
Int J Adv Manuf Technol
DOI 10.1007/s00170-005-0333-1

ORIGINAL ARTICLE

Ghaith Rabadi . Georgios C. Anagnostopoulos .
Mansooreh Mollaghasemi

A heuristic algorithm for the just-in-time single machine

scheduling problem with setups: a comparison

with simulated annealing

Received: 31 May 2005 / Accepted: 31 August 2005 / Published online: 18 March 2006
Springer-Verlag London Limited 2006

Abstract This paper addresses the single machine early/
tardy problem with unrestricted common due date and
sequence-dependent setup times. Two algorithms are intro-
duced to reach near-optimum solutions: the SAPT, a
heuristic tailored for the problem, and a simulated
annealing (SA) algorithm. It will be shown that SA
provides solutions with slightly better quality; however,
SAPT requires much less computational time. SAPT-SA is
a hybrid heuristic that combines both approaches to obtain
high quality solutions with low computational cost.
Solutions provided by the three algorithms were compared
to optimal solutions for problems with up to 25 jobs and to
each other for larger problems.

Keywords Simulated annealing . Scheduling .
Single machine . Setup time . Early-tardy problem .
Common due date

The problem addressed in this paper is to schedule a set of n
jobs, N={1,…, n}, with a large common due date d for all
jobs on a single machine such that the total earliness and
tardiness from d is minimized. All jobs are assumed to be
available at time zero, and the machine can process only one
job at a time without preemption. The time it takes for job j
to be processed is Pj. However, it is assumed that before job
j can be processed, the machine requires a setup time Sij
whose value depends whether job i precedes j or vice versa.
This is known as sequence-dependent setup time and is
represented by a matrix [S], in which, in general Sij≠Sji. This
problem is referred to as the early/tardy (E/T) problem,
where the earliness of job j can be defined as Ej=max
(0, d–Cj) and its tardiness as Tj=max(0, Cj–d). Here, Cj is the
completion time of job j. The objective is then to minimize

H ¼
Xn
j¼1

Ej þ Tj
� � ¼ Xn

j¼1

d � Cj

�� �� (1)

Note that Cj depends on both Pj and Sij, and this makes it
similar to the traveling salesman problem, which is NP-hard
and obtaining an optimal solution requires a number of
computations that depends exponentially on n. The objec-
tive of this problem is consistent with the principles of the
just-in-time manufacturing philosophy, where jobs are
desired to be completed as close as possible to their due
dates to avoid holding cost (due to earliness) and penalties
for missing the due date (due to tardiness). In this paper, we
first introduce a new fast heuristic and a simulated annealing
(SA) algorithm to obtain near-optimum solutions for the
problem. Secondly, these two approaches are combined into
a composite hybrid heuristic and then all three algorithms
are compared experimentally. This paper is organized as
follows. In Section 1 the literature related to the problem is
reviewed, while in Section 2 the properties of the problem
are presented. The SAPT heuristic and its experiments are
introduced in Sections 3 and 4, respectively, while the SA
and its experiments are introduced in Sections 5 and 6,
respectively. The hybrid algorithm is presented in Section 7.

G. Rabadi (*)
Engineering Management and Systems Engineering
Department, Old Dominion University,
241 Kaufman Hall,
Norfolk, VA 23529, USA
e-mail: grabadi@odu.edu
Tel.: +1-757-6834918
Fax: +1-757-6835640

G. C. Anagnostopoulos
Department of Electrical & Computer Engineering,
Florida Institute of Technology,
Melbourne, FL 32901-6975, USA
e-mail: georgio@fit.edu

M. Mollaghasemi
Industrial Engineering and Management Systems Department,
University of Central Florida,
Orlando, FL 32816, USA
e-mail: mollagha@mail.ucf.edu

32:(2007) 326–335

SAPTand SAwhen applied to larger problems are compared
in Section 8. Finally, conclusions are summarized in
Section 9.

1 Literature review

The single-machine E/T problem was first introduced by
Kanet [1], and Baker and Scudder [2] published a
comprehensive state-of-the-art review for different variants
of the E/T problem. Kanet examined the E/T problem with
equal penalties and unrestricted common due date. A
problem is considered unrestricted when the due date is
large enough not to constrain the scheduling decision.
Based on certain optimality properties that will be
discussed later, Kanet introduced a polynomial-time algo-
rithm to solve the problem optimally. Since then many
researchers worked on various extensions of the problem
and investigated optimality conditions (e.g., Hall [3];
Bagchi et al. [4]; Szwarc [5]; Hall and Posner [6]; Alidaee
and Dragan [7]; Azizoglu andWebster [8]; Mondal and Sen
[9]). Other researchers introduced approximate algorithms
for different versions of the problem to solve for a larger
number of jobs (e.g., Sundararaghavan and Ahmed [10];
Liman and Lee [11]; Lee and Choi [12]; Sirdharan and
Zhou [13]; James [14] and Webster et al. [15]). Allahverdi
et al. [16] reviewed the scheduling literature that involved
setup times. In their review, few researchers have addressed
the E/T problem with sequence-dependent setup times.
Azizgolu and Webster [8] considered the problem with job
family setup times and introduced a branch-and-bound and
a beam search algorithm for the problem. Webster et al.
[15] developed a genetic algorithm for the same problem
with setup times. In both papers, the authors considered
setup times that were not sequence dependent. Coleman
[17] introduced a 0/1 mixed integer program (MIP) to find
optimal solutions for the problem with sequence-dependent
setup times. Due to the complexity of the problem,
Coleman’s MIP solves problems with a small number of
jobs. Rabadi [18] developed a customized branch-and-
bound (B&B) algorithm to solve the E/T problem with
sequence-dependent setup times for problems up to 25
jobs. When the problem becomes larger than that,
obtaining optimal solutions becomes very time consuming.
Hence, researchers tend to use heuristic and approximate
algorithms to find near-optimum solutions.

