
 
 

 

Experiments with Safe μARTMAP and  
Comparisons to Other ART Networks 

Mingyu Zhong, Bryan Rosander, Michael Georgiopoulos, 
Georgios Anagnostopoulos, Mansooreh Mollaghasemi, and Samuel Richie 

 

Abstract—Fuzzy ARTMAP (FAM) is currently considered as 
one of the premier neural network architectures in solving 
classification problems. One of the limitations of Fuzzy 
ARTMAP that has been extensively reported in the literature is 
the category proliferation problem. That is, Fuzzy ARTMAP 
has the tendency of increasing its network size as it is confronted 
with more and more data, especially if the data are noisy and/or 
overlapping. A modified version of Fuzzy ARTMAP, referred to 
as Safe μARTMAP, has been introduced in the literature by 
Gomez-Sanchez and his colleagues, in order to remedy the 
category proliferation problem. However, Safe μARTMAP’s 
performance depends on a number of network parameters. In 
this paper, we analyzed each parameter of Safe μARTMAP to 
set up the candidate values for evaluation. We performed an 
exhaustive experimentation to identify good default values for 
the Safe μARTMAP network parameters for a variety of 
problems (simulated and real problems), and compared the best 
performing Safe μARTMAP network with other best 
performing ART networks, including other ART networks that 
claim that resolve the category proliferation problem in Fuzzy 
ARTMAP. 

I. INTRODUCTION 
HE Adaptive Resonance Theory (ART) was developed 
by  Grossberg [1]. One of the most celebrated ART 

architectures is Fuzzy ARTMAP [2], which has been 
successfully used in the literature for solving a variety of 
classification problems. Some of the advantages that Fuzzy 
ARTMAP possesses is that it can solve arbitrarily complex 
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classification problems, it converges quickly to a solution 
(within a few presentations of the list of the input/output 
patterns belonging to the training set), it has the ability to 
recognize novelty in the input patterns presented to it, it can 
operate in an on-line fashion (new input/output patterns can 
be learned by the system without re-training with the old 
input/output patterns), and it produces answers that can be 
explained with relative ease. One of the limitations of Fuzzy 
ARTMAP that has been extensively reported in the literature 
is the category proliferation problem. That is, Fuzzy 
ARTMAP has the tendency of increasing its network size, as 
it is confronted with more and more data, especially if the 
data are noisy and/or overlapping.  

In this paper we focus our attention on one Fuzzy 
ARTMAP modification, called Safe μARTMAP, and 
introduced by Gomez-Sanchez, et al [3] that addresses this 
category proliferation problem. We first analyze each 
parameter of Safe μARTMAP and provide representative 
values for each parameter. We then perform an exhaustive 
experimentation to identify good default μARTMAP network 
parameter for a variety of problems (simulated data and real 
data). We also compare the best performing μARTMAP 
network with other best performing ART networks, such as 
Fuzzy ARTMAP [2], Ellipsoidal ARTMAP [4], Gaussian 
ARTMAP [5] [6], and their semi-supervised versions (see [7] 
and [10)].  

In this paper, we assume that the reader is familiar with 
Fuzzy ARTMAP, Ellipsoidal ARTMAP], and Gaussian 
ARTMAP, and their semi-supervised versions, but most 
importantly we assume that the reader is familiar with 
μARTMAP and Safe μARTMAP (see [3] and [8]). 

II. μARTMAP ARCHITECTURE 
As it is the case with other ART architectures that solve 

classification problems, μARTMAP consists of three layers 
of nodes: the input layer, the category representation layer, 
and the output layer. When an input pattern is presented, it 
first goes through a pre-processing phase called 
complementary encoding (for more details see [2]). The 
expanded input, designated as I, is then fed to the category 
representation layer. The category representation layer of 
Safe μARTMAP contains nodes, referred to as category 
nodes. Each one of these nodes represents (in a compressed 
form) a group of input patterns. Each category is represented 
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by a weight vector  (the subscript index j designates the 
category), which is referred to as template with a hyper-box 
geometrical interpretation – the boundary of this hyperbox 
encloses all the input patterns that chose and were encoded by 
the corresponding category, as in Fuzzy ARTMAP (this is the 
kind of compression of input patterns that Safe μARTMAP 
enforces). One of the differences between μARTMAP and 
Fuzzy ARTMAP is that the training patterns encoded by a 
category in μARTMAP can belong to various classes. 
Through the weights  which 
emanate from the activated category to the output layer and 
store the class distribution of the activated category, the input 
pattern I is mapped to the major class associated with this 
activated category. 
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The training phase of μARTMAP is succinctly described 
as follows (Steps 1-2). In all of the following equations, the 
notation stands for the size of a vector and it is equal to the 
sum of its components, while the notation ∧ stands for the 
“fuzzy-min” of two vectors and it is defined to be the 
minimum, component-wise of these two vectors 

