
Generalized Entropy for Splitting on Numerical
Attributes in Decision Trees

M. Zhong*, M. Georgiopoulos*, G. Anagnostopoulos**, M. Mollaghasemi*

*University of Central Florida, Orlando, FL 32816
**Florida Institute of Technology, Melbourne, FL 32791

myzhong@ucf.edu, michaelg@mail.ucf.edu, georgio@fit.edu, mollagha@mail.ucf.edu

Abstract
Decision Trees are well known for their training efficiency
and their interpretable knowledge representation. They
apply a greedy search and a divide-and-conquer approach to
learn patterns. The greedy search is based on the evaluation
criterion on the candidate splits at each node. Although
research has been performed on various such criteria, there
is no significant improvement from the classical split
approaches introduced in the early decision tree literature.
This paper presents a new evaluation rule to determine
candidate splits in decision tree classifiers. The experiments
show that this new evaluation rule reduces the size of the
resulting tree, while maintaining the tree’s accuracy.

Introduction
Decision Tree is a specific type of algorithm for machine
learning. One of the notable and earliest decision trees is
CART (Classification and Regression Tree) by Breiman et
al. (1984). This paper focuses on classification problems
only, due to the fact that most techniques in classification
trees can be applied to regression trees with minor
adjustments.

To learn the examples in a training set with the CART
algorithm, a tree is grown in the following process.
Initially only one node is generated, with all examples
attached to it. The node will be split by a rule based on a
single attribute. If the attribute is numerical, the rule is in
the form of “is xi<b?” where xi is the attribute value and b
is a threshold; if the attribute is categorical, the rule is in
the form of “is xi∈B?” where xi is the attribute outcome
and B is a subset of all the outcomes of xi among the
examples attached to the leaf being split. The CART
algorithm selects the best split by enumeration to maximize
the split gain, which will be discussed later in detail.

According to the splitting rule, the examples attached to
the current node will be divided into two partitions and
attached to two new nodes denoted as the children of the
current node. The new nodes will also be split, in the same
fashion, until the examples in each new node have the
same label or cannot be split any more.

The above process is called the growing phase. Usually
the resulting tree is over sized and because of that exhibits
reduced generalization capability on unseen examples.

Hence, “pruning” of this tree is needed, but the details of
the tree pruning phase are omitted, because it is not the
focus of this paper.

The growing phase of CART is a greedy search based on
the split gain measure. Many researchers have tried various
measures to improve the resulting tree quality in accuracy
and/or size. However, most of these measures are based on
the class distribution only and do not consider the attribute
distributions, which is important in some applications. As
demonstrated in this paper, most of these past splitting
techniques fail to work well on some simple problems. In
this paper, we propose a new approach considering both
the attribute distributions and the class distributions to
evaluate the split gain. Experiments demonstrate the
advantage of this proposed approach.

The rest of this paper is organized as follows. The
section “Related Work” covers the classic definitions of
impurity, the split gain and existing variations. The section
“Generalized Impurity” derives and explains our new idea.
The section “Experiments and Results” describes the
comparison between our approach and two others used in
two classic algorithms, CART and C4.5 (Quinlan 1993).
The section “Conclusion” summarizes this paper.

It is assumed throughout this paper that the reader is
familiar with CART and C4.5 decision tree classifiers.

Related Work
In CART, the gain of a split s at node t is defined as the
decrease of the impurity
 () ()stImtImstGain ,)(, −= (1)
Im(t) is the impurity of a node t, defined as a function of
the class proportions:
 ())(),...,(),()(21 tptptpftIm C= (2)
where pj(t) is the proportion of the j-th class in the
examples attached to node t for j=1, 2, ... ,C and C is the
number of classes. Breiman et al. (1984) pointed out that
the function f must satisfy the following conditions:

 f is maximized when p1(t) = p2(t) = = pC(t) (most
impure)

 f is minimized to zero when only one of the pj(t)’s is
one and the rest are zero (completely pure)

 f is concave (which guarantees that the overall impurity
after a split will never be larger than before)

The most commonly used impurity functions in CART
are the entropy and the Gini Index:

 (3) () ∑
=

−=
C

j
jjC tptptptpEntropy

1
1)(log)()(),...,(

 (4) () ∑
=

−=
C

j
jC tptptpGini

1

2
1)(1)(),...,(

The overall impurity after a split s at node t is defined
as:

 () () ()
)(

)()(,
tN

tImtNtImtNstIm
RRLL +

= (5)

where tL and tR are the new nodes formed according to the
split and N(t) is the number of examples attached to node t.