Simulated annealing (SA) is a stochastic meta-heuristic
for global combinatorial optimization borrowed from
statistical mechanics (Metropolis et al. [19]; Kirkpatrick
et al. [20]). SA has found wide acceptance as an efficient
computational method designed to solve hard combinatori-
al optimization problems. In the recent past, significant
research has been directed towards the application of SA
onto scheduling problems. Only a small fraction of this
research utilizes SA in the framework of single-machine
problems with sequence-dependent setup times. Shapiro
and Alfa [21] used SA to minimize the sum of linear
sequence-dependent setup costs and linear delay penalties;
they concluded that SA matches the performance of tabu

search (TS) (Glover [22, 23]). Tan and Narasimhan [24]
compared SA and random search (RS) to minimize the total
tardiness. They reported that SA outperformed RS and was
able to find good solutions quickly, which, in their opinion,
makes SA a valuable approach even for on-line production
scheduling. On the other hand, Sun et al. [25] presented a
Lagrangian relaxation-based approach for minimizing the
weighted sum of squared tardiness. After comparing their
method with SA, TS and other heuristics, they concluded
that it is capable of finding solutions comparable in quality
to the ones reached via SA, however, in a more
computationally efficient way than SA. Finally, Tan et al.
[26] considered the total tardiness problem and showed that
SA and random-start pair-wise interchange exhibit signif-
icant merit for large combinatorial problems that are
computationally prohibitive to B&B approaches.

Apart from the applications of pure SA on single-
machine problems, there are also attempts of using hybrid
schemes that involve SA as one of their components. For
example, Mittenthal et al. [27] suggested a greedy descent
search followed by a SA stage to optimize single-machine
problems featuring V-shaped optimal schedules. Note that
E/T problems do not feature this type of optimal schedules.
The role of the greedy descent search is to reduce the
computational complexity of the pure SA approach by
providing a preliminary solution, while the SA’s role is to
perform a more localized stochastic search in the locality of
that solution. They eventually showed that the hybrid
scheme outperformed a collection of heuristics previously
presented in the literature. Adenso-Diaz [28] considered
the total tardiness problem and used a dispatching rule, SA
and TS in succession, thus saving computations prior to
performing TS while maintaining high quality of solutions.
Finally, Almeida and Centeno [29] addressed the single-
machine E/T problem without setup times and proposed the
use of a four-phase hybrid heuristic involving TS, SA,
greedy descent search and RS. After comparing their
hybrid algorithm to pure SA and pure TS, they concluded
that the four-phase heuristic provides good solutions with
low computational cost. To the best of our knowledge, the
application of pure SA and/or of a hybrid optimization
scheme involving SA has not been attempted so far on the
single-machine E/T problem with sequence-dependent
setup times and a large common due date.

2 The single machine early/tardy problem

Kanet [1] introduced a set of optimality properties for the
problem addressed in this paper when there are no setup
times. Using the following properties, Kanet introduced an
optimal polynomial-time algorithm:

i) In an optimal schedule, there will be no idle time
inserted.

ii) There is an optimal schedule in which one job
completes exactly on the due date d.

327

iii) In an optimal schedule, the bth job in the sequence
completes on d, where b ¼ n=2 if n is even, and
nþ 1ð Þ�2 if n is odd.

iv) An optimal schedule is V-shaped. This means that the
non-tardy jobs are sequenced in LPT order (longest
processing time first) and the tardy jobs in SPT order
(shortest processing time first).

When sequence-dependent setup times are included, the
first three properties still hold, while property (iv) does not.
The optimality of properties (i), (ii), and (iii) can be proven
as in Kanet [1]. Noncompliance to property (iv) can easily
be shown via simple counter-examples.

Instead of considering the setup matrix [S] and the
processing times vector P separately, we introduce the
adjusted processing time matrix [AP] as follows:

88j ¼ 1; . . . ; n :
APij ¼ SijþPj; 88i ¼ 1; . . . ; n

(2)

Utilizing [AP], (see Fig. 1), the total earliness TE and
total tardiness TT for a particular sequence become

TE ¼
Xb
j¼1

j� 1ð ÞAP j�1½ � j½ � ¼ 0AP 0½ � 1½ � þ 1AP 1½ � 2½ �

þ 2AP 2½ � 3½ � þ � � � þ b� 1ð ÞAP b�1½ � b½ �

(3a)

TT ¼
Xn�1

j¼b

ðn� jÞAP½j�½jþ1�

¼1AP½n�1�½n� þ 2AP½n�2�½n�1� þ � � �
þ ðn� b� 1ÞAP½n�b�1�½n�b� þ ðn� bÞAP½b�½bþ1�

(3b)

Note that the objective function value in Eq. 1 is just the
sum of total earliness and total tardiness, i.e., H ¼ TE þ
TT : Since both TE and TT depend only on the sums Sij þ
Pj ¼ APij rather than explicitly on the Sij and Pj quantities,
from here on we will only utilize [AP]. A similar approach
was used by Gendreau et al. [30] and Rabadi et al. [18].