|| ⋅

1) (Learning Phase) Find the nearest category in the 
category representation layer of μARTMAP that 
resonates with the input patterns. That is, for each pattern 
I, the existing (committed) categories compete and the 
winner category is chosen to be the one that maximizes 
the following value (called bottom-up input): 
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However, if the winner fails either of the following tests, 
it will be deactivated and the next winning category will 
be chosen and tested. 
a. Vigilance test:   aa

a
j M ρ≥∧ || wI  (2) 

where Ma is the dimensionality of the unexpanded 
input. The parameter ρa is category-specific: each 
category has its own ρa which is never changed once 
initialized. This test prevents the category from 
growing too large. 

b. Entropy test:    (3) maxhhj ≤
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hmax is a predefined parameter.  is temporarily 
updated according to (5) before this test and restored 
afterwards. This test ensures the accuracy of the 
category. 
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If none of the committed categories passes the above tests, 
an uncommitted node will be selected, with  initialized 
as a vector of all ones,  initialized as a vector of all 
zeros, and its ρ
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a initialized as the current global vigilance 
level. In any case, the selected node will learn the pattern 
by updating its weight vectors, as follows: 
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where k = label(I). 

2) (Offline Evaluation Phase) After the learning phase is 
finished (i.e., all input/associated label pairs of the 
training set have chosen a committed node) we present all 
the input patterns again to check the total entropy of the 
created categories, without changing any  vector. One 
pass of the learning phase and the offline evaluation phase 
is called one epoch. 
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a. If the total entropy is below a designated threshold 
Hmax or the maximum number of epochs is reached, 
training is completed. 

b. If not, the category that contributes the most to the 
total entropy value is destroyed, and the global 
vigilance level increased at: 
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where j is the index of the destroyed category. Note 
that this change affects only future categories rather 
than the committed ones. In the learning phase of the 
next epoch, we present to μARTMAP only the 
training patterns that chose the destroyed category in 
the learning phase (rather than the offline evaluation 
phase) of this epoch or the previous epochs. In the 
offline evaluation of the next epoch, we still present all 
the patterns. 

In the performance phase of μARTMAP, a test input is 
presented to the input layer of μARTMAP and the node in the 
category representation layer that receives the maximum 
bottom-up input (Tj) is chosen, according to (1), but without 
any test. Then the predicted label for this test input is chosen 
to be arg . ab

jkk
Safe μARTMAP is an improved version of μARTMAP. It 

differs from μARTMAP only in that it has a third test in the 
learning phase: 

Wmax
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where δ is also specified by the user. This test requires that 
the size change of the winner category should not be too large 
due to a single pattern. If the winner category fails this test, no 
other categories will be chosen to learn this pattern at this 
point. Instead, this pattern remains “unlearned”. After all 
patterns are presented (which is called a pass), the unlearned 
patterns are presented again in the next pass. The previous 
winner categories may learn these patterns if they pass this 
test (they might have been expanded and thus it is possible 
that (7) is satisfied now). If no pattern is learned in a whole 
pass, an unlearned pattern will be selected and a new category 
will be committed to learn this pattern; then all the other 
unlearned patterns are presented in the next pass. The above 
is repeated until all patterns are learned. In this way, the 
learning phase of a single epoch may consist of many passes.  



 
 

 

III. μARTMAP PARAMETERS 

A. Parameters α and e 
The choice parameter α, first introduced in Fuzzy 

ARTMAP, affects the competition of the nodes according to 
(1). For μARTMAP, it is desired that: 

1) if a point (representing an input pattern) is inside two 
hyper-boxes (whose boundaries are defined by the 
corresponding categories in the network), it should 
choose the smaller hyper-box; 

2) if a point is inside one hyper-box and outside another 
hyper-box, it should choose the former one regardless 
of the size of either hyper-box. 