Other Split Evaluations
Although prior research has stated that the selection of the
impurity function f is not critical as long as it satisfies the
conditions specified by Breiman (Breiman et al 1984 and
Minger 1989), later experiments revealed that the
definition of the split gain, as the only heuristic function
used in the greedy search, affects the tree quality in a
certain extent (e.g., see Buntine et al 1992). Some of the
work reported in the literature and carried out to improve
the split evaluations by redefining the split gain, is
included below:

 CART provides an option to evaluate the gain using a
twoing rule (Breiman et al 1984), which does not
directly evaluate gain as the decrease of the impurity,
but as the decrease of the impurity in an altered 2-
class problem by grouping the class labels into two
super classes.

 The well known C4.5 (Quinlan 1993) maximizes the
split gain ratio instead of the split gain:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(
)(,

)(
)(

),(),(

tN
tN

tN
tNEntropy

stGainstGainRatio
RL (6)

 Rounds (1980) chooses a splitting threshold b to
maximize the Kolmogorov-Smirnov distance
assuming two class problem:

)2|()1|()(=−== YbFYbFbD
where F(x|Y=j) is the estimated cumulative
distribution function at x given class j. The most
advantage of this criterion is that the Kolmogorov-
Smirnov distance is independent of the distributions
F(x|Y=j). This criterion can also be extended to multi-
class problems (Haskell and Noui-Mehidi, 1991).
 De Merckt (1993) maximizes a contrast-entropy ratio:

()
),(

)(
)()(

),(

2

stIm

mm
tN

tNtN

stCE

R
k

L
k

RL

−
=

where the impurity is the entropy and mk
L is the mean

value of the attribute used for split among the
examples falling to the left partition.

 Taylor (1993) maximizes the MPI (Mean Posterior
Improvement):

() () ()∑
=

==−=
C

j
j

RL

jYRPjYLPtp
tN

tNtNstMPI
1

2 ||
)(

)()(),(

where P(L|Y=j) means the probability at which an
example goes to the left partition given that it has
class label j.
 Utgoff, Berkman, and Clouse (1997) applies the direct
metrics, which can be the expected number of tests,
the minimum description length (MDL), the expected
classification cost, or the expected misclassification
cost.

It is worth mentioning that some other researchers
proposed other approaches for splitting categorical
attributes as well. For example, Simovici and Jaroszewicz
(2004) applied the Goodman-Kruskal Association Index,
and Zhou (1991) utilized the Symmetrical τ Criterion.
Although numerical attributes in a finite sized data set can
be treated as categorical attributes, the number of their
outcomes (distinct values) are usually very large, resulting
in impractical time complexity.

Unfortunately none of the above variations improves the
performance of the decision tree, in the sense of accuracy
or conciseness. Most of the improvements are achieved
with small data sets, which weaken their statistical
significance. Even worse, these variations do not
incorporate the attribute distributions properly enough as to
solve some simple problems optimally, as demonstrated in
the next section.

Generalized Impurity
Before introducing our approach, let us consider the Cross
problem shown below:

Figure 1: The Cross problem

In the above figure, x and y are the attributes and the
two colors represent two classes. The examples are
uniformly distributed in the rectangle. Apparently, the
optimal splits are “is x<0” and “y<0”. However, no matter
where the first split is placed (as long as it is univariate),
the two partitions still have 50% white area and 50% gray
area, which is the same distribution of class labels as
before the split. This means the split gain is always zero as
long as the gain depends on the class proportions (pj(t)’s)
only. Moreover, the projections of the points in each class
on either axis completely overlap with each other, resulting
in the same probability density function on x and y given
any class. Therefore, except De Merckt’s and Taylor’s
approaches, none of the previously mentioned split

x

y

approaches can obtain the optimal solution for this
problem. Note that De Merckt’s and Taylor’s approaches
happen to yield the optimal solution because they favor
central cuts when the impurity cannot be reduced, but they
still fail upon a non-symmetric version of the Cross
problem.

