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Abstract

In this paper we propose a novel, Gauss–Newton-based variant of the Real Time Recurrent Learning
(RTRL) algorithm by Williams and Zipser (Neural Comput. 1 (1989) 270–280) for on-line training
of Fully Recurrent Neural Networks. The new approach stands as a robust and effective compromise
between the original, gradient-based RTRL (low computational complexity, slow convergence) and
Newton-based variants of RTRL (high computational complexity, fast convergence). By gathering
information over time in order to form Gauss–Newton search vectors, the new learning algorithm,
GN–RTRL, is capable of converging faster to a better quality solution than the original algorithm.
Experimental results reflect these qualities of GN–RTRL, as well as the fact that GN–RTRL may have
in practice lower computational cost in comparison, again, to the original RTRL.
� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Fully Recurrent Neural Networks (FRNN) are simple, but powerful computational models
that can effectively learn temporal sequences, either in an on-line or an off-line fashion. A
basic block diagram of an FRNN is shown in Fig. 1. The FRNN consists of a linear input
layer and a nonlinear output layer. The input layer is fully connected to the output layer via
adjustable, weighted connections, which represent the system’s training parameters. The
model also features unit-gain, unit-delay feedback connections that are fed back into its
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Fig. 1. Block diagram of a Fully Recurrent Neural Network (FRNN).

input layer. FRNNs accomplish their task by learning a mapping between a set of input
sequences to another set of output sequences. In particular, the model’s inputs consist of
input sequences, delayed output activations and a constant-valued input terminal related to
a bias weight. On the other hand, the output layer generates the set of output sequences.
Typically, nodes in this layer feature a sigmoidal activation function. Furthermore, the model
may include a number of hidden nodes, also known as context units, whose activations are
not related to any of the outputs of the task to be learned, but act as a secondary, dynamic
memory of the system. The combination of this dynamic, context-based memory with the
recurrent, feedback connections is what makes the FRNN a powerful model for learning
relationships between temporal sequences.

One of the most popular FRNN training schemes is the Real Time Recurrent Learn-
ing (RTRL) algorithm [21]. RTRL is a gradient-based algorithm that is used for adjusting
the input-to-output interconnection weights. Williams and Zipser present two variations of
RTRL, one for off-line (batch) and one for on-line (incremental) learning. In both of its
forms, RTRL has been used to train FRNNs for a variety of applications, such as speech
recognition and controller modeling. In specific, RTRL has been used for training a robust,
manufacturing process controller in [10]. The problem of speech enhancement and recog-
nition is addressed in [11], where RTRL is used to construct adaptive fuzzy filters. RTRL
has also been used to train FRNNs for next-symbol prediction in an English text processing
application [17]. The RTRL/FRNN combination has also been used in applications of com-
munication systems. Li et al. [12] use FRNNs trained by RTRL for adaptive pre-distortion
linearization of RF amplifiers and have shown to attain superior performance in compari-
son with other well-known pre-distortion models. Furthermore, the authors show significant
improvements in the Bit Error Rate (BIR) performance as compared with linear techniques
in the field of digital, mobile–radio systems. Finally, RTRL has been used to train FRNNs
that were capable of effectively removing artifacts in EEG (Electroencephalograms) signals
[19,20].
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A plethora of RTRL variants or substitutes have been suggested in the literature that aimed
to enhance different aspects of the training procedure such as its computational complexity,
especially when used in off-line mode, convergence speed/properties, and its sensitivity
to the choice of initial weight values. In [3] a technique is presented for reinitializing
RTRL after a specific time interval, so that weight changes depend on fewer past values and
weight updates follow more precisely the error gradient.Also, the relationship between some
inherent parameters, like the slope of the sigmoidal activation functions and the learning rate,
has been taken into account to reduce the degrees of freedom of the associated nonlinear
optimization problems [14]. In [18] the gradient calculation has been decomposed into
blocks to produce an algorithm which is an order of magnitude faster than the original
RTRL. Additional constraints have been imposed to the synaptic weight matrix to achieve
reduced learning time, while the network forgetting is reduced [6]. In [4] a conjugate-
gradient variation of RTRL has been developed. Other techniques suggested to improve the
convergence rate include use of normalized RTRL [15], use of genetic algorithms [13,2]. It
has been shown that most of the training approaches are based on different computational
ways to efficiently obtain the gradient of error function and can be generally grouped
into five major groups. Furthermore, these five approaches are only five different ways of
solving particular matrix equation [1]. In the same reference an approach of approximating
the gradient was tried, that gave faster convergence. Static grouping of processing elements
has also been tried to reduce the computational complexity at the expense of performance
[7]. Finally, Newton-based approaches for small FRNNs have also been used to exploit the
methods’quadratic rate of convergence [5]. However, the latter approach leads to enormous
increase in computational effort and memory allocation needs.