Condition 1) simply requires α  > 0.  Condition 2) cannot 
be satisfied if || can be arbitrarily small (or the hyper-box 
can be arbitrarily large). If the minimum value of the 
components in the patterns is 0 and the maximum value is 1, 
no positive α  value allows a hyper-box to cover the whole 
input space (which means ) and satisfy 
condition 2) at the same time. The authors of μARTMAP 
(personal communication with Gomez-Sanchez) adjusted the 
algorithm by normalizing the input elements to the interval [e, 
1–e] instead of [0, 1], and require both the following: 
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 Equation (8) implies that when a point is inside a box, the 

corresponding Tj is close to one even if the box covers the 
whole input space (note that the parameter Ma denotes the 
dimensionality of the input pattern I). Equation (9) prevents 
the vigilance test from passing when the vigilance parameter 
ρa is small, since eMeMM aaa

a
j 22|| =≥∧ wI . 

In our experiments, the choice parameter α was set to 0.01 
and 0.001 for all ART algorithms (note that the minimum Ma 
was 2). Due to the above constraints (1/400<<e<<1), we set e 
to 0.05 in our experiments. We also did some preliminary 
experiments and found that the μARTMAP is not sensitive to 
α or to e as long as the above constraints are satisfied. 

B. Parameter hmax 
The parameter hmax controls the impurity of each node 

(category) defined in (4), according to (3). A node may be 
both very large and very pure (which means most of the 
patterns that select it have the same class label). μARTMAP 
permits the creation of a large node (category) by allowing ρa 
to be zero, and maintains the accuracy by controlling the 
impurity. This is the main reason why μARTMAP can 
achieve a good accuracy with very few category nodes. 

The parameter hmax affects the training process mostly in 
the first epoch. Setting hmax=0 means all the nodes must be 
completely pure when created or expanded; they may become 
impure as more patterns are presented and more nodes are 
created. In most cases, hmax=0 causes each node to learn very 
few nodes and thus results in a large network with poor 
generalization (accuracy on unseen data). Setting hmax=∞ 
means that the entropy test always passes. 

According to (4), it is difficult to estimate a good hmax value, 
since , the number of patterns learned by category j, is 
not easy to predict. Moreover, h

|| ab
jW

j is much more sensitive to the 
order in which the patterns are presented than the total 
entropy is during the offline evaluation phase. For example, 
suppose there is only one category in the network, and the 
first four patterns that μARTMAP learned have the class 
labels 1, 1, 1, 2, respectively (as in the order of the list 
presentation). The hj values would be 0, 0, 0, 0.8113, after 
category j learns these patterns. If we swap the second and the 
fourth patterns, then the jh  values would be 0, 1, 0.9183, 
0.8113, after category j learns these patterns. If we set hmax to 
0.9, then category j would learn all the four patterns in the 
first case (before swapping), but it would not learn the pattern 
with class label 2 in the second case (after swapping). 

We assume that the proper value of hmax is proportional to 
the proper value of Hmax and varied the ratio between hmax and 
Hmax in order to search for the optimal hmax value in our 
experiments. 

C. Parameter Hmax 
The parameter Hmax controls the impurity of the whole 

μARTMAP network, which is defined as the sum of the 
impurities of all the categories formed in the training phase of 
μARTMAP. The parameter Hmax terminates the training 
process to prevent over-training. Hmax has a direct effect on 
the final accuracy of the μARTMAP. Setting Hmax=0 means 
that the ARTMAP must have 100% accuracy on the training 
set in the offline evaluation, which is usually impractical. In 
most cases, Hmax=0 not only keeps the training algorithm 
running for a long time, but also over fits the network to the 
training set as hmax=0 does. On the other hand, setting Hmax to 
a very high value will terminate the training process too soon 
and result in low generalization, as well. 

Apparently, the proper Hmax value is problem-dependent. 
Nevertheless, we can come up with some estimates of the 
total entropy H. First, let us define by Nb the number of 
classes (namely the number of nodes in the output layer), and 
Â  the expected accuracy given by the user and assumed in 
the interval (1/Nb, 1]. If there is a known theoretical optimal 
accuracy in a problem, assume Â  is equal to this theoretically 
optimal accuracy. Of course, Â  is sometimes unknown. 
Nevertheless, estimating Â  (using for example information 
existing in the literature) is much easier than guessing Hmax. It 
is proven in the appendix that if the accuracy of the network is 
Â , the network entropy H is bounded as follows: 
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HL is the entropy when  is an integer and the 
proportions of the classes in all categories are either 0 or

Â/1
Â . 

