Φh in N independent
trials. Obviously, Nh is a random variable. Suppose in N
independent trials we observed nh occurrences of Φh (an
example would be observing nj out of N training instances
that belong to class j).

Lidstone’s Law of Succession represents a-posteriori
estimation, in which ph = P [Φh] is estimated by p∗h, where

p∗h = E [ph|n1, · · · , nH ] =
nh + λ

N + λH
, (1)

where λ is a predefined non-negative parameter. In statis-
tics, a widely used value for λ is 0.5 (Krichevskiy suggests
the value 0.50922 in [11]).

Lidstone’s Estimation is widely used in probability
estimation, such as in Naive Bayes Classifiers [10]. How-
ever, most researchers simply compute the expected value
according to (1) while ignoring the variance. In Theorem 2,
we will show that the expected value (1-norm) is not suffi-
cient to correctly evaluate a tree’s accuracy on unseen data.

In Lidstone’s Estimation, the a-prior distribution of
ph is assumed under Dirichlet distribution, denoted by
(p1, · · · , pH) ∼ Dir(λ, λ, · · · , λ), or

f (p1, · · · , pH) = αδ

(
1−

H∑

h=1

ph

)
H∏

h=1

pλ−1
h I[ph ≥ 0],

(2)
where α is a constant so that the integral of f (p1, · · · , pH)
is unity, and δ() is the Dirac delta function.

Based on (2), it has been proven that the a-
posterior probabilities also follow the Dirichlet distribu-
tion in [6]. In particular, (p1, · · · , pH |n1, · · · , nH) ∼
Dir(n1+λ, · · · , nH +λ), and (ph, 1− ph|n1, · · · , nH) ∼
Dir(nh + λ,N − nh + λ(H − 1)). This result leads to

E
[
pk

h

∣∣ n1, · · · , nH

]
=

k−1∏
m=0

nh + λ + m

N + λH + m
, (3)

and

E
[
(1− ph)k

∣∣∣ n1, · · · , nH

]

=
k−1∏
m=0

N − nh + λ(H − 1) + m

N + λH + m
. (4)

The variance of ph can be computed as

V ar [ph|n1, · · · , nH ]

= E
[
p2

h

∣∣ n1, · · · , nH

]− E [ph|n1, · · · , nH ]2 .(5)

Equation (4) is the basis of our proposed error rate estima-
tion and the corresponding k-norm pruning algorithm.



4 Error Rate Estimation in Decision Trees

If we apply the Maximum Likelihood Estimation to evalu-
ate a decision tree, we cannot solve the overtraining prob-
lem because the estimated misclassification rate would be
zero if the tree is grown to the full size (each leaf having a
pure class label). Therefore, we apply the Lidstone’s Law
of Succession.

4.1 Terminologies

4.1.1 Events

In a tree, let At denote the event that the node t is activated
(it receives the input). Apparently, if c is a child of t, Ac

implies At (that is, (Ac, At) = Ac).
Furthermore, let J be the number of classes and Cj

(j = 1, 2, · · · , J) denote the event that the attribute vector
X is associated with class j.

4.1.2 Error rates

Let Err be the event of misclassification. Apparently this
event depends on the input attribute vector X. We now
estimate the misclassification rate P [Err|X] of a tree, by
treating P [Err|X] as a random variable.

Since the root of the tree is always activated,

P [Err|X] = P [Err|Aroot,X]. (6)

In general, we define the error rate of a node t as

rt = P [Err|At,X]. (7)

For a leaf, apparently

rt = 1− P [CLabel(t)|At,X], (8)
Label(t) = arg max

j
nj,t, (9)

where nj,t is the number of training examples of class j in
node t. Note that Label(t) is a constant number once the
tree is grown.