In this paper we present a novel, on-line RTRL variation, namely the GN–RTRL. While
the original RTRL training procedure utilizes gradient information to guide the search to-
wards the minimum training error (and therefore we are going to refer to it as GD–RTRL),
GN–RTRL uses the Gauss–Newton direction vector for the same purpose. The develop-
ment of a GN-based training algorithm for FRNNs was motivated by the very nature of the
optimization problem at hand. The function to be minimized is of squared-error type, which
makes it a Nonlinear Least-Squares (NLS) optimization problem. While gradient descent
methods are straightforward and easy to implement for NLS problems, their convergence
rate is linear [16], which typically translates to long training times. The problem is further
worsened when model size (the number of interconnection weights) increases. On the other
side of the spectrum, Newton-based methods attain a theoretical quadratic rate of conver-
gence [16], which makes them appealing from a reduced training time perspective. Nev-
ertheless, Newton-based algorithms require second-order derivative information, either by
having available the associated Hessian matrix or approximations to it. The last requirement
attaches a high computational cost, which prohibits the usability of Newton-based learning
for moderate or large size FRNN structures. We propose an RTRL scheme based on the
Gauss–Newton method as a compromise between gradient descent and Newton’s methods.
The GN–RTRL features a super-linear convergence profile (faster than GD–RTRL) and
lower computational cost to second-order algorithms, which makes it practical for training
small to moderate size FRNNs.

The rest of the paper is organized as follows. In Section 2 we outline the on-line version
of the RTRL algorithm and in Section 3 we present the novel, Gauss–Newton approach for
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on-line training of FRNNs. Experimental results comparing the original RTRL and the new
training algorithm for two one-step-ahead prediction datasets are presented in Section 4.
Finally, in Section 5 we summarize the conclusions of our experimental study.

2. Outline of gradient descent RTRL

We first describe the original, on-line RTRL algorithm (GD–RTRL) in brief. The function
to be minimized is the instantaneous sum-of-squared error (SSE) at time instance t, which
is displayed in Eq. (1); L is the number of the FRNN’s visible outputs.

�(�, t) = 1

2

L−1∑
k=0

e2
k(t). (1)

Vector � represents all the FRNN parameters. The error for output k is calculated as follows:

ek(t) =
{

dk(t) − yk(t) if ∃dk(t) k = 0 . . . L − 1,

0 otherwise,
(2)

where dk(t) is the desired output and yk(t) is the actual output of the network. Notice,
that if there is no available desired output for a particular output and/or time instance, the
error is considered to be zero. Let H be the number of hidden units in the output layer
and U = L + H be the total number of output layer neurons. Additionally, let I be the
number of FRNN inputs and V = U + I + 1 the total number of input layer neurons.
Fig. 1 illustrates the case, where L = 2, H = 2 and I = 2. Then, the collection of those
weights is summarized in the W ∈ RU×V matrix. As mentioned before, the elements of
the weight matrix W constitute the parameters of the network. The goal of the training
procedure is to adjust W in order to minimize the instantaneous SSE according to a rule of
the form

Wnew = Wold + �p, (3)

where p is an appropriate direction vector and � is the step length in the direction of p (also
referred to as the learning rate). In GD–RTRL this direction vector is the negative gradient
of the SSE with respect to the weights:

p = pGD = −∇w�. (4)