Another observation is that the common due date d does
not appear in Eqs. 3a,b; that is, the objective function value
does not depend on d as long as it is large enough not to
restrict the scheduling decision. An exact lower bound (Δ)

on how large d must be for the problem to be unrestricted
can not be calculated beforehand due to the presence of
sequence-dependency. Therefore an optimal solution has to
be found first, the schedule has to be shifted so that it starts
from time t=0, and then Δ is calculated by Eq. 4:

Δ ¼
Xb
j¼1

AP j�1½ � j½ � (4)

If d≥Δ then the obtained solution is optimal, otherwise if
d<Δ the problem becomes restricted and optimality is not
guaranteed.

3 The SAPT heuristic

In an optimal job sequence, jobs with shorter adjusted
processing times APij tend to be scheduled closer to the
median position, and those with longer APij values away
from the median position. This is consistent with Eq. 3a,b
where APij values for jobs closer to the median of the
schedule are multiplied by higher coefficients. The shortest
adjusted processing time first (SAPT) heuristic is based on
this concept. SAPT consists of two phases: (1)
schedule construction, and (2) schedule Improvement.
Phase 1 starts by selecting jobs i* and j* with the smallest
entry in [AP] and placing them in positions b−1 and b,
respectively. Another two jobs with the next smallest [AP]
entry before i or after j are then selected and scheduled
either after job j or before job i depending on which
location gives a lower objective function value (see Eq. 3a,
b). This selection process is repeated until all jobs are
scheduled. It is important to maintain feasibility throughout
the scheduling process by eliminating the selected [AP]
entries and their corresponding rows and columns to avoid
scheduling conflicts. SAPT is a multi-start heuristic where
every time it is executed, it is repeated n times for the nth
smallest entries in [AP]. The rationale behind restarting
with n smallest jobs in the median position is that the
optimal schedule will most likely include in its median
position a job corresponding to a small entry of [AP], but
not necessarily the smallest one.

In Phase 2, the general pairwise interchange (GPI), a
neighborhood search method is used to improve the
schedule. In GPI, any two jobs (not just adjacent ones)
may be swapped starting by swapping the job in the first
position with the succeeding jobs one at a time until the nth

Fig. 1 A generic job sequence
with adjusted processing
time notation

328

position. Then, it continues by swapping the job in the
second position with the succeeding jobs until the nth
position, and so on until the last two jobs in the sequence
are swapped for improvement. The neighborhood is
generated by every possible pairwise interchange. Hence,
for n jobs, the neighborhood would consist of n(n−1)/2
sequences. If the swapping of any two jobs improves the
schedule, they are left in their current position and GPI
continues with the next job. Other neighborhood search
methods exist such as adjacent pairwise interchange and
job insertion (see Morton and Pentico [31]). After
empirically testing several neighborhood search methods,
the GPI gave the best improvements and therefore it was
used with the SAPT heuristic. Pseudo code for SAPT can
be described as follows:

A: tardy jobs array={j∈N|Cj>d}; and |A| is the number of
elements in array A

B: non-tardy jobs array=N−A; and |B| is the number of
elements in array |B|

If n is even, then b :¼ n=2 ; Else b :¼ nþ 1ð Þ�2
If APi j=−1, then i and j have been scheduled
Zbest :=∞

Procedure SAPT()
For m=1 to nth smallest entries in [AP] do
Set A :=∅, B :=∅
Find i*, j*∈{1, 2,…, n} with minimum APij subject to

the constraints i≠j, APi j≠−1
Set APi* j* :=−1
Set B[b] :=j*, B[b−1] :=i*
For p=1 to n do
Set APi*p :=−1, APp,j* :=−1
end For
Set APj*i* :=−1
Swap values of i* and j*
Set k :=2, u :=b
While |B|<b or |A|<n–b do
Find i”∈{1, 2,…, n} such that APij* subject to the

constraints i≠j, APi j≠−1
Find j”∈{1, 2,…, n} such that APi*j subject to the

constraints i≠j, APi j≠−1
If APij� � b� kð Þ � APi�j � u then
Set Bb−k :=i”
For p=1 to n do
Set APi”p :=−1, APp,j* :=−1
end For
Set j* :=i”
Set k :¼ k þ 1
else
Set An�uþ1 :¼ j
For p=1 to n do
Set APi j” :=−1, APi* j :=−1
end For
Set i* :=j”
Set u :¼ uþ 1
end If
end While

Calculate the objective function value H of schedule
described by A and B.

If H<Hbest then
Set Abest :=A, Bbest :=B, Hbest=H
End If
End For
Perform general pair-wise interchange for the sequence

that is described in Abest and Bbest.
End Procedure SAPT()

It can be easily shown that SAPT’s time complexity is O
(n2), which explains its computational speed.

4 SAPT computational experience

A full factorial design of experiment was conducted to test
the performance of SAPT. The factors considered in the
experiments are the number of jobs n and the range R for
[AP]. For the number of jobs we considered four different
levels: 10, 15, 20 and 25. If unif(a,b) denotes the uniform
distribution over the interval a to b, in our experiments the
entries of [AP] were independently drawn from unif
(10,10+R). Furthermore, we considered three levels for R:
50, 100 and 150. Changing the range helps in observing the
behavior of the heuristic algorithm when the mean and
variance of [AP] change. The number of treatments
(experiment settings) were 4� 3 ¼ 12 . Each treatment
was replicated 15 times by generating 15 different problem
instances for each treatment, that is, 180 problems were
solved. All experiments were run on a 1.7 GHz Pentium IV
processor running Microsoft Windows 2000. To evaluate
the performance of SAPT, optimal solutions for the same
set of problems were obtained using a B&B developed by
Rabadi [18]. The relative errors of SAPTwith respect to the
optimal solutions were recorded and the results are
summarized in Table 1. Both data and results are available
at Scheduling Research [32].