The most straightforward methods to address this
problem are:

 Use non-greedy search (Cantu-Paz, 2003)
 Take the attribute distributions into account for the
definition of the impurity, despite that our ultimate
goal is to grow a tree with pure leaves (pure in the
sense of class labels rather than attributes).

Focusing on the second approach in this paper, we
expect that our technique will be able to distinguish the
impurity among the following cases of data (see Figure 2):

Figure 2: Typical cases of datasets that the
proposed technique can efficiently split

It is desired that the impurity decreases from the left

most case to the right most case. The main difference
between the first (leftmost) case and the second (rightmost)
case is that each class in the first case has a wider
distribution in the attributes. Most present impurity
measures, such as entropy and Gini Index, rely on class
proportions only and thus do not distinguish the first case
from the second one. On the other hand, it is desired that if
a node is pure, the impurity should be zero no matter how
widely the attribute scatters. Therefore, it is reasonable to
use attribute variance instead of simple frequency count to
compute the entropy. To explain this idea more clearly, let
us revisit the classic definition of the split gain with the
introduction of a weighted impurity:
 (7))()()(tImtNtW =
It is now easy to see that the split gain can be rewritten as:
 (8) ())()()(, RL tWtWtWstGain −−=
Equation (8) differs from (1) only by a factor of N(t),
which does not affect the selection of the best split.

Let Nj(t) represent the class frequency, namely the
number of examples of class j attached to node t.

 (9) ∑
=

=
C

j
j tNtN

1
)()(

 (10) CjtNtNtp jj ,...,2,1),(/)()(==

Equations (9) and (10) are used to compute Im(t) in
Equation (2). If we apply the entropy measure as Im(t), it is
not difficult to rewrite Equation (3) as:

()

∑

∑∑

=

==

−=

−−=−=

C

j
jj

C

j
jj

C

j

jj

tNtN
tN

tN

tNtNtN
tNtN

tN
tN
tN

tIm

1

11

)(log)(
)(

1)(log

)(log)(log)(
)(

1
)(
)(

log
)(
)(

)(

()∑∑∑
===

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

C

j
jj

C

j
j

C

j
j tNtNtNtNtW

111
)(log)()(log)()((11)

In the above equation, we express W(t) as a function
(denoted as W_Entropy) of the class frequencies (Nj(t)’s).
It is not difficult to express W(t) with respect to Nj(t)’s
using other impurity measures such as the Gini Index.

In order to incorporate the attribute distributions, we
now replace Equation (11) with the Generalized Entropy
without changing equation (8):

))(),...,(),((_
))(),...,(),((_)1()(

21

21

tVtVtVEntropyqW
tNtNtNEntropyWqtW

C

C

+
−=

 (12)

 (13)
⎪⎩

⎪
⎨
⎧

=

>
= ∑

=

0)(,0

0)(,)()(1
tN

tNtVtV
j

j

D

d
jd

j

()

2

)(

1

2
)()(

)(
d

tN

i

j
d

j
id

jd R

txtx
tV

j

∑
=

−
= (14)

)(

)(
)(

)(

1

tN

tx
tx

j

tN

i

j
id

j
d

j

∑
== (15)

where D is the number of attributes (assumed all numerical
for now), (t) is the value of the d-th attribute in the i-th
example of class j attached to node t, and Rd is the range of
the d-th attribute within the entire training data set.

jt
idx

In Equation (14), the numerator is the sum of the square
distance of the attribute points to the center within the
class. We do not use the variance directly because we
desire that this quantity be proportional to Nj(t) given the
same distribution. The denominator Rd is used for
normalization so that our measure will have no bias due to
the scaling of the attributes. We assume Rd>0 for all
attributes; if Rd=0, it means the d-th attribute is a constant
and it should have been discarded.

In Equation (12), q is a predefined factor between 0 and
1. When q=0, the Generalized Entropy reduces to the
classic one. We do not recommend q=1 because it favors
end cuts: if node t is NOT pure but each minor class has
exactly one example, then W_Entropy(V1(t), V2(t), ... ,
VC(t)) is still zero. Our experiments have demonstrated that
a good default value for q is q=0.4.