4.1.3 Expected Values

In the rest of this section we use expected values exten-
sively, and thus it worthy mentioning first that the expected
value here is the integral across two random factors: the
random input attribute vector X and the unknown class
probabilities P. That is, for any random variable Q,

EX [Q] =
∫

Qf(X)dX, (10)

EP [Q] =
∫

Qf(P)dP, (11)

E [Q] = EX [EP [Q]] = EP [EX [Q]] . (12)

Similarly,

V ARP [Q] = EP

[
Q2

]− EP [Q]2 , (13)

V AR [Q] = E
[
Q2

]− E [Q]2 . (14)

When conditions are involved, we put the conditions into
the subscript. For example,

EX|At
[Q] =

∫
Qf(X|At)dX. (15)

Note that P is composed of all probabilities, includ-
ing P [Cj |At] for any node t, and the expression
“P [Cj |At]|At” is not meaningful. Therefore, we treat P
as independent of At and compute the expected value of a
random variable within a node t as

Et [Q] = EP

[
EX|At

[Q]
]
, (16)

where the superscript t represents the condition “|At”.
When Q has the same subscript t, we omit the superscript
t in Et[Q]. For example, the expected error rate of the sub-
tree rooted at t is represented by E[rt] rather than Et[rt],
because this expected value must, of course, be computed
with the assumption that At is true.

Note that in the rest of this paper, all expected values
are conditional (given the observations with the training
examples. We omit the conditions only for simplicity in
our equations. Please keep in mind that “E[rk

t ]” actually
refers to “E[rk

t |Observations]”.

4.2 Assumptions

We make the following assumptions in our analysis:

1. We assume that the children of the same node t are
mutually exclusive, which means that for this decision
node,

P [Err|At,X]

=
∑

c∈Children(t)

P [Err|Ac, At,X]P [Ac|At,X]

=
∑

c∈Children(t)

P [Err|Ac,X]P [Ac|At,X].(17)

The above equations indicate that the error rate of a
decision tree can be evaluated recursively.

2. We assume no missing data in X; given an input X,
only one deterministic child is activated. That is,
P [Ac|At,X] is either zero or one. This assumption
implies that

P [Ac|At,X]k = P [Ac|At,X], ∀k > 0, (18)
P [Ac1 |At,X]P [Ac2 |At,X] = 0, if c1 6= c2. (19)

Now we rely on a theorem (Section 4.3) and an example
(Section 4.4) to introduce the k-norm estimation approach.
The theorem provides an efficient way to compute the ex-
pected values and the variance of the risks.



4.3 Partitioning Theorem

Theorem 1 Under the assumptions in Subsection 4.2, for
any decision node d and any natural number k,

EX|Ad

[
rk
d

]
=

∑

c∈Children(d)

EX|Ac

[
rk
c

]
P [Ac|Ad] ,

(20)
where rt is the error rate of node t, defined as follows:

rt = P [Err|At,X] . (21)

The proof of this theorem is fairly simple using (18) and
(19). Due to the limited space, all proofs in this paper are
omitted.

Corollary 1 Under the assumptions in Subsection 4.2, as
well as the assumption that rc and P [Ac|Ad] are indepen-
dent random variables for each child node c of the decision
node d, the following expression is valid:

E
[
rk
d

]
=

∑

c∈Children(d)

E
[
rk
c

]
EP [P [Ac|Ad]] . (22)

This corollary can be proven by computing the expected
values with respect to P of both sides of (20), according
to (16). Since P includes P [Ac|Ad], the other probabil-
ities in P do not contribute to EP [P [Ac|Ad]] (because
EY [EZ [Z]] = EZ [Z] for any two random variables Y and
Z even if they are dependent on each other). Recall that all
expected values here are conditional, based on the training
examples. It is well known that to estimate the probabilities
of a set of mutually exclusive and collectively exhaustive
events with N independent trials, the numbers of occur-
rences of the events are sufficient. Therefore, the condition
“given observations” can be replaced with “given nc for
all c ∈ Children(d)” (where nt is the number of train-
ing examples covered by node t). Using Lidstone’s Law of
Succession, we get

EP [P [Ac|Ad]] =
nc + η

nd + ηKd
, (23)

where Kd is the number of immediate children of decision
node d, and η has an analogous functionality as λ (we use a
different notation because λ will be used to denote the pa-
rameter in the error rate estimation). For simplicity, from
now on, we use P ∗ [Ac|Ad] to denote EP [P [Ac|Ad]]. Us-
ing the corollary, the variance of the error rate can be com-
puted as follows.

