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Abstract 
Decision Trees are well known for their training efficiency 
and their interpretable knowledge representation. They 
apply a greedy search and a divide-and-conquer approach to 
learn patterns. The greedy search is based on the evaluation 
criterion on the candidate splits at each node. Although 
research has been performed on various such criteria, there 
is no significant improvement from the classical split 
approaches introduced in the early decision tree literature. 
This paper presents a new evaluation rule to determine 
candidate splits in decision tree classifiers. The experiments 
show that this new evaluation rule reduces the size of the 
resulting tree, while maintaining the tree’s accuracy.  

Introduction 
Decision Tree is a specific type of algorithm for machine 
learning. One of the notable and earliest decision trees is 
CART (Classification and Regression Tree) by Breiman et 
al. (1984). This paper focuses on classification problems 
only, due to the fact that most techniques in classification 
trees can be applied to regression trees with minor 
adjustments. 

To learn the examples in a training set with the CART 
algorithm, a tree is grown in the following process. 
Initially only one node is generated, with all examples 
attached to it. The node will be split by a rule based on a 
single attribute. If the attribute is numerical, the rule is in 
the form of “is xi<b?” where xi is the attribute value and b 
is a threshold; if the attribute is categorical, the rule is in 
the form of “is xi∈B?” where xi is the attribute outcome 
and B is a subset of all the outcomes of xi among the 
examples attached to the leaf being split. The CART 
algorithm selects the best split by enumeration to maximize 
the split gain, which will be discussed later in detail. 

According to the splitting rule, the examples attached to 
the current node will be divided into two partitions and 
attached to two new nodes denoted as the children of the 
current node. The new nodes will also be split, in the same 
fashion, until the examples in each new node have the 
same label or cannot be split any more. 

The above process is called the growing phase. Usually 
the resulting tree is over sized and because of that exhibits 
reduced generalization capability on unseen examples. 

Hence, “pruning” of this tree is needed, but the details of 
the tree pruning phase are omitted, because it is not the 
focus of this paper. 

The growing phase of CART is a greedy search based on 
the split gain measure. Many researchers have tried various 
measures to improve the resulting tree quality in accuracy 
and/or size. However, most of these measures are based on 
the class distribution only and do not consider the attribute 
distributions, which is important in some applications. As 
demonstrated in this paper, most of these past splitting 
techniques fail to work well on some simple problems. In 
this paper, we propose a new approach considering both 
the attribute distributions and the class distributions to 
evaluate the split gain. Experiments demonstrate the 
advantage of this proposed approach. 

The rest of this paper is organized as follows. The 
section “Related Work” covers the classic definitions of 
impurity, the split gain and existing variations. The section 
“Generalized Impurity” derives and explains our new idea. 
The section “Experiments and Results” describes the 
comparison between our approach and two others used in 
two classic algorithms, CART and C4.5 (Quinlan 1993). 
The section “Conclusion” summarizes this paper.  

It is assumed throughout this paper that the reader is 
familiar with CART and C4.5 decision tree classifiers.  

Related Work 
In CART, the gain of a split s at node t is defined as the 
decrease of the impurity 
 ( ) ( )stImtImstGain ,)(, −=  (1) 
Im(t) is the impurity of a node t, defined as a function of 
the class proportions: 
 ( ))(),...,(),()( 21 tptptpftIm C=  (2) 
where pj(t) is the proportion of the j-th class in the 
examples attached to node t for j=1, 2, ... ,C and C is the 
number of classes. Breiman et al. (1984) pointed out that 
the function f must satisfy the following conditions: 

  f is maximized when p1(t) = p2(t) = .... = pC(t) (most 
impure) 

  f is minimized to zero when only one of the pj(t)’s is 
one and the rest are zero (completely pure) 



  f is concave (which guarantees that the overall impurity 
after a split will never be larger than before) 

The most commonly used impurity functions in CART 
are the entropy and the Gini Index: 
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The overall impurity after a split s at node t is defined 
as: 
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where tL and tR are the new nodes formed according to the 
split and N(t) is the number of examples attached to node t.  

Other Split Evaluations 
Although prior research has stated that the selection of the 
impurity function f is not critical as long as it satisfies the 
conditions specified by Breiman (Breiman et al 1984 and 
Minger 1989), later experiments revealed that the 
definition of the split gain, as the only heuristic function 
used in the greedy search, affects the tree quality in a 
certain extent (e.g., see Buntine et al 1992). Some of the 
work reported in the literature and carried out to improve 
the split evaluations by redefining the split gain, is 
included below: 
 

  CART provides an option to evaluate the gain using a 
twoing rule (Breiman et al 1984), which does not 
directly evaluate gain as the decrease of the impurity, 
but as the decrease of the impurity in an altered 2-
class problem by grouping the class labels into two 
super classes. 