Table 1 Experiment results for the SAPT heuristic

Number
of jobs n

Range
R

Min.
relative
error (%)

Avg.
relative
error (%)

Max.
relative
error (%)

Avg. of avg.
relative
error (%)

10 Low 0 2.55 11.66
Med 0 2.80 12.38
High 0 2.80 17.52 2.72

15 Low 0 3.59 8.06
Med 0 5.33 12.91
High 0 8.22 18.67 5.71

20 Low 0 3.13 5.30
Med 0 3.93 12.74
High 0 5.95 13.70 4.34

25 Low 1.01 3.21 6.56
Med 2.55 5.96 9.37
High 1.39 6.83 11.42 5.33

Total Avg. 4.53

329

As can be seen from Table 1, the overall average relative
error is 4.73% and the worst average relative error was
5.71%. The ANOVA for SAPT depicted in Table 2 shows
that both n and R have a significant effect on the
performance of SAPT (low p-values) while their interac-
tion is insignificant. As n is increased, the number of
possible schedules grows exponentially, and therefore, it is
expected for the relative error to become larger since the
heuristic will have to choose among a much larger number
of schedules. As R is increased the effect of sequence-
dependency becomes more significant. Consider for
example an extreme case of a very small range for [AP].
In this case, the significance of the sequence-dependency
diminishes because all entries will almost be the same, and
so, regardless of what job is sequenced after the other, the
optimal solution would not differ much. In fact, in such a
case, a heuristic would be of little importance since a good,
or perhaps optimal solution, can be obtained by applying
Kanet’s algorithm directly. As R becomes larger, the
problem instances become more difficult, and the im-
portance of a good heuristic becomes more vital.

5 Application of simulated annealing to the E/T problem

SA performs a random walk in the configuration space of
combinatorial problems. The transitions from one config-
uration to another are stochastic and depend on the
difference in objective function value between these two
configurations as well as on the current “temperature” of
the algorithm. The rule that specifies how this temperature
is being decreased over the runtime of SA is called cooling
schedule. Under some general provisions, SA converges to
at least a sub-optimal solution of the combinatorial
problem.

In our framework, the combinatorial search space S is
the set of all possible schedules for a pre-defined number of
jobs n. Moreover, each configuration (state) s is repre-
sented by an array containing the order in which jobs occur
in the corresponding schedule. We also define energy Hs to
be the objective function value associated with schedule s.
In our implementation of SA we considered two types of
moves (transitions) from one schedule to another:
(1) pairwise job exchange and (2) single job insertion.
According to the first type, the transition is performed by
randomly selecting any pair of distinct jobs within the
schedule and exchanging their position. The single job
insertion, on the other hand, entails selecting at random a
job within a particular schedule and randomly inserting it in
another location in the schedule while maintaining the
relative order of the remaining jobs in that schedule. It can

be easily shown that the number of neighbors in S for the
pairwise job exchange is n(n−1)/2, while for the single job
insertion the number of neighbors in S is n(n−1). In other
words, the number of neighbors in S per schedule is of
order O(n2) for both types of transition. A move from s to s'
is termed as uphill, when the resulting schedule s' has
higher energy than before (i.e., Hs<Hs'). In the opposite
case, it is called a downhill move. We define as trial the
attempt to move from one schedule to another via one of
the two transition types. When a trial leads to a downhill
move, the transition itself from s to s' is accepted (actually
performed) and the trial is called successful. If a trial leads
to an uphill move, it is going to be accepted with
probability pa according to the probability law given by
Eq. 5:

pa ¼ e�
ΔH
Tk (5)

whereΔH ¼ H 0
s � Hs > 0. Note that the lower the current

temperature Tk, the smaller the probability of accepting
uphill moves. Whenever a trial has been determined as
successful, the current state of SA s is updated to s', while
in the event of an unsuccessful trial, no state update takes
place.

The SA algorithm itself consists of two loops: the outer
or temperature step loop and the inner or trial loop. The
outer loop implements the cooling schedule by iterating
through kmax temperature steps. By starting at a tempera-
ture To>0 and following a geometrically-decaying cooling
schedule, the temperature Tk at step k is given by Eq. 6:

Tk ¼ aTk�1 (6)

where a∈(0,1) is the temperature decay rate. The inner
loop’s function is to perform trials, that is, to attempt
transitions different from the current schedule. In our
implementation, we consider the following three types of
transitions: pairwise job exchange (type 1), single job
insertion (type 2) and random selection between types 1
and 2 (type 3). The inner loop dictates a maximum of imax

trials to be performed for each temperature value Tk. If at a
particular temperature the number of successful trials (total
number of uphill and downhill transitions) reaches its
maximum of is≤imax, it is deemed that the temperature is
too high and SA behaves like RS. Therefore, under this
condition the inner loop is exited and SA continues with
the next outer loop step after decreasing its temperature.
The stopping criterion we chose for the SA is the maximum
number of consecutive stagnant outer loop iterations
ks≤kmax. If during ks consecutive outer loop iterations all
imax trials performed inside the inner loop fail, then it is
assumed that the probability of obtaining a successful trial
during the next outer loop iteration is extremely low and
therefore SA has most likely converged. Note that
exhausting all kmax outer loop iterations without satisfying
the aforementioned stopping criterion earlier during runtime
means that kmax was set too low and the SA algorithm just
stopped rather than converged. After convergence the most

Table 2 Effect test for the factors in the SAPT experiment

Source DF Sum of squares F ratio Prob>F (or p-value)

N 3 155.81027 4.1017 0.0077
R 2 299.65651 11.8327 <0.0001
n×R 6 51.98034 0.6842 0.6626

330

current state (schedule) of SA is being regarded as a (sub-)
optimal solution to the problem at hand.

