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Adaptive Resonance Theory (ART) neural network architectures, such as Fuzzy
ARTMAP (FAM), have solved successfully a variety of classification problems.
However, FAM suffers from an inherent problem that of creating larger archi-
tectures than it is necessary to solve the problem at hand (referred to as the
ART category proliferation problem). This problem is especially amplified for
classification problems which have noisy data, and/or data, belonging to dif-
ferent labels, that significantly overlap. In this paper we introduce m-GFAM
(modified genetically engineered Fuzzy ARTMAP), which is produced by evolv-
ing a population of FAM architectures. Our results demonstrate that m-GFAM
successfully addresses the category proliferation problem by creating a small
size trained ART structure that exhibits good generalization. Our experiments
show that m-GFAM outperforms other ART architectures that have addressed
the category proliferation problem before.
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1. Introduction

The Fuzzy ARTMAP (FAM) neural network architecture was introduced by
Carpenter and Grossberg in their seminal paper.1 Since its introduction,
other ART architectures have been introduced into the literature. All of
these ART architectures possess a number of desirable properties, such as
they can solve arbitrarily complex classification problems, they converge
quickly to a solution, they have the ability to recognize novelty in the
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input patterns presented to them, they can operate in an on-line fashion
(new input patterns can be learned by the ART system without retraining
with the old input/output patterns), and they produce answers that can
be explained with relative ease.

Learning in ART is accomplished by the creation of the hidden nodes
(or units) referred to as categories. These categories represent compressed
representations of the input patterns presented to the ART network during
its training phase. Categories in FAM are hyperboxes with lower endpoint
uj , and upper endpoint vj , which represent the minimum and maximum
values of patterns that were encoded by this category. It is assumed that
the reader is familiar with the FAM architecture, and most of the details
are omitted due to lack of space.

A number of the proposed ART architectures suffer from the category
proliferation problem, that is, the problem of creating an ART architec-
ture that is larger than necessary to solve the problem at hand, espe-
cially when the data is noisy and/or of overlapping nature. In an earlier
work,2 genetic algorithms have been used to evolve a population of trained
Fuzzy ARTMAP neural networks, creating an ART structure, referred to as
GFAM. It was found that GFAM outperforms (in terms of generalization,
size, and speed of producing the trained ART) a number of other ART archi-
tectures that have been previously proposed in the literature,3,4 addressing
the same category proliferation problem. This effort expands and improves
the work in2 in many ways, such as: (a) a simpler, and easily understood
fitness function is used to evolve a population of Fuzzy ARTMAPs, (b) the
minimum possible number of GA operators is used, (c) the values of the GA
parameters are, whenever possible, automatically and appropriately defined
during the evolution, and (d) an automated stopping criterion is utilized to
terminate the evolutionary process.

The organization of the paper is as follows: In section 2 we discuss how
to evolve trained Fuzzy ARTMAPs to produce m-GFAM. In Section 3, we
present experimental results, where we show that m-GFAM is producing as
accurate and as small of a network as GFAM, but at reduced computational
cost (a factor of 2 to 5 less computations are needed by m-GFAM). Finally,
in Section 4 we summarize the work and we present conclusive remarks.

2. Evolution of Fuzzy ARTMAP

The evolution of FAM networks, is accomplished by applying, repeatedly,
genetic operators on an initial population of trained FAM networks. The
step-by-step description of this process is defined succinctly below.
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Step 1: Generate Initial Population: The algorithm starts by training
Popsize FAM networks, each one of them trained with a different value of
the baseline vigilance parameter, and order of training pattern presentation
(it has been a known fact that performance in ART is affected by the specific
value of its baseline vigilance parameter, as well as the order of the training
pattern presentation to the ART architecture). In our experiments with
m-GFAM we chose the baseline vigilance range of 0.1 − 0.95. The choice
parameter was chosen to be equal to 0.1. Once the Popsize networks are
trained, they need to be converted to chromosomes so that they can be
manipulated by the genetic operators. m-GFAM uses a real number, two-
level representation to encode the networks, as explained in 1.
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Fig. 1. GFAM chromosome structure. At level 2, the category’s weight wa
j contains the

information about the lower end-point, ua
j , and the upper end-point, va

j , of the hyperbox
corresponding to the category, as well as the label lj of the category.