E [rd] =
∑

c∈Children(d)

E [rc]P ∗ [Ac|Ad] , (24)

E
[
r2
d

]
=

∑

c∈Children(d)

E
[
r2
c

]
P ∗ [Ac|Ad] , (25)

V AR [rd] = E
[
r2
d

]− E [rd]
2
. (26)

It is important to note that generally,

V AR [rd] 6=
∑

c∈Children(d)

V AR [rc]P ∗ [Ac|Ad] . (27)

4.4 An Example

Consider now a more specific example of a 2-class clas-
sification problem for which a binary tree is built. We
focus on the error rate, and thus the risk rt is defined as
P [Err|At,X]. Suppose a node t of the tree receives 98
training examples of class 1 and 1 example of class 2, and
a split separates the two classes. Assume λ = η = 0.5.
According to (4) and (8), before splitting,

E [rt] ≈ EP [rt] =
1 + 0.5

99 + 0.5× 2
= 0.015000, (28)

E
[
r2
t

] ≈ EP

[
r2
t

]

=
(1 + 0.5)(1 + 0.5 + 1)

(99 + 0.5× 2)(99 + 0.5× 2 + 1)
= 0.00037129, (29)

V AR [rt] ≈ EP

[
r2
t

]− EP [rt]
2 = (0.012095)2. (30)

After splitting, for the left child,

E [rt1 ] ≈
0 + 0.5

98 + 0.5× 2
= 0.0050505, (31)

E
[
r2
t1

] ≈ (0 + 0.5)(0 + 0.5 + 1)
(98 + 0.5× 2)(98 + 0.5× 2 + 1)

= 0.00075758, (32)

P ∗ [At1 |At] =
98 + 0.5

99 + 0.5× 2
= 0.98500. (33)

After splitting, for the right child,

E [rt2 ] ≈
0 + 0.5

1 + 0.5× 2
= 0.25000, (34)

E
[
r2
t2

] ≈ (0 + 0.5)(0 + 0.5 + 1)
(1 + 0.5× 2)(1 + 0.5× 2 + 1)

= 0.12500, (35)

P ∗ [At2 |At] =
1 + 0.5

99 + 0.5× 2
= 0.015000. (36)

For the sub-tree, according to Theorem 1,

E [rt] ≈ 0.0050505× 0.985 + 0.25× 0.015
= 0.0087247, (37)

E
[
r2
t

] ≈ 0.00075758× 0.985 + 0.125× 0.015
= 0.0019496, (38)

V AR [rt] ≈ 0.0019496− (0.0087247)2

= (0.04328)2 . (39)

Although the expected value of the error rate de-
creases by 0.006275 after the split, the average standard
deviation increases by 0.03119, which is almost 5 times
larger than the decreased amount in the expected value.
Therefore, we do not expect that this split will improve the
generalization.



4.5 k-Norm Estimation

The above example indicates that the expected value of the
error rate alone is not a good estimate. In general, we have
the following theorem:

Theorem 2 If 0 ≤ η ≤ λJ , λ < 1/(Kt−1)(J−1), and a
split at a leaf reduces the training misclassifications, then
the split decreases the expected error rate.

We should consider the variance for a more realistic
estimation of the risk. Although we could define the es-
timated risk r∗ as E [r] +

√
V AR [r] analogously to the

1-SE rule in CART (see [1], page 78), we observe in the
above example that E

[
r2

]
is also a good indicator of the

generalization. We prefer to use the k-norm estimation
‖r‖k = k

√
E [|r|k], because:

1. According to Theorem 1, E
[
rk

]
can be computed in-

crementally, by starting at the leaves of the tree and
moving upwards towards the root of the tree. To op-
timize any sub-tree rooted at t, we can first optimize
the sub-trees under t and then optimize the node t,
which guarantees global optimality. This property is
very important for our k-norm pruning algorithm;

2. When k = 2, ‖r‖2 =
√

E [r]2 + V AR [r] takes both
the expected value and the variance into account.