When applying SA to combinatorial optimization
problems there are certain considerations with regard to
its various operating settings that deserve attention. The
quality of the final solution suggested by SA as well as the
computational cost spent to reach this solution depend on
the choice of To, a, kmax, imax, ks, is, the SA’s initial state so
and the transition mechanism. As a general rule, there is a
trade-off between quality of solution and computational
cost. Achieving a balance between those two factors
remains the most important challenge of tuning the SA
parameters. High values of To, a, imax, is and ks improve
solution quality, while yielding computationally expensive
runs of SA. The opposite is true for low values of these
parameters. However, for a well-balanced choice of
operating parameters, the dependency on so is extremely
weak since SA will most likely venture towards better
states during runtime. Finally, the type of transition to be
used in SA is usually determined by evaluating its
effectiveness via experimentation.

6 SA computational experience

The SA parameters discussed earlier may greatly affect its
performance. In this section, the SA algorithm is fine-tuned
to find good parameter settings that would lead to high
quality solutions within reasonable computational time
when applied to the E/T problem. Once these parameter
settings (and their interactions, if any) are identified, they
will be used when comparisons involving the SA are made
in the forthcoming experiments in this paper. The SA
parameter’s notation and meaning are listed in Table 3 for
more convenience.

Initial experiments were run for some of the SA
parameters. It turned out that transition type 3 (see
Section 5) produced the best results, and hence, it was
used throughout all experiments. For the rest of the SA
parameters, a full factorial experiment was designed with
the levels in Table 4. Note that is was set to be 10% of imax

for both levels and kmax was set to 20 for all experiments.
Problems with n=10 seemed to be easy for the SA. Optimal
solutions are available for the E/T problem with up to 25
jobs [18]. Therefore, the low and high levels for n were
selected to be 15 and 25, respectively. imax was set to be a
function of n2 because both of the transition types used in
this paper are O(n2) as was explained in Section 5.

The performance of SA as a function of the initial
temperature To is not only problem dependent, but also data
dependent. More specifically, a “good” choice of To should
be based on the distribution of energies (objective function
values), so that (i) To is not too high, which would
unnecessarily increase the computational cost of SA by
performing excessive number of outer loop iterations
before converging; and (ii) To is not too low, so that SAwill
not most likely converge to a local minimum of the search
space. When comparing SA runs on E/T problems differing
in the range R or the number of jobs n, choosing a fixed
value for To might not be acceptable because R and n
drastically influence the distribution of energies. Therefore,
it is desirable to choose somehow a “good” setting of To for
each instance separately. In the absence of concrete, formal
methods for the specification of To we devised a rule-of-
thumb, which we employed in our experiments. This rule
specifies To as the temperature for which SA is going to
transition from the smallest to the highest possible energy
state with some extremely small, predetermined probability
pa. Since the extreme energy values are not known a priori,
we approximate them using lower and upper bounds
instead. Define APmin ¼ min

i;ji 6¼j
AP½ � and APmax ¼ max

i;ji 6¼j
AP½ �.

Based on Eq. 3a,b lower bounds on earliness, tardiness and
maximum objective function value are given as:

Earlinessmax ¼ APmax

Pb
j¼1

j� 1ð Þ

Tardinessmax ¼ APmax

Pn�1

j¼b
n� jð Þ

Hmax ¼ Earlinessmax þ Tardinessmax

(7)

From Eq. 7 we derive that

Hmax ¼ APmax

2
n� bþ 1ð Þ n� bð Þ þ b b� 1ð Þ½ � (8)

Table 3 Summary of symbols and notation

To Initial temperature for SA
a Temperature decrease rate for SA cooling schedule
kmax Maximum iterations of SA’s outer loop; maximum number of temperature steps
ks Maximum number of consecutive, stagnant outer loop iterations (used as SA’s convergence criterion)
imax Maximum iterations of SA’s inner loop; maximum number of trials
is Maximum successful trials after which the SA’s inner loop will exit and the temperature will be decreased
so Initial schedule for SA
tt-1, tt-2, tt-3 SA transition (move) types 1, 2 and 3

Table 4 SA parameters and their levels

Factor Low (L) High (H)

N 15 25
R Unif∼[10, 60] Unif∼[10, 110]
a 0.85 0.99
imax n2 15n2

331

The lower bound Hmin for the minimum objective
function value is also of the form displayed in Eq. 8 with
APmax replaced by APmin. Therefore the upper bound for
the difference of maximum and minimum energies is given
as

ΔHmax ¼ Hmax � Hmin

¼ RAP

2
n� bþ 1ð Þ n� bð Þ þ b b� 1ð Þ½ �

where RAP ¼ APmax � APmin

(9)

Assume that at the very beginning of a SA run we want
an uphill move between states differing in energy by
ΔHmax to occur with a predetermined probability pa. The
temperature To that will allow such a transition can be
found by combining Eqs. 5 and 9 and is given as:

To ¼ �ΔHmax

ln pa
) To ¼ RAP

4 ln 1
Pa

� � f nð Þ

where f nð Þ ¼ n2 � 1 if n odd
n2 if n even

� (10)

For all problems that we have considered in our
experiments we chose a very small value of pa. For each
problem, after finding the minimum and maximum entries
of [AP] to form the difference RAP, the rule-of-thumb yields
To via Eq. 10. To find To for the low and high levels of R in
Table 4, a very small value of 10−67 for Pa was empirically
selected; and by using Eq. 10: To=100 for R=100, and
To=50 for R=50.