  The well known C4.5 (Quinlan 1993) maximizes the 
split gain ratio instead of the split gain: 
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 Rounds (1980) chooses a splitting threshold b to 
maximize the Kolmogorov-Smirnov distance 
assuming two class problem: 

)2|()1|()( =−== YbFYbFbD  
where F(x|Y=j) is the estimated cumulative 
distribution function at x given class j. The most 
advantage of this criterion is that the Kolmogorov-
Smirnov distance is independent of the distributions 
F(x|Y=j). This criterion can also be extended to multi-
class problems (Haskell and Noui-Mehidi, 1991). 
 De Merckt (1993) maximizes a contrast-entropy ratio: 
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where the impurity is the entropy and mk
L is the mean 

value of the attribute used for split among the 
examples falling to the left partition. 

 Taylor (1993) maximizes the MPI (Mean Posterior 
Improvement): 

( ) ( ) ( )∑
=

==−=
C

j
j

RL

jYRPjYLPtp
tN

tNtNstMPI
1

2 ||
)(

)()(),(  

where P(L|Y=j) means the probability at which an 
example goes to the left partition given that it has 
class label j. 
 Utgoff, Berkman, and Clouse (1997) applies the direct 
metrics, which can be the expected number of tests, 
the minimum description length (MDL), the expected 
classification cost, or the expected misclassification 
cost. 

It is worth mentioning that some other researchers 
proposed other approaches for splitting categorical 
attributes as well. For example, Simovici and Jaroszewicz 
(2004) applied the Goodman-Kruskal Association Index, 
and Zhou (1991) utilized the Symmetrical τ Criterion. 
Although numerical attributes in a finite sized data set can 
be treated as categorical attributes, the number of their 
outcomes (distinct values) are usually very large, resulting 
in impractical time complexity. 

Unfortunately none of the above variations improves the 
performance of the decision tree, in the sense of accuracy 
or conciseness. Most of the improvements are achieved 
with small data sets, which weaken their statistical 
significance. Even worse, these variations do not 
incorporate the attribute distributions properly enough as to 
solve some simple problems optimally, as demonstrated in 
the next section. 

Generalized Impurity 
Before introducing our approach, let us consider the Cross 
problem shown below: 

Figure 1: The Cross problem 
 

In the above figure, x and y are the attributes and the 
two colors represent two classes. The examples are 
uniformly distributed in the rectangle. Apparently, the 
optimal splits are “is x<0” and “y<0”. However, no matter 
where the first split is placed (as long as it is univariate), 
the two partitions still have 50% white area and 50% gray 
area, which is the same distribution of class labels as 
before the split. This means the split gain is always zero as 
long as the gain depends on the class proportions (pj(t)’s) 
only. Moreover, the projections of the points in each class 
on either axis completely overlap with each other, resulting 
in the same probability density function on x and y given 
any class. Therefore, except De Merckt’s and Taylor’s 
approaches, none of the previously mentioned split 
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approaches can obtain the optimal solution for this 
problem. Note that De Merckt’s and Taylor’s approaches 
happen to yield the optimal solution because they favor 
central cuts when the impurity cannot be reduced, but they 
still fail upon a non-symmetric version of the Cross 
problem. 

The most straightforward methods to address this 
problem are: 

  Use non-greedy search (Cantu-Paz, 2003) 
  Take the attribute distributions into account for the 
definition of the impurity, despite that our ultimate 
goal is to grow a tree with pure leaves (pure in the 
sense of class labels rather than attributes). 

Focusing on the second approach in this paper, we 
expect that our technique will be able to distinguish the 
impurity among the following cases of data (see Figure 2): 

 

Figure 2: Typical cases of datasets that the 
proposed technique can efficiently split  

 
It is desired that the impurity decreases from the left 

most case to the right most case. The main difference 
between the first (leftmost) case and the second (rightmost) 
case is that each class in the first case has a wider 
distribution in the attributes. Most present impurity 
measures, such as entropy and Gini Index, rely on class 
proportions only and thus do not distinguish the first case 
from the second one. On the other hand, it is desired that if 
a node is pure, the impurity should be zero no matter how 
widely the attribute scatters. Therefore, it is reasonable to 
use attribute variance instead of simple frequency count to 
compute the entropy. To explain this idea more clearly, let 
us revisit the classic definition of the split gain with the 
introduction of a weighted impurity: 
  (7) )()()( tImtNtW =
It is now easy to see that the split gain can be rewritten as:  
  (8) ( ) )()()(, RL tWtWtWstGain −−=
Equation (8) differs from (1) only by a factor of N(t), 
which does not affect the selection of the best split. 