HU is the entropy when the proportion of the major class in 
each category is Â  and the other classes are evenly 
distributed for all categories. However, neither HL nor HU is a 



 
 

 

good estimate for Hmax, since both of them can be quite 
different from the actual entropy. Therefore, two other 
estimates for the entropy Hmax are given in the appendix: 
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where p is the solution in [0, 1] to the equation 
( ) ( ) App bN ˆ11 =−−  . HE1 is the entropy when the accuracies of 
all the categories are either 1 (pure categories) or 1/Nb 
(completely impure categories); HE2 is the entropy when the 
accuracies of all the categories are equal to Â , and the 
proportion of the minor classes within each category forms a 
geometric progress. In our experiments, we have used all 
these estimates of the entropy to come up with legitimate 
values of Hmax to run our μARTMAP experiments. 

D. Parameters ρ
__

a, Δρ, and δ 
The baseline vigilance threshold ρ

__

a can be initialized as 
any value in [0, 1].  In our experiments, we chose ρ

__

a within 
the set of values {0, 0.2, 0.4, 0.6, 0.8}. 

Δρ is introduced to make sure the most entropic category 
cannot be created again after it is removed. Our preliminary 
experiments show that this parameter does not affect the 
network performance as long as it is far less than 1. In our 
experiments we fixed Δρ to 0.02. 

The parameter δ controls the size change per pattern of 
each category, as it is demonstrated in (7). This parameter 
alleviates the overlapping problem in μARTMAP and 
reduces the effect of μARTMAP’s dependence on the order 
of pattern presentation in the training set. Small δ means that 
the size change must be small. Usually it will cause longer 
training time because in each epoch, more patterns will be 
placed into the unlearned set for many passes, until they are 
finally learned. If δ=0, then no category can increase its size, 
which is equivalent to set ρ

__

a=1. If δ ≥1–ρ
__

a, then (7) is always 
satisfied, and Safe μARTMAP reduces to μARTMAP. The 
optimal δ value is also dependent on the distribution of 
patterns. Although δ makes the algorithm less sensitive to the 
order of pattern presentation in the training set, the optimal 
value of δ depends on the distribution of the data points more 
than the other parameters do, since the former is even 
sensitive to the number of patterns. 

IV. EXPERIMENTS 
We have performed a number of experiments with 

μARTMAP. The purpose of these experiments was two-fold: 
First, we have made an effort to identify “optimal” settings of 
the network parameters in μARTMAP. Secondly, we 
compared μARTMAP’s performance with the performance 
of other ART classifiers in the literature, including those 
attempting to address the category proliferation problem in 
Fuzzy ARTMAP. In the sequel, we are reporting results from 
both of these sets of experiments. 

A. Databases 
We experimented with both artificial and real databases. In 

particular, the artificial databases correspond to 
2-dimensional data, Gaussianly distributed, belonging to 
2-class, 4-class, and 6-class problems. In each one of these 
databases we varied the amount of overlap of data belonging 
to different classes. In particular, we considered 5%, 15%, 
25%, and 40% overlap. Note that 5% overlap means the 
optimal Bayesian Classifier would have 5% misclassification 
rate on the Gaussianly distributed data (or ). There 
are a total of 3×4=12 Gaussian databases. Each Gaussian 
database has approximately 500 points in the training set and 
5000 in the validation set and the test set. Each class is equal 
probable to happen (which means A

95.0ˆ =A

0, the accuracy of wild 
guess, equals 1/#classes). We name the databases as 
“G#c-##” where the first number is the number of classes and 
the second number is the class overlap. For example, G2c-05 
means the Gaussian database is a 2-class and a 5% overlap 
database. 

The real databases are the Iris (500/4800/4800 points, 2 
attributes, 2 classes, ), Page-blocks 
(500/2486/2487 points, 10 attributes, 5 classes, 

) and Abalone (501/1838/1838 points, 7 
attributes, 3 classes, ) databases, which 
were obtained from the UCI Repository [9] (note that the Iris 
database has been expanded in size by introducing noisy 
patterns in the already existing set of 150 patterns).  