For a full factorial design with 2 levels and 4 factors,
24=16 settings will be required. Five problems were
randomly generated and solved for each setting (i.e., 80

instances). SA was used to solve each problem 30 times,
that is, it was run 2,400 times and the average relative error
from optimal solutions and the CPU times were recorded.
A summary is given in Table 5. Both data and results are
available at Scheduling Research [32].

To measure the significance of the different parameters,
ANOVA was carried out. Assuming that the 3rd and 4th
order interactions are part of the residual, it can be seen that
some of the second order interactions and the main effects
are significant as shown in Table 6. In particular, R×a,
R×imax, and a×imax show clear significance (low p-values).

To gain more insight into these interactions, they are
inspected in Fig. 2. Since all of the significant second order
interactions have similar patterns, they all can be explained
in a similar fashion. Increasing a from low to high (from −1
to 1 in Fig. 2) has a significant effect on the relative error
where a smaller error is obtained. However, by how much
the relative error will be reduced depends on the level of R.
From the slope of the lines for that particular interaction,

Table 6 Estimated effects and coefficients for the relative error
(coded units)

Term Effect Coefficient Std error
coefficient

T p-value

Constant 3.156 0.166 18.980 0.000
R 1.937 0.969 0.166 5.820 0.000
a −3.687 −1.843 0.166 −11.090 0.000
imax −3.389 −1.695 0.166 −10.190 0.000
n 0.605 0.303 0.166 1.820 0.073
R×a −1.117 −0.559 0.166 −3.360 0.001
R×imax −1.019 −0.509 0.166 −3.060 0.003
R×n 0.365 0.182 0.166 1.100 0.277
a×imax 1.638 0.819 0.166 4.930 0.000
a×n 0.332 0.166 0.166 1.000 0.322
n×imax 0.399 0.200 0.166 1.200 0.234

Table 5 SA experimental results

n imin a R Min. CPU
(sec)

Avg. CPU
(sec)

Max. CPU
(sec)

Min. relative error
(%)

Avg. relative error
(%)

Max. relative error
(%)

15 Low Low Low 0.0 0.61 13.0 0.0 5.43 14.34
15 Low Low High 0.0 0.00 0.0 0.0 10.57 33.11
15 Low High Low 0.0 0.69 13.0 0.0 1.17 4.37
15 Low High High 0.0 0.00 0.0 0.0 1.82 7.24
15 High Low Low 0.0 4.14 201.0 0.0 1.62 5.36
15 High Low High 0.0 0.00 0.0 0.0 1.82 8.88
15 High High Low 3.0 6.08 11.0 0.0 0.05 1.13
15 High High High 2.0 3.73 7.0 0.0 0.34 2.66
25 Low Low Low 0.00 2.58 41.00 0.00 4.95 13.17
25 Low Low High 0.00 0.27 40.00 0.00 9.10 27.52
25 Low High Low 0.00 0.53 2.00 0.00 1.95 5.73
25 Low High High 0.00 0.50 2.00 0.00 3.82 8.53
25 High Low Low 1.00 2.06 3.00 0.00 1.89 5.95
25 High Low High 1.00 21.92 605.00 0.00 4.61 11.24
25 High High Low 13.00 20.65 35.00 0.00 0.45 13.73
25 High High High 12.00 18.52 34.00 0.00 0.91 5.03

332

one can see that when R is high the effect of a is more
significant. We can conclude that increasing a leads to a
better (smaller) relative error. The same reasoning can be
applied to the interaction between R and imax. A similar
conclusion can be made for the interaction between imax

and a, whereas imax is increased from low to high, the
relative error decreases. However, depending on to what
level a is set, the improvement varies.

Keeping the second order interactions in mind, the main
effects can be explained as follows. As imax and/or a are
increased, a smaller relative error is expected regardless
what value of R is. However, by how much the relative
error is reduced depends on whether R is high or low. For
high R, the average reduction in relative error is less. This
result was expected; however, it is not intuitive to see the
significance of R and the insignificance of n (see Table 6).
Similar to the case of SAPT, as R decreases, the effect of
sequence-dependency decreases. When R goes to zero, the
problem reduces to the E/T problem with no setup time,
which is a much easier problem. Consequently, one should
expect that as R increases, the difficulty of finding an
optimal sequence increases. With respect to n, it was

expected for the SA solution to deteriorate as n was
increased; however, this was not exactly the case in our
experiments where n did not show much significance. This
is due to the levels selected for n, i.e., n will show more
significance if it is increased to a higher number of jobs,
say 50, as will be shown in Section 8.

To measure the computational efficiency of the SA, the
CPU times needed for it to converge were recorded, and
ANOVA was performed on the average CPU (Table 7).

The only significant second order interaction with
respect to the average CPU is imax×n. This is also expected
because imax was set as a function of n2, and the CPU
increases significantly when imax is set to a high level of n.
Regardless, the average CPU in the worst case of large n
and high imax was on average about 20 seconds, which is
acceptable. Therefore, the imax will be set to high. As for
the main effects on the average CPU, it is obvious that as n
and/or imax are increased, the CPU needed for the SA to
converge increases. Note that n did not have a significant
impact on the quality of the solution, but it had a significant
impact on the CPU.