As mentioned above, we recommend k = 2 for the
k-norm estimation. We prefer smaller values of k (except
for k = 1 which represents only the expected value) for the
following reasons:

• Given a finite set of examples, when k is higher, the
estimation of the k-norm becomes more sensitive to
noise and computational errors, which can also be
seen in the approximation in (45);

• According to (3) and (4), the computational complex-
ity of the k-th moments is at least O(k).

4.6 Application in Tree Prediction

Given an input X, we cannot predict only the class label but
we can also provide an estimated error rate for this predic-
tion. Here X is deterministic and therefore we only com-
pute EP

[
P [Err|X]k

]
and the result depends on X.

r = P [Err|X] = 1− P
[
CLabel(t)|X, At

]
, (40)

where t is the leaf where X falls. The above equation is
intuitive and thus its derivation is omitted. Under the as-
sumptions in Subsection 4.2,

EP

[
rk

]
= EP

[(
1− P

[
CLabel(t)|X, At

])k
]

≈ EP

[(
1− P

[
CLabel(t)|At

])k
]
. (41)

According to (4),

EP

[
rk

] ≈
k−1∏

i=0

nt −max
j

nj,t + λ(J − 1) + i

nt + λJ + i
. (42)

In practice, there are two reasonable ways to out-
put the estimated error rate: 1) output the realistic error
rate ‖r‖2 =

√
EP [r2] only, and 2) output EP [r] and

√
V ARP [r] =

√
EP [r2]− EP [r]2, the latter represent-

ing the reliability.

4.7 Application in Tree Pruning

Let
rt = P [Err|At,X] . (43)

Apparently, the error rate of the tree r = rroot. Under the
assumptions in Subsection 4.2, for a decision node t,

E
[
rk
t

]
=

∑

c∈Children(t)

E
[
rk
c

]
P ∗ [Ac|At] . (44)

For a leaf t,

E
[
rk
t

] ≈ EP [P [Err|At]]

=
k−1∏

i=0

nt −max
j

nj,t + λ(J − 1) + i

nt + λJ + i
. (45)

By using the k-norm error rate estimation, in order
to get the optimally pruned tree at t, we can first get the
optimally pruned trees below t, and then consider whether
pruning t yields a lower k-norm error rate. The algorithm
is shown below:

input : a tree rooted at node t
output: the k-th moment error rate of the optimal

pruned tree (modified from the input)

Let Rleaf =
k−1∏
m=0

Nt−nLabel(t),t+λ(J−1)+m

Nt+λJ+m ;

if t is a decision node then
Let Rtree =

∑
c∈Children(t)

Nc+η
Nt+ηKt

Prune (c);

if k
√

Rtree < k
√

Rleaf − ε then
return Rtree;

end
Replace the subtree rooted at t with a leaf;

end
return Rleaf ;

Algorithm 1: PruneTree

We compared our pruning algorithm to Cost-
Complexity Pruning of CART (see [1]) and Error-based
Pruning of C4.5 (see [16]). The results, which are pub-
lished in [19], show that our algorithm is superior in both
accuracy (especially when the size of the training set is
small) and speed (especially when the size of the training
set is large).



5 Conclusions

In this paper, we carried out a theoretical analysis of
the misclassification rate of decision tree classifiers. We
showed that although a split tends to decrease the expected
value of the misclassification rate, it might increase the
variance of the misclassification rate (that is, weakens the
reliability of the tree). We proposed a k-norm estimation
algorithm that takes into account both the expected value
and the variance and the resulting algorithms for estimat-
ing the prediction error rate and for pruning the tree. We
also showed important properties of our k-norm pruning
algorithm (e.g., it finds the optimally pruned tree in one
traversal of the tree) by providing appropriate theorems and
illustrative examples. Finally, it is important to note that
our approach has far more general applications: Theorem
1 can also be applied to other measures of interests in de-
cision tree classification (e.g., the risks can be redefined
using appropriate misclassification costs).
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