95.0ˆ,5.00 == AA

95.0ˆ,83.00 == AA
6.0ˆ,33.00 == AA

B. Parameter Settings: 
For each database, we simulated Safe μARTMAP with all 

the following combinations of the five Safe μARTMAP 
parameters Hmax, hmax, ρ

__

a, α and δ. 
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We experimented with all the above parameter 
combinations, which amounted to 5×6×5×2×3=900 



 
 

 

combinations. 

C. Experimental Procedure – Experimental Results 
As we have emphasized above, our experiments were 

divided into two parts. In the first part, we compared Safe 
μARTMAP with other ARTMAP classifiers (see Table 1). 
For each database, we evaluated all the possible parameter 
combinations of Safe μARTMAP for a 100 different orders 
of the pattern list presentation (the performance of 
μARTMAP depends on the order according to which patterns 
are presented in the training set). The 100 orders were fixed in 
all experiments and are exactly the same as those used to test 
the other ARTMAP algorithms. Therefore, for each database, 
we trained 900×100=90000 μARTMAP networks. We 
evaluated each network by the following score: 
 ( )2/ 50

0

0.9ˆ
a bN NA Ascore

A A
−

=
−  

 (12) 

where A is the accuracy on the validation set, Na is the number 
of categories formed in the training phase of μARTMAP, and 
A0, Â , and Nb were defined for each dataset in the Databases 
subsection. In the definition of the score we have used the 
normalized accuracy of a database (i.e., ( ) ( )0 0

ˆA A A A− −  
instead of the actual accuracy (i.e., A) so that the scores 
corresponding to different databases can be summed up 
without bias. Apparently, the above score is monotonically 
increasing with A and monotonically increasing with Na; 
when Na is small, ∂score/∂Na ≈ 0. 

For the Gaussian databases (for which we know the exact 
value of Â ), we examined the parameters of the best 
networks we previously selected. For each parameter 
combination and each one of the 12 Gaussian databases, we 
set the score of the parameter combination as the maximum 
score of the 100 networks trained with 100 different orders of 
pattern presentation and for that specific parameter 
combination. Then, for every parameter combination we have 
12 of these maximum scores corresponding to the 12 
Gaussian datasets. We sum up these 12 maximum score 
numbers for every parameter combination, and then we rank 
these sums from highest to lowest. The highest 5 of these 
sums of maximum scores point us to the best 5 parameter 
settings for Safe μARTMAP. 

In Table I we list all Safe μARTMAP’s performance with 
the chosen 5 sets of best parameters over all the databases, 
including the Gaussian databases and the real ones. For 
comparison, we also list, in the first column, the performance 
corresponding to the problem-dependent best parameter 
combination found in validation. An obvious observation is 
that the 5 best parameters produce almost optimal results and 
they do not differ very much in performance. It is also 
important to know that the identification of good, default 
parameter values for Safe μARTMAP is saving us significant 
computations when Safe μARTMAP is used with a new 
database. Furthermore, the identification of good, default 
parameter values is essential in cases where the number of 
data-points in our dataset is not large enough to allow us the 

luxury of splitting the data into training and validation sets 
and performing cross-validation using the validation set. 

Although the networks were ranked by cross-validation, 
the accuracy on the validation set is not shown, because it is 
always close to the accuracy on the test set. 

We observe that the elements in the fourth best parameter 
combination, except δ, appear in most other best parameter 
combinations. Thus, we suggest the following optimal 
settings, assuming the maximum number of epochs is large 
enough: 
 Hmax = H4, hmax = ∞, ρ

__

a = 0, α = 0.001 (13) 
We do not claim an optimal δ value because it depends on 

the size of the training set and the relationship is not clear yet.  



 
 

 

For Hmax, we are very confident since all the best 5 
parameter combinations have this value. In fact, all the best 
65 networks have Hmax = H4. This result is not surprising, 
since H4 is a good estimate of the entropy without 
over-training. ρ

__

a = 0 means we should allow a category to be 
very large in the first epoch, which is one of the benefits of 
μARTMAP.  α = 0.001 is better than α = 0.01, which agrees 
with (8). 