Let Nj(t) represent the class frequency, namely the 
number of examples of class j attached to node t.  
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Equations (9) and (10) are used to compute Im(t) in 
Equation (2). If we apply the entropy measure as Im(t), it is 
not difficult to rewrite Equation (3) as: 
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In the above equation, we express W(t) as a function 
(denoted as W_Entropy) of the class frequencies (Nj(t)’s). 
It is not difficult to express W(t) with respect to  Nj(t)’s 
using other impurity measures such as the Gini Index. 

In order to incorporate the attribute distributions, we 
now replace Equation (11) with the Generalized Entropy 
without changing equation (8): 
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where D is the number of attributes (assumed all numerical 
for now), (t) is the value of the d-th attribute in the i-th 
example of class j attached to node t, and Rd is the range of 
the d-th attribute within the entire training data set. 

jt
idx

In Equation (14), the numerator is the sum of the square 
distance of the attribute points to the center within the 
class. We do not use the variance directly because we 
desire that this quantity be proportional to Nj(t) given the 
same distribution. The denominator Rd is used for 
normalization so that our measure will have no bias due to 
the scaling of the attributes. We assume Rd>0 for all 
attributes; if Rd=0, it means the d-th attribute is a constant 
and it should have been discarded. 

In Equation (12), q is a predefined factor between 0 and 
1. When q=0, the Generalized Entropy reduces to the 
classic one. We do not recommend q=1 because it favors 
end cuts: if node t is NOT pure but each minor class has 
exactly one example, then W_Entropy(V1(t), V2(t), ... , 
VC(t)) is still zero. Our experiments have demonstrated that 
a good default value for q is q=0.4. 

Properties 
The Generalized Impurity and the corresponding split gain 
have the following properties, as long as 0<q<1: 
Property A: The Generalized Impurity is non-negative 
and it is zero if and only if at most one class is present. 
Property B: The split gain is always non-negative 
regardless of the split. 

Proof of property A: The function W_Entropy is non-
negative. If W(t) is zero, W_Entropy (Nj(t)) must be zero, 
which means at most one of the Nj(t)’s is non-zero; if at 
most one of the Nj(t)’s is non-zero, only the corresponding 
Vj(t) may be non-zero, which means W_Entropy is zero. 
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Therefore, Vj(t)≥Vj(tL)+ Vj(tR). Using the concavity of the 
entropy function and the monotonicity of W_Entropy, we 
can show that W(t)≥W(tL)+ W(tR). 

Time Complexity 
One of the most important advantages of CART is its low 
time complexity. In the typical case, the time complexity 
of the growing phase of CART is O(DN(logN)2) where D 
is the number of attributes and N is the number of training 
patterns; in the worst case, the complexity is O(DN2logN), 
which happens only when each split is an end cut (the 
derivation is omitted in this paper). The typical time 
complexity requires that when consecutive values of the 
splitting threshold b are evaluated, the class frequencies 
(Nj(t)’s) should not be counted by going through all the 
examples attached to the current node, but by the previous 
class frequencies plus/minus the number of examples 
switching from the left child to the right one (or inversely). 

In our approach, not only Nj(t)’s but also Vj(t)’s need 
updating when b is shifted. Nevertheless, this can still be 
performed in negligible time, because Equation (16) 
implies that we can update the sum of each attribute and 
the sum of the square of each attribute as easily as updating 
Nj(t) to include/exclude a point into/from the left child. Of 
course, this must be performed for each attribute. For this 
reason, our approach has a time complexity higher than 
that of CART by a factor of D, which is usually small. 

Application to Categorical attributes 
For categorical attributes, we can replace Equation (14) 
with the weighted entropy function: 
  (17) ),...)(),((_)( 21 tNtNEntropyWtV j
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where  is the number of examples attached to node t 
with class j and the k-th outcome in the d-th attribute. 
Similarly, we can prove that properties a) and b) still hold 
true if categorical attributes are present. Equation (11) also 
allows us to update Vjd(t) efficiently in a constant time 
complexity regardless of the number of examples and the 

number of outcomes of  the d-th attribute. Therefore, our 
previous analysis of the time complexity is still valid. 
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Experiments and Results 
We implemented and compared the following three 
evaluations of splitting rules: 

  Decrease of Entropy – Equations (8) and (11). It is 
used in CART. 

  Gain Ratio – Equations (6), (8) and (11). It is used in 
C4.5. For a fair comparison, we did not use C4.5 
directly but modified CART with this approach. 

  Decrease of Generalized Entropy – Equations (8) and 
(12). For simplicity, the categorical attributes are not 
taken into account in (12), although they can be used 
in a splitting rule. The parameter q was set equal to 
0.4. The rest of the algorithm is the same as CART. 

We tested these approaches with the Cross problem and 
some UCI repository problems (Newman et al., 1998). 
Each data set was processed as following: 

1) Randomly shuffle the data in the database 
2) Use the first 40% of the data for growing a tree, the 

next 30% of the data for pruning the tree with the 1-
SE rule (Breiman, et al., 1984), and the remaining 
30% of the data for testing the tree. 