Properties
The Generalized Impurity and the corresponding split gain
have the following properties, as long as 0<q<1:
Property A: The Generalized Impurity is non-negative
and it is zero if and only if at most one class is present.
Property B: The split gain is always non-negative
regardless of the split.

Proof of property A: The function W_Entropy is non-
negative. If W(t) is zero, W_Entropy (Nj(t)) must be zero,
which means at most one of the Nj(t)’s is non-zero; if at
most one of the Nj(t)’s is non-zero, only the corresponding
Vj(t) may be non-zero, which means W_Entropy is zero.

Proof of property B: Let . d
j

id
j

id Rtxty /)()(=

 ()
)(

)(
)()()()(

2)(

1
)(

1

2
)(

1

2

tN

ty
tytytytV

j

tN

i

j
idtN

i

j
id

tN

i

j
d

j
idjd

j

jj ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−=−=
∑

∑∑ =

==

 (16)

()

()
)()(

)()()()(

)()()()(

)()(

)()()()(

)()()()(

)(

)(

)(
)(

)(

)(

)()(

)()(

)()()(

2
)(

1

)(

1

2
)(

1

)(

1

2
)(

1
)(

1

2

2
)(

1
)(

1

2

2
)(

1

)(

1
)(

1

2
)(

1

2

R
jd

L
jd

R
j

L
j

R
j

L
j

tN

i

Rj
id

R
j

tN

i

Lj
id

L
j

R
jd

L
jd

R
j

L
j

R
j

L
j

tN

i

Rj
id

R
j

tN

i

Lj
id

L
j

R
j

tN

i

Rj
idtN

i

Rj
idL

j

tN

i

Lj
idtN

i

Lj
id

R
j

L
j

tN

i

Rj
id

tN

i

Lj
idtN

i

Rj
id

tN

i

Lj
idjd

tVtV

tNtNtNtN

tytNtytN

tVtV

tNtNtNtN

tytNtytN

tN

ty

ty
tN

ty

ty

tNtN

tyty

tytytV

R
j

L
j

R
j

L
j

R
j

R
j

L
j

L
j

R
j

L
j

R
j

L
j

+≥

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

++=

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−=

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−+=

∑∑

∑∑

∑
∑

∑
∑

∑∑
∑∑

==

==

=

=

=

=

==

==

Therefore, Vj(t)≥Vj(tL)+ Vj(tR). Using the concavity of the
entropy function and the monotonicity of W_Entropy, we
can show that W(t)≥W(tL)+ W(tR).

Time Complexity
One of the most important advantages of CART is its low
time complexity. In the typical case, the time complexity
of the growing phase of CART is O(DN(logN)2) where D
is the number of attributes and N is the number of training
patterns; in the worst case, the complexity is O(DN2logN),
which happens only when each split is an end cut (the
derivation is omitted in this paper). The typical time
complexity requires that when consecutive values of the
splitting threshold b are evaluated, the class frequencies
(Nj(t)’s) should not be counted by going through all the
examples attached to the current node, but by the previous
class frequencies plus/minus the number of examples
switching from the left child to the right one (or inversely).

In our approach, not only Nj(t)’s but also Vj(t)’s need
updating when b is shifted. Nevertheless, this can still be
performed in negligible time, because Equation (16)
implies that we can update the sum of each attribute and
the sum of the square of each attribute as easily as updating
Nj(t) to include/exclude a point into/from the left child. Of
course, this must be performed for each attribute. For this
reason, our approach has a time complexity higher than
that of CART by a factor of D, which is usually small.

Application to Categorical attributes
For categorical attributes, we can replace Equation (14)
with the weighted entropy function:
 (17)),...)(),((_)(21 tNtNEntropyWtV j

d
j

djd =

where is the number of examples attached to node t
with class j and the k-th outcome in the d-th attribute.
Similarly, we can prove that properties a) and b) still hold
true if categorical attributes are present. Equation (11) also
allows us to update Vjd(t) efficiently in a constant time
complexity regardless of the number of examples and the

number of outcomes of the d-th attribute. Therefore, our
previous analysis of the time complexity is still valid.