7 SAPT-SA: a hybrid algorithm

The SAPT-SA is a hybrid algorithm based upon the
collaboration of the SAPT heuristic and the SA. In SAPT-
SA, SAPT finds a solution to the problem and passes it to
the SA as an initial schedule so. This way, SA starts with a
good solution instead of starting with a random one. To test
the effectiveness of the SAPT-SA, it is compared to the
plain SA. To make the comparison fair, the parameters for
SA in SAPT-SA were set to their best values obtained in
Section 6. That is, a=0.99, imax=15n

2, is=10% of imax, and
kmax=20. To was set to a very small value because, and
based on the discussion in Section 5, the SA’s initial
solution will be lost if the initial temperature is high since
many uphill transitions will be accepted at high tempera-
tures. To measure the effect of the SAPT initial schedule on

Table 7 Estimated effects for the SA results with respect to the
average CPU

Term Effect Coefficient Std error
coefficient

T p-value

Constant 5.143 1.291 3.99 0.000
R 0.949 0.475 1.291 0.37 0.714
a 2.392 1.196 1.291 0.93 0.357
imax 8.990 4.495 1.291 3.48 0.001
n 6.472 3.236 1.291 2.51 0.015
R×a −2.250 −1.125 1.291 −0.87 0.386
R×imax 1.861 0.931 1.291 0.72 0.473
R×n 2.896 1.448 1.291 1.12 0.266
a×imax 2.824 1.412 1.291 1.09 0.278
a×n 0.953 0.476 1.291 0.37 0.713
n×imax 5.827 2.914 1.291 2.26 0.027

Table 8 SAPT-SA experimental results

n R Avg. CPU (s) Avg. relative error (%)

15 Low 0.00 1.95
25 Low 1.00 1.11
15 High 0.00 1.87
25 High 1.00 2.53
Total avg. 0.5 1.86

Table 9 Plain SA experimental results

n R Avg. CPU (s) Avg. Relative Error (%)

15 Low 6.08 0.21
25 Low 20.65 0.81
15 High 3.73 0.27
25 High 18.52 1.34
Total avg. 12.16 0.66

1-11-11-1
8

4

0
8

4

0

4

0

1

-1

1

-1

1

-1

8

Fig. 2 Second order interactions between the SA parameters with
respect to relative error

333

the performance of SAPT-SA, To was set to 0.1, which
helped avoiding uphill transitions of SA. This way, the SA
in SAPT-SA works as a refining method for the schedule
provided by SAPT. R and n and their levels were kept the
same as in Table 4. The same five problem instances
generated in Section 6 are used here. Each instance was
solved 30 times using the SAPT-SA, i.e., a total of 1,200
SA runs. The results obtained are shown in Table 8. Also,
the results of the plain SA obtained in Section 6 are further
summarized in Table 9.

By comparing the results above, one can see that the
plain SA was slightly better than SAPT-SA (the best
improvement at all levels was 1.74%); however, it is
obvious that the average CPU time for SAPT-SA is much
less. When comparing the performance of SAPT (Table 1)
to SAPT-SA (Table 8), SAPT-SA reached better results
with almost the same average CPU time. In conclusion,
SAPT-SA provides a very good solution quality in a short
CPU time when compared to SAPT by itself or SA by itself
for problems with size of 25 jobs or less. Both data and
results are available at Scheduling Research [32].

8 Comparison between SAPT and SA for larger
problems

In all of the previous experiments, the size of the problem
was limited to a maximum of 25 jobs as optimal solutions
are not available for larger problems. It is more practical,
however, to compare both approaches when the number of
jobs is larger than 25. In this section, two additional
problem sizes of 40 and 50 jobs were considered, where 15
problems for each size were randomly generated and
solved by SA and SAPT independently. The SA parameters
were specified to their best settings of a=0.99, imax=15n

2,
is=10% of imax, kmax=20 and To=100 when R=100 and
To=50 when R=50. The SAwas run 30 times per instance,
i.e., 900 SA runs on the same computer used with the
previous experiments. The objective function values and
CPU times were recorded. The averages of both measures
are reported in Table 10. Since no optimal solutions exist
for these problem sizes, the quality of the solution was
based on relative difference between the averages of the
objective function values H for both algorithms; that is,
(HSAPT−HSA)100%/HSA. It can be seen from Table 10 that
SAwas slightly better than SAPTwith a maximum average

of 2.27%. However, SAPT outperformed SA in average
CPU times.

9 Conclusions

The single machine E/T problem with a large common due
date and sequence-dependent setup time was addressed.
Since this problem is a difficult combinatorial problem,
optimal solutions for problems with more than 25 jobs do
not exist. In this paper, two new algorithms were developed
to find near-optimum solutions for larger problems. The
first is the SAPT heuristic, which consists of two phases: a
schedule construction phase and a local neighborhood
search phase, and its average relative error from the
optimum was 4.5% for problems with 25 jobs or less. The
second is a simulated annealing (SA) algorithm, which was
applied to the problem for the first time when sequence-
dependent setup times are included. For problems with 25
jobs or less, the average relative error from the optimum
obtained by SA was 0.7%. SAPT, however, was signifi-
cantly faster than SA. A hybrid algorithm, SAPT-SA,
which is based on both the SAPT and SA, was also
introduced in which SAPT generates a solution that is then
handed over to the SA algorithm to refine. SA starts at very
low temperature and reaches an improved solution quickly.
A computational experience showed that SAPT-SA
reached solutions with quality very comparable to that
reached by the plain SA, but with significantly less
computational time. For larger problems up to 50 jobs,
the SAPT and SAwere compared and SAyielded solutions
that were on average better than SAPT with 1.5% but
needed significantly more computational time than SAPT.