Step 2 (Apply Genetic Operators): In this step a GA is applied to the
population of the ART trained networks.
Sub-step 2a (Fitness Evaluation): Calculate the fitness of each chro-
mosome (ART trained network). In m-GFAM, we adopt a simplified fitness
function compared to the one defined in GFAM. The fitness function for the
p-th ART network is denoted by Fit(p), and it depends on the percentage
of correct classification, exhibited by the p-th network, on the validation
set, PCC(p), and the number of categories of the p-th network, Na(p). The
fitness function is defined as follows (Catmin is chosen to be equal to the
number of classes of the classification problem at hand):

Fit(p) = PCC(p)− α(Na(p)− Catmin) (1)

Sub-step 2b (Selection): Initialize an empty generation referred to as
the temporary generation. The algorithm searches for the best NCbest chro-
mosomes (i.e., the chromosomes having the NCbest highest fitness values)
from the current generation and copies them to the temporary generation
without change.
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Sub-step 2c (Prune): To be able to create smaller networks using the
evolutionary search, we introduced a genetic operator, Prune, that deletes
categories from a network using some selection criteria that tries to improve
the efficiency of the genetic search by utilizing the knowledge we have about
the performance of each category. For a network p, we delete a category j

that is mapped to label k with probability 1 − CF k
j (p), where CF k

j (p) is
referred to as the confidence factory of this category. This confidence factor
is defined as follows:

CF k
j (p) = wAAk

j (p) + wBSk
j (p) (2)

where, wA and wB were chosen to be equal to 0.5, Note that Ak
j (p) is a

measure of accuracy of classification achieved by category j, in the p-th
network, that is mapped to label k. Furthermore, Sk

j (p) is a measure of
probability of selection of category j in the p-th network, that is mapped
to label k. In particular, if the number of validation samples that selected
this category, and were correctly classified by it, is denoted by P k

j (p), and
the number of validation samples that selected this category is denoted by
Ck

j (p), then,

Ak
j (p) =

P k
j (p)/Ck

j (p)
maxj(P k

j (p)/Ck
j (p))

(3)

The probability of selection Sk
j (p) of category j, of the p-th network,

that is mapped to label k, is the number of validation patterns that selected
this category, Ck

j (p), divided by the maximum number of patterns Ck
jmax

(p)
that selected any category j that predicts the same classification label, k,
for the p-th network:

Sk
j (p) = Ck

j (p)/Ck
jmax

(p) (4)

Sub-Step 2d (Category Mutation): Every chromosome created by step
2c gets mutated as follows: For each category, either its u or v endpoint is
selected randomly (with 50% probability) and then every component of this
selected vector gets mutated by adding to it a small number, drawn from
a Gaussian distribution. We use a Gaussian distribution that has mean of
zero and a standard deviation that is equal to the severity factor that is
calculated for every category based on its performance. The severity factor
of a category depends on the network’s temperature defined by the following
expression:
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T (p) =
rankfitness(p)

Popsize
(5)

We use the following expression to control the severity of mutation:

SF k
j (p) = β(1− CF k

j (p))T (p) (6)

where β is a user defined parameter and was chosen to be equal to 1.0.
The mutation technique described above eliminated the need for the user
specified parameter P (Mutate) defined in the original GFAM, which was
problem dependent. In addition, the technique defined above has the added
advantage of improving the efficiency of the genetic search.
Sub-step 2e (Cross-Over Operation): The remaining Popsize−NCbest

chromosomes in the temporary generation are created by crossing over pairs
of parents from step 2d. The parents are chosen using fitness-proportionate
selection as follows: Assign the probability of selection for each chromosome
to be proportional to its relative fitness. We randomly select two parents
based on these probabilities. For each parent, p, p′, a random cross-over
point is chosen, designated as n, n′, respectively. Then, all the categories
with index greater than n′ in the chromosome p′ and all the categories with
index less than or equal to index n in the chromosome with index p are
moved into an empty chromosome within the temporary generation. Notice
that crossover is done at level 1 of the chromosome.