)(tN j
dk

Experiments and Results
We implemented and compared the following three
evaluations of splitting rules:

 Decrease of Entropy – Equations (8) and (11). It is
used in CART.

 Gain Ratio – Equations (6), (8) and (11). It is used in
C4.5. For a fair comparison, we did not use C4.5
directly but modified CART with this approach.

 Decrease of Generalized Entropy – Equations (8) and
(12). For simplicity, the categorical attributes are not
taken into account in (12), although they can be used
in a splitting rule. The parameter q was set equal to
0.4. The rest of the algorithm is the same as CART.

We tested these approaches with the Cross problem and
some UCI repository problems (Newman et al., 1998).
Each data set was processed as following:

1) Randomly shuffle the data in the database
2) Use the first 40% of the data for growing a tree, the

next 30% of the data for pruning the tree with the 1-
SE rule (Breiman, et al., 1984), and the remaining
30% of the data for testing the tree.

To reduce the randomness factor related to Step 1, we
repeated the experiments for 10 times. In each time, we
shuffled the data again for a new growing/pruning/testing
set, on which we ran all the tested algorithms for a fair
comparison. The results shown in Tables 2 and 3 reflect
the average performance over the 10 runs.

Data Sets
To ensure statistical significance, we selected only the data
sets with 2000 instances or more. For the Cross problem,
we generate random points uniformly distributed in the
rectangle region {(x,y)|-1<x<1,-1<y<1}. The class label is
set to the sign of x·y for each point. The other data sets are
downloaded from the UCI repository. Table 1 lists the
statistical information pertinent to the databases.

Name of
Database #Cases #Numerical

attributes
 #Nominal
attributes #Classes Major

Class %
Cross 4000 2 0 2 50.22
Abalone 4177 7 1 3 16.4951

Segment 2310 19 0 7 14.2857

Letter 20000 16 0 26 4.065
Waveform 5000 21 0 3 33.92
Pen digits 10992 12 0 10 10.4076

Satellite 6435 36 0 6 23.8228
Opt digits 5620 64 0 10 10.1779

Shuttle 14500 9 0 7 79.1586

Table 1: Statistical information about the databases

Experimental Results
Tables 2 and 3 give the classification results. The results
reported there are the mean values out of the 10 runs
obtained from the test set (30% of the whole database)
which is unseen by the tree. In tables 2 and 3, the second
column shows the results of CART, the third column
shows those of CART using Gain Ratio, and the last
column shows the results of CART using our split gain
measure.

Name of
Database

Decrease
of Entropy

Gain
Ratio

Decrease of
Generalized

Entropy
Cross 99.50% 86.31% 99.96%
Abalone 62.31% 57.58% 62.00%
Segment 94.59% 93.72% 94.49%
Letter 83.86% 82.47% 83.73%
Waveform 76.15% 72.72% 76.30%
Pen digits 94.51% 94.33% 94.54%
Satellite 84.90% 83.84% 84.69%
Opt digits 87.46% 85.64% 86.58%
Shuttle 99.95% 99.95% 99.95%

Table 2: Accuracy of the three approaches

Name of
Database

Decrease
of Entropy

Gain
Ratio

Decrease of
Generalized

Entropy
Cross 10.4 224 4
Abalone 8.5 196.7 6.1
Segment 20.6 25 20
Letter 956.3 1139.6 928.2
Waveform 33.2 143.6 29.2
Pen digits 112.7 140.2 105.9
Satellite 35.2 84.8 32.2
Opt digits 76.8 101.5 76.5
Shuttle 19.5 28.1 19.3

Table 3: Number of tree leaves for the three approaches

 These tables show that the gain ratio is much worse than
the gain itself: the accuracy is always worse and the tree is
significantly larger. The draw back of C4.5 in the resulting
tree sizes has already been pointed out in Lim, Loh, and
Shih 2000. Fortunately, C4.5 improves the accuracy by not
requiring a pruning set so it can have a larger training set to
grow the tree.
 Our approach appears better than the criteria used in
CART and C4.5, mostly in reducing tree size while

achieving similar accuracy. For the Cross problem, our
approach always achieved the optimal tree with 4 leaves,
while CART’s criterion yielded more than twice our tree
size and Gain Ratio even resulted in a tree 56 times our
tree size. For the benchmark databases, however, the
difference in size and accuracy between our approach and
the classic ones is much less evident, because the practical
problems usually contain redundancy among the attributes,
and thus the data is not usually distributed as the data
corresponding to the Cross problem. Nevertheless, our
approach also reduced the tree size, mostly by 3%-10%,
while maintaining the accuracy (the worst deterioration is
less than 1%).