To reduce the randomness factor related to Step 1, we 
repeated the experiments for 10 times. In each time, we 
shuffled the data again for a new growing/pruning/testing 
set, on which we ran all the tested algorithms for a fair 
comparison. The results shown in Tables 2 and 3 reflect 
the average performance over the 10 runs. 

Data Sets 
To ensure statistical significance, we selected only the data 
sets with 2000 instances or more. For the Cross problem, 
we generate random points uniformly distributed in the 
rectangle region {(x,y)|-1<x<1,-1<y<1}. The class label is 
set to the sign of x·y for each point. The other data sets are 
downloaded from the UCI repository. Table 1 lists the 
statistical information pertinent to the databases. 
 

Name of 
Database #Cases #Numerical

attributes 
 #Nominal 
attributes #Classes Major 

Class %
Cross 4000 2 0 2 50.22 
Abalone 4177 7 1 3 16.4951

Segment 2310 19 0 7 14.2857

Letter 20000 16 0 26 4.065 
Waveform 5000 21 0 3 33.92 
Pen digits 10992 12 0 10 10.4076

Satellite 6435 36 0 6 23.8228
Opt digits 5620 64 0 10 10.1779

Shuttle 14500 9 0 7 79.1586
 

Table 1: Statistical information about the databases 



Experimental Results 
Tables 2 and 3 give the classification results. The results 
reported there are the mean values out of the 10 runs 
obtained from the test set (30% of the whole database) 
which is unseen by the tree. In tables 2 and 3, the second 
column shows the results of CART, the third column 
shows those of CART using Gain Ratio, and the last 
column shows the results of CART using our split gain 
measure. 
 

Name of 
Database 

Decrease 
of Entropy  

Gain 
Ratio  

Decrease of 
Generalized 

Entropy 
Cross 99.50% 86.31% 99.96% 
Abalone 62.31% 57.58% 62.00% 
Segment 94.59% 93.72% 94.49% 
Letter 83.86% 82.47% 83.73% 
Waveform 76.15% 72.72% 76.30% 
Pen digits 94.51% 94.33% 94.54% 
Satellite 84.90% 83.84% 84.69% 
Opt digits 87.46% 85.64% 86.58% 
Shuttle 99.95% 99.95% 99.95% 

 
Table 2: Accuracy of the three approaches 

 
 

Name of 
Database 

Decrease 
of Entropy  

Gain 
Ratio 

Decrease of 
Generalized 

Entropy 
Cross 10.4 224 4 
Abalone 8.5 196.7 6.1 
Segment 20.6 25 20 
Letter 956.3 1139.6 928.2 
Waveform 33.2 143.6 29.2 
Pen digits 112.7 140.2 105.9 
Satellite 35.2 84.8 32.2 
Opt digits 76.8 101.5 76.5 
Shuttle 19.5 28.1 19.3 

 
Table 3: Number of tree leaves for the three approaches 

 
 These tables show that the gain ratio is much worse than 
the gain itself: the accuracy is always worse and the tree is 
significantly larger. The draw back of C4.5 in the resulting 
tree sizes has already been pointed out in Lim, Loh, and 
Shih 2000. Fortunately, C4.5 improves the accuracy by not 
requiring a pruning set so it can have a larger training set to 
grow the tree. 
 Our approach appears better than the criteria used in 
CART and C4.5, mostly in reducing tree size while 

achieving similar accuracy. For the Cross problem, our 
approach always achieved the optimal tree with 4 leaves, 
while CART’s criterion yielded more than twice our tree 
size and Gain Ratio even resulted in a tree 56 times our 
tree size. For the benchmark databases, however, the 
difference in size and accuracy between our approach and 
the classic ones is much less evident, because the practical 
problems usually contain redundancy among the attributes, 
and thus the data is not usually distributed as the data 
corresponding to the Cross problem. Nevertheless, our 
approach also reduced the tree size, mostly by 3%-10%, 
while maintaining the accuracy (the worst deterioration is 
less than 1%). 

Conclusions 
In this paper we demonstrated the difficulty of the existing 
evaluation methods in correctly splitting the data in the 
growing phase of the tree. Thus, we motivated the reason 
for a splitting rule that utilizes not only class labels but 
attribute distributions in the splitting evaluation rules. We 
introduced such a splitting rule, named Generalized 
Entropy, which incorporates both the class distribution and 
the attribute distributions in splitting the data. We proved 
that our measure has similar properties and comparable 
time complexity to the classical slitting decision tree 
measures. Our experiments have also shown that our 
splitting measure reduces the tree size while maintaining or 
improving the accuracy. Unfortunately, the improvement is 
not significant for benchmark databases. Our decision tree 
splitting method can be readily applied to other classic 
measurements such as the Gini Index, and can also be 
generalized to categorical attributes. 
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