Although the optimal value of hmax seems unexpected, it 
can be explained as follows. This value allows a category to 
be very impure and tends to result in many more epochs of 
training because many impure categories must be removed in 
the future. In the first epoch, large categories will be created 

due to the small ρ
__

a value. In only a few epochs, the size of the 
categories will be controlled by ρa only. The number of 
categories will be very small in the beginning and it will grow 
slowly afterwards, until the total entropy is no more than Hmax. 
Therefore, the minimum number of categories may be 
achieved. Of course, sufficient epochs of training must be 
allowed, or otherwise the training process would be 
terminated prematurely and the network performance would 
be even worse than when hmax = 0. In contrast, setting hmax = 0 
will cause a large number of categories to be created in the 
first epoch, including many trivial categories. In this case, the 
training process may finish in only one epoch, resulting in a 
network that may still be over-trained, exhibiting poor 

TABLE II 
BEST PERFORMANCE OF ALL ART ALGORITHMS 

Safe μAM FAM ssFAM EAM ssEAM GAM ssGAM dGAM ssdGAM Database 
%Acc Na %Acc Na %Acc Na %Acc Na %Acc Na %Acc Na %Acc Na %Acc Na %Acc Na

G2c-05 95 2 91 14 95 2 92 26 95 2 94 4 94 4 95 4 95 2 
G2c-15 85 2 78 47 85 3 78 79 85 2 85 6 85 2 85 8 85 2 
G2c-25 75 2 64 75 75 2 65 123 75 2 75 6 75 2 75 7 75 2 
G2c-40 61 3 54 110 61 3 54 177 61 2 60 12 61 3 60 9 61 3 
G4c-05 95 4 93 21 94 7 93 24 94 4 95 10 95 4 95 10 95 4 
G4c-15 83 4 78 55 81 11 78 76 83 4 84 18 84 9 84 18 84 9 
G4c-25 75 4 67 101 71 9 67 110 73 4 74 49 72 21 75 46 75 35 
G4c-40 60 5 49 127 58 14 50 161 56 13 58 36 59 14 59 36 59 14 
G6c-05 94 9 92 26 91 11 92 23 94 7 94 12 94 8 95 13 95 6 
G6c-15 81 6 76 58 81 7 76 85 82 6 85 19 84 13 85 19 84 11 
G6c-25 71 13 67 87 70 15 64 124 71 7 73 30 73 20 74 32 73 20 
G6c-40 58 11 51 196 56 17 51 193 54 17 59 70 56 13 59 70 56 13 

Modified Iris 95 2 92 23 93 8 93 28 95 2 95 4 95 2 95 4 95 2 
Abalone 57 4 46 29 60 6 46 86 57 7 46 12 55 3 46 12 55 3 

Page Blocks 89 6 83 10 91 3 77 34 90 3 86 9 89 5 86 9 89 5 
Safe μAM: Safe μARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP; GAM: Gaussian ARTMAP; dGAM: Distributed Gaussian 

ARTMAP; ss* : semi-supervised version 
%Acc: the accuracy (in percentage) on the test set; Na: the number of categories; Epochs: the number of epochs required in training. 
 

TABLE I 
BEST PARAMETER COMBINATIONS FOR SAFE μARTMAP 

Rank Best 1 2 3 4 5 
Hmax - H4 H4 H4 H4 H4

hmax H / max - ∞ ∞ 1 ∞ ∞ 
ρ
__

a - 0.4 0 0.2 0 0.2 
a - 0.001 0.01 0.001 0.001 0.001 

δ/(1–ρ
__

a) - 0.2 0.2 0.2 1 1 
Database %Acc Na Epochs %Acc Na Epochs %Acc Na Epochs %Acc Na Epochs %Acc Na Epochs %Acc Na Epochs 
G2c-05 95.22 2 1 95.16 2 14 95.14 2 4 95.2 2 1 95.2 3 10 95.2 3 10 
G2c-15 85 2 1 85.06 2 4 84.98 3 15 85.06 2 1 85.24 2 27 85.24 2 27 
G2c-25 74.98 2 1 74.96 2 16 74.96 3 18 74.18 2 1 75.02 3 8 75.02 3 8 
G2c-40 61.4 3 1 61.54 4 8 61.34 4 18 61.44 3 10 61.32 4 32 61.32 4 32 
G4c-05 95.04 4 22 94.82 4 25 94.36 6 50 94.64 4 1 94.46 6 48 94.46 6 48 
G4c-15 83.28 4 20 81.74 6 44 84.18 7 65 83.58 9 82 83.64 9 61 83.64 9 61 
G4c-25 74.5 4 44 74.78 5 37 75.06 6 52 75.06 4 48 75.02 6 49 75.02 6 49 
G4c-40 59.76 5 39 59.26 4 52 59.76 5 39 58.84 5 41 59.72 7 37 59.72 7 37 
G6c-05 93.57 9 9 93.09 10 85 91.87 9 74 93.23 10 58 93.53 13 93 93.53 13 93 
G6c-15 80.92 6 1 81.18 12 100 81.87 13 100 81.16 14 76 82.27 12 100 82.27 12 100 
G6c-25 70.74 13 88 71.18 13 83 69.54 14 85 69.76 11 100 69.16 13 90 69.16 13 90 
G6c-40 58.03 11 100 56.77 16 100 56.45 13 81 56.41 13 100 56.3 14 77 56.3 14 77 