References

1. Kanet JJ (1981) Minimizing the average deviation of job
completion times about a common due date. Nav Res Logist
28:643–651

2. Baker KR, Scudder GD (1990) Sequencing with earliness and
tardiness penalties: a review. Oper Res 38(1):22–36

3. Hall NG (1986) Single- and multiple-processor models for
minimizing completion time variance. Nav Res Logist Q
33:49–54

4. Bagchi U, Sullivan R, Chang Y-L (1986) Minimizing mean
absolute deviation of completion times about a common due
date. Nav Res Logist Q 33:227–240

5. Szwarc W (1989) Single machine scheduling to minimize
absolute deviation of completion times from a common due
date. Nav Res Logist 36:663–673

6. Hall NG, Posner ME (1991) Earliness-tardiness scheduling
problems, I: weighted deviation of completion times about a
common due date. Oper Res 39(5):836–846

7. Alidaee B, Dragan I (1997) A note on minimizing the weighted
sum of tardy and early completion penalties in a single
machine: a case of small common due date. Eur J Oper Res
96:559–563

8. Azizoglu M, Webster S (1997) Scheduling job families about
an unrestricted common due date on a single machine. Int
J Prod Res 35(5):1321–1330

Table 10 Results of the SA and SAPT for larger problems

n R SA SAPT Avg. % of
SAPT above SAAvg. CPU

(sec)
Avg. CPU
(sec)

40 Low 22.82 0 1.71
High 18.17 0 2.27

50 Low 24.01 0 0.79
High 24.02 0 1.43

Total avg. 22.23 0 1.55

334

9. Mondal SA, Sen AK (2001) Single machine weighted
earliness-tardiness penalty problem with a common due date.
Comput Oper Res 28(7):649–669

10. Sundararaghavan P, Ahmed M (1984) Minimizing the sum of
absolute lateness in single-machine and multimachine schedul-
ing. Nav Res Logist Q 31:325–333

11. Liman SD, Lee C-Y (1993) Error bound of a heuristic for the
common due date scheduling problem. ORSA J Comput 5
(4):420–425

12. Lee C-Y, Choi JY (1995) A genetic algorithm for job
sequencing problems with distinct due dates and general
early-tardy penalty weights. Comput Oper Res 22(8):857–869

13. Sirdharan V, Zhou Z (1996) A decision theory based scheduling
procedure for single-machine weighted earliness and tardiness
problem. Eur J Oper Res 94:292–301

14. James RJW (1997) Using tabu search to solve the common due
date early/tardy machine scheduling problem. Comput Oper
Res 24(3):199–208

15. Webster S, Jog D, Gupta A (1998) A genetic algorithm for
scheduling job families on a single machine with arbitrary
earliness/tardiness penalties and an unrestricted common due
date. Int J Prod Res 36:2543–2551

16. Allahverdi A, Gupta JND, Aldowaisan T (1999) A review of
scheduling research involving setup consideration. Omega 27
(2):219–239

17. Coleman BJ (1992) A simple model for optimizing the single
machine early/tardy problem with sequence-dependent setups.
Prod Oper Manag 1:225–228

18. Rabadi G (2004) A branch-and-bound algorithm for the early/
tardy machine scheduling problem with a common due-date
and sequence-dependent setup time. Comput Oper Res 31
(10):1727–1751

19. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E
(1953) Equations of state calculations by fast computing
machines. J Chem Phys 21(6):1087–1092

20. Kirkpatrick S, Gelatt CD Jr, Vecchi M (1983) Optimization by
simulated annealing. Science 220:671–690

21. Shapiro JA, Alfa AS (1995) An experimental analysis of the
simulated annealing algorithm for a single-machine scheduling
problem. Eng Optim 24(2):79–100

22. Glover F (1989) Tabu search-part I. ORSA J Comput 1:190–206
23. Glover F (1990) Tabu search-part II. ORSA J Comput 2:4–32
24. Tan KC, Narasimhan R (1997) Minimizing tardiness on a

single processor with sequence-dependent setup times: a
simulated annealing approach. Omega 25(6):619–634

25. Sun XQ, Noble JS, Klein CM (1999) Single-machine
scheduling with sequence dependent setup to minimize total
weighted squared tardiness. IIE Trans 31(2):113–124

26. Tan KC, Narasimhan R, Rubin PA, Ragatz GL (2000) A
comparison of four methods for minimizing total tardiness on a
single processor with sequence dependent setup times. Omega
28(3):313–326

27. Mittenthal J, Raghavachari M, Rana AI (1993) A hybrid
simulated annealing approach for single-machine scheduling
problems with non-regular penalty functions. Comput Oper Res
20(2):103–111

28. Adenso-Diaz B (1996) An SA/TS mixture algorithm for the
scheduling tardiness problem. Eur J Oper Res 88:516–524

29. Almeida MT, Centeno M (1998) A composite heuristic for the
single machine early/tardy job scheduling problem. Comput
Oper Res 25(7–8):625–635

30. Gendreau M, Laporte L, Guimaraes EM (2001) A divide and
merge heuristic for the multiprocessor scheduling problem with
sequence dependent setup times. Eur J Oper Res 133:183–189

31. Morton T, Pentico D (1993) Heuristic scheduling systems: with
applications to production systems and project management.
Wiley, New York

32. Scheduling Research (2005) http://www.SchedulingResearch.com

335

http://www.schedulingresearch.com/

	fit.edu
	http://cygnus.fit.edu/~georgio/pubs/Rabadi_ijamt_2007.pdf
	Acr4D.tmp
	A heuristic algorithm for the just-in-time single machine scheduling problem with setups: a comparison with simulated annealing
	Abstract
	Literature review
	The single machine early/tardy problem
	The SAPT heuristic
	SAPT computational experience
	Application of simulated annealing to the E/T problem
	SA computational experience
	SAPT-SA: a hybrid algorithm
	Comparison between SAPT and SA for larger problems
	Conclusions
	References