Our experimentation showed that fitness-proportionate selection yielded
better results on most databases than those obtained using other selection
methods such as random selection and deterministic tournament selection
(which was used in the original implementation of GFAM).
Step 3 (Check Stopping Criteria): If a stopping criterion is not met, re-
place the current generation with the members of the temporary generation
and go to step 2a. Otherwise, terminate and return the best network. One
obvious stopping criterion is to set a threshold for the maximum number
of generations, Genmax, that the evolution is allowed to continue. Another
popular stopping criterion is to stop when no more improvement in fitness
is observed. To ensure the lack of improvement is not due to the stochas-
ticity of the search, the evolution is terminated only when no significant
network performance improvements are observed for a number of consec-
utive evolutions. This number of consecutive evolutions can be chosen to
be a percentage of the maximum number of generations Genmax. In our
experiments we chose Genmax = 500, and furthermore we stopped the evo-
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lution if 50 generations (10% of Genmax) elapsed without an appreciable
network fitness improvement. Appreciable network fitness improvement is
an improvement larger than 0.01.

3. Experiments and Results

We have experimented with 13 databases, 6 simulated databases and 7 real
databases. Each dataset in the database was randomly divided into three
subsets: training, validation and testing. The simulated databases include
2-D, Gaussian databases with 2-classes, 4-classes, and 6-classes, with 40%
overlap between classes. The database denoted by 1Ci/Sq, 70:30 (1 circle
in a square), 50:30:20 (2 circles in a square) are all motivated by the bench-
mark circle in the square problem, and the numbers in these designations
refer to the probabilities of finding a data-point within a circle(s) or outside
the circle(s) and inside the square. The remaining databases were obtained
from the well known UCI repository,5and details about these databases can
be found there.

For each of the 13 databases, we ran 10 replications of GFAM and m-
GFAM, for 10 different seeds of the evolutionary process. The best results
obtained from each algorithm are reported in Table 1. In the table, we have
included the PCC (percentage of correct classification) and the number of
categories of the best fitting GFAM and m-GFAM network. We have also
included in the table the time it took to run the 10 replications of GFAM
and m-GFAM.

Database m-GFAM GFAM
Name PCC Cats Time PCC Cats Time

G2c-40 61.4 2 80.8 60.9 2 143.4
G4c-40 59.7 4 135.9 59.5 4 229.1
G6c-40 59.8 6 242.8 59.9 6 337.7
1Ci/Sq 96.9 8 210.2 93.6 7 645.6
70:30 97.1 5 183.3 96.3 6 429.1

50:30:20 96.7 5 225.9 95.2 6 577.3
Iris 94.9 2 32.5 94.6 2 89.1

Abalone 61.7 3 69.6 62 3 126.7
PAGE 96.1 5 109.6 96 5 260.2
Opt 88.2 16 1185.9 88.6 11 3420.5
Sat 84.3 8 679.8 84 8 1434.1
Seg 93.0 15 90.0 94.7 13 428.8

Glass 75.0 9 3.8 71.9 8 20.3
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4. Summary and Conclusion

In this paper, we have introduced an improved (compared to GFAM) genet-
ically engineered Fuzzy ARTMAP neural network referred to as m-GFAM.
Experimental results have shown that m-GFAM is as accurate and creates
as small of an architecture as GFAM, while it does so at reduced compu-
tational cost (m-GFAM is 2 to 5 times faster than GFAM). Since, in an
earlier paper2 GFAM was shown to outperform other ART architectures3,4

it turns out that m-GFAM outperforms these ART networks, as well. Fur-
thermore, as we have explained in Section 2, m-GFAM finds good values
for the needed genetic operators in an automated fashion, instead of an
exhaustive experimentation (used in GFAM), and as a result it is a more
elegant approach to evolve trained Fuzzy ARTMAPs. Finally, the proposed
approach of genetically evolving Fuzzy ARTMAPs can be applied, with ap-
propriate modifications, to other exemplar-based classifiers (i.e., classifiers
that define, through some process, categories to compress the input data).
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