Modified Iris 94.92 2 2 94.92 4 10 95.15 4 19 94.92 4 16 94.63 3 10 94.63 3 12 
Abalone 57.18 4 4 55.06 2 2 54.08 2 4 54.52 3 2 53.59 2 6 53.59 2 6 

Page Blocks 88.82 6 17 88.34 5 10 92.32 5 24 89.14 8 35 89.75 4 11 89.75 4 11 
%Acc: the accuracy (in percentage) on the test set; Na: the number of categories; Epochs: the number of epochs spent in training 
Note that the parameter combinations in the column “Best” is problem dependent; they have the best score in validation, not testing 



 
 

 

generalization. 
In the second part, we compare the best Safe μARTMAP 

network to the best of each other ARTMAP architectures, 
namely Fuzzy ARTMAP, Ellipsoidal ARTMAP and 
Gaussian ARTMAP, and compares very favorably with 
ssFAM, ssEAM, and ssGAM and ssdGAM. Actually, the 
algorithms that produce as good results as safe μARTMAP 
are ssEAM and ssdGAM. The term “best” is also based on the 
score defined in (12) in validation. The best of the 90000 
trained ARTMAP networks is selected and shown in Table II. 
According to the results, one can conclude that Safe 
μARTMAP can achieve almost the best accuracy using the 
smallest network, as long as the parameters are set properly. 

 

V. CONCLUSIONS 
Safe μARTMAP is one of the recently proposed ART 

architectures, which can produce small size classifiers with 
high accuracy. The main issue of using μARTMAP is the 
correct selection of its many parameters. In this paper, we 
studied the effect of the parameters, both theoretically and 
experimentally. Furthermore, we have identified a procedure 
that came up with a way of choosing good default 
μARTMAP parameter values, independently of the database 
used, despite the obvious fact that the best μARTMAP 
parameter values are data-base dependent. This is a 
significant simplification for anyone experimenting with 
μARTMAP on new datasets. It is also very beneficial in cases 
when the dataset is small and we do not have the option of 
splitting the dataset in training and validation sets. Also, we 
compared the performance of μARTMAP with a number of 
ART classifiers, including a number of them that have been 
reported in the literature and claim that they also address the 
category proliferation problem in Fuzzy ARTMAP. The 
result from this experimentation is that μARTMAP 
outperforms Fuzzy ARTMAP (FAM), Ellipsoidal ARTMAP 
(EAM), and Gaussian ARTMAP (GAM), and it exhibits 
comparable performance with semi-supervised EAM and 
distributed GAM.  Finally, it is worth pointing out that our 
performance comparison of various ART algorithms and the 
identification of good, default parameter values for 
μARTMAP relied on a performance measure (score) that 
takes into consideration both the accuracy of the network on a 
cross-validation set and the size of the network that training 
creates. Despite its obvious benefits this is an approach that 
has not been quantified in the ART literature before. 

APPENDIX – ESTIMATES OF Hmax

A. Preliminaries  
It is important to note that μARTMAP utilizes the Wab 

matrix for computing the node entropy in the entropy test 
during training as in (4) while, it computes the total entropy 
based on another matrix Vab, which is the same as Wab except 

that it is computed in offline evaluation and reset at the end of 
each epoch. Before we study the relationship between Hmax 
and Â , we have to define four accuracies: the accuracy on the 
training set produced by using Wab matrix (designated by 

), the accuracy on the training set produced by using VTrain
WA ab 

(designated by ), the accuracy on the validation set 
produced by using W

Train
VA

ab (designated by ), and the accuracy 
on the test set produced by using W

Val
WA

ab matrix (designated by 
). After training, only the WTest

WA ab matrix is used to produce 
the classification results. For this reason, we do not examine 
the accuracy on the validation/test set using Vab. 