Conclusions
In this paper we demonstrated the difficulty of the existing
evaluation methods in correctly splitting the data in the
growing phase of the tree. Thus, we motivated the reason
for a splitting rule that utilizes not only class labels but
attribute distributions in the splitting evaluation rules. We
introduced such a splitting rule, named Generalized
Entropy, which incorporates both the class distribution and
the attribute distributions in splitting the data. We proved
that our measure has similar properties and comparable
time complexity to the classical slitting decision tree
measures. Our experiments have also shown that our
splitting measure reduces the tree size while maintaining or
improving the accuracy. Unfortunately, the improvement is
not significant for benchmark databases. Our decision tree
splitting method can be readily applied to other classic
measurements such as the Gini Index, and can also be
generalized to categorical attributes.

Acknowledgment
This work was supported in part by a National Science
Foundation (NSF) grant CRCD: 0203446. Georgios
Anagnostopoulos and Michael Georgiopoulos
acknowledge the partial support from the NSF grant CCLI
0341601.

References
Breiman, L., Friedman, J.H, Olshen, R. A., and Stone, C. J.
1984. Classification and Regression Trees. Wadsworth,
Belmont CA.

Buntine, W. and Niblett, T. 1992. A Further Comparison of
Splitting Rules for Decision Tree Induction. Machine
Learning, 8:75-85.

Cantu-Paz, E. and Kamath, C. 2003. Inducing Oblique
Decision Trees with Evolutionary Algorithms, IEEE Trans.
Evolutionary Computation, 7(1):54-68.

De Merckt, T. V. 1993. Decision Trees in Numerical
Attribute Spaces. In IJCAI-93, 1016-1021.

Haskell, R. E. and Noui-Mehidi, A. 1991. Design of
Hierarchical Classifiers. In Proceedings of Computing in
the 90’s: The First Great Lakes Computer Science
Conference, 118-124, Berlin: Springer-Verlag.

Lim, T. S., Loh, W. Y., and Shih. Y. S. 2000. A
Comparison of Prediction Accuracy, Complexity, and
Training Time of Thirty-three Old and New Classification
Algorithms. Machine Learning, 40(3):203-228.

Mingers, J. 1989. An Empirical Comparison of Selection
Measures for Decision Tree Induction. Machine Learning,
4(2):227-243.

Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J.
1998. UCI Repository of machine learning databases,
Department of Information and Computer Science,
University of California, Irvine, CA. Available at
[http://www.ics.uci.edu/~mlearn/MLRepository.html].

Quinlan, J. R. 1993. C4.5: Programs for Machine
Learning. San Mateo, Calif.: Morgan Kaufmann

Rounds, E. 1980. A Combined Non-parametric Approach
to Feature Selection and Binary Decision Tree Design.
Pattern Recognition, 12:313-317.

Simovici, D. A. and Jaroszewicz, S. 2004. A Metric
Approach to Building Decision Trees Based on Goodman-
Kruskal Association Index. PAKDD: 181-190

Taylor, P. C. and Silverman, B. W. 1993. Block Diagrams
and Splitting Criteria for Classification Trees. Statistics
and Computing, 3(4):147-161.

Utgoff, P. E. and Clouse, J. A. 1996. A Kolmogorov-
Smirno Metric for Decision Tree Induction. Technical
Report 96-3, University of Massachusetts, Amherst

Zhou, X. J. and Dillon, T. S. 1991. A Statistical-heuristic
Feature Selection Criterion for Decision Tree Induction.
IEEE Trans. Pattern Analysis and Machine Intelligence,
PAMI 13(8):834-841.