It is a well known result that when the accuracy on the 
training set is increased too much, the accuracy on the test set 
will drop since the network is over trained. Here we do not 
consider the case where the database is so small that the 
training set might not be representative. Following are our 
observations from our experiments, whose results are not 
shown in this paper. 

1) When ,  (the  value of the 
network with the best parameter settings) increases 
with  and ; when , 

; when ,  decreases 
with  and  

AATrain
V

ˆ< Test
WAmax Test

WA

Train
VA AAA Test

W
Train
V

ˆmax << AATrain
V

ˆ=
AATest

W
ˆmax ≈ AATrain

V
ˆ> Test

WAmax
Train
VA AATest

W
ˆmax <

2) . This is reasonable since both the test set 
and the validation set are unseen by the network, and 
they represent the same problem. 

Val
W

Test
W AA ≈

It is clear that the training algorithm should be terminated 
when  reaches Train

VA Â . From now on we assume the expected 
accuracy Â  is given and 1ˆ1 ≤< ANb . 

B. Theoretical Upper Bound 
Next, we try to estimate H given that . In the 

following part, we find the maximum and the minimum of H. 
Let  and . The accuracy of 
node j on the training set produced by using the entries of 
matrix V

AATrain
V

ˆ=

||/|| abab
jjp VV= ||/ ab

j
ab
jkjkp VV=

ab can be expressed as . The maximum 
problem can be described as:  
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To simplify the problem, we can first maximize the entropy 
of each node given Aj by adjusting pjk, and then maximize H 
by adjusting pj and Aj (and Na, if necessary). Without loss of 
generality, we can assume  for all j. Since 
the function 

jjkkj App == max1

2( ) logf x x x= − is strictly concave for x>0,  



 
 

 

21
logbN

jk jkk
p p

=
−∑  is )1(log)1(log 22 jjjj nAnAAnA −−−− . The 
floor function in the expression of n, however, makes our 
analysis somehow difficult since it is not continuous. Note 
that jjjjj AnAnAAnA 222 log)1(log)1(log −≥−−−−  (the 
equality holds if and only if j  is an integer). We use 

j

A/1
A2log−  as the lower bound for convenience. The problem 
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In this case, we can simplify H as: 
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Therefore, the problem reduces to: 
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Using again the concavity of 2( ) logf x x= − x , we have: 
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The equality holds if and only if  for all j. Thus, we 
get the following theoretical upper bound for H: 
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C. Theoretical Lower Bound 
Following the same approach used to derive the theoretical 

upper bound for H, we can extract the theoretical lower 
bound for H. We first minimize 21

logbN
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The function g(x)=–log2x is strictly convex for x>0. Hence,  

AAgApgAgpH
aa N

j
jj

N

j
jj

ˆlog)ˆ()( 2
11

−==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥= ∑∑

==

, 

where the equality holds if and only if  for all j. We, 
therefore, obtain the theoretical lower bound of H: 

AAj
ˆ=

AH L
ˆlog 2−=  

D. Typical Case 1 
In most cases, both the theoretical upper bound and lower 

bound are far from the actual value of H, since they require 
that many constraints must be met, as shown above. Here we 
just consider two typical cases to estimate H. 

In the first case, the accuracies of all the categories are 
either 1 or 1/Nb. Thus, 
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It is not difficult to solve the above equations and find the 
corresponding H value. We denote the resulting H value by 
HE1 and we are providing it below. 
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E. Typical Case 2 
In the second case,  for all j, and AAj

ˆ= App k
jk

ˆ1−= , 
where p is a constant in the interval  (it cannot be one 
because 

)1,0[

b
) and satisfies NA /1ˆ > 1=∑ jkp , 

i.e., ( )1 . This means all the class fractions make a 
geometric progress. Solving for p is not difficult: when 

bNpAp −=− 1ˆ

52 ≤≤ bN , we can solve this equation analytically; when 
 and , ; when  and , we 

can solve the equation numerically, which is not difficult 
since 
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leads to lower entropy. Therefore, the minimum of 

p p
jA

),min(' 211 jkjkjjk ppAp += 1212 '' jkjkjkjk pppp −+=
In this case, the resulting H value, designated by HE2, can 



 
 

 

be computed as follows: 
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Since , it is not difficult to simplify the 
above expression to obtain: 
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