It is worth noting that in the seminal paper of RTRL no specific guidelines are articulated
regarding the choice of the learning rate, apart from the fact that it has to be gradually
decreased. The calculation of the gradient goes as follows:

��

�wi,j

= −
U−1∑
k=0

ek(t)p
k
i,j (t) i = 0 . . . U − 1, j = 0 . . . V − 1, (5)
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where the output sensitivities p are computed as

pk
i,j (t) = f ′(sk(t))

U−1∑
l=0

wk,l+I+1p
k
i,j (t − 1)

+ �k,i

{
xj (t) if j = 0 . . . I − 1,

1 if j = I,

yj−I−1(t) if j = I + 1 . . . V − 1.

(6)

Notice that the output sensitivities p in Eq. (6) are initialized to zero prior to training. The
function f is the sigmoidal activation function of the output neurons. Typical choices are the
logistic or hyperbolic tangent functions. Additionally,

sk(t) =
I−1∑
l=0

wk,lxl(t) + wk,I +
U−1∑
l=0

wk,l+I+1yl(t − 1), (7)

yk(t) = f (sk(t)). (8)

The quantity in Eq. (7) represents the cumulative weighted input to the kth output neuron.
A variant to Eq. (7) replaces the actual outputs y(t − 1) with the corresponding desired
output, a technique referred to as teacher-forced learning [21]. GD–RTRL training starts
with a randomized matrix W and continues with the weight adjustment procedure until the
magnitude of the changes becomes small enough, at which point completion of training
is declared. In reality, the appropriate value for the learning rate � has to be identified
in an adaptive manner at each step via a line minimization technique in order to achieve
convergence.

3. Gauss–Newton RTRL

The presented, new variant of RTRL, the GN–RTRL, replaces the search vector p in Eq.
(3) with the Gauss–Newton direction vector:

p = pGN = −[JT(t)J(t)]−1JT(t)r(t), (9)

where r(t) ∈ RLT is the vector of residuals (errors) and J(t) ∈ RLT ×UV is the Jacobian
matrix at time instance t. The former quantity is defined as

r(t) = [e0(t)e1(t) . . . eL−1(t)e0(t − 1) . . . eL−1(t − T + 1)]T (10)

In other words the residual vector contains errors for different (visible) outputs across T
consecutive time instances: the current time instance t and the T −1 previous time instances.
Notice that the T-exponent in the previous and subsequent equations denotes the transpose
of a vector and matrix and should not be confused with the total observed time instances T.
If we define

�=̂vec[W] (11)
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then the (m,n) entry of the Jacobian matrix is given as

J(t; m, n) = �r(t)m

��n

. (12)

The matrix [JT(t)J(t)]−1JT(t) in Eq. (9) can be viewed as a low computational cost ap-
proximation to the Hessian matrix associated to the SSE minimization, which is sufficiently
accurate for small-residual problems [16]. Moreover, it can be shown that

J(t; m, n) = − pk
i,j (t), t = �m/L�, k = m−Lt, i = �n/V �, j = n = V i (13)

which links the Jacobian matrix to the output sensitivities p. Eq. (13) underlines the fact that
GN–RTRL is closely related to GD–RTRL, since both approaches utilize output sensitivity
information for the computation of their corresponding search directions. Nevertheless,
GN–RTRL promises shorter training time without the need of computing second order
derivatives. The explicit formation of [JT(t)J(t)]−1JT(t) is unnecessary (as it will be shown
shortly) and even undesirable, since it is prone to considerable, numerical errors during its
computation. Instead, we solve the equation

J(t)pGN = −r(t) (14)

using a more numerically stable approach, namely Singular Value Decomposition (SVD),
as presented in [9]. It is this decomposition which increases, sometimes significantly (espe-
cially as model size increases), the computational overhead of GN–RTRL, when compared
to GD–RTRL. Solving Eq. (14) this way provides us a solution for the direction vector
expressed in terms of the left- (ui), right-eigenvectors (vi ) and singular values (�i ) of the
Jacobian matrix

pGN = −
∑

i

uT
i r(t)

�i

vi . (15)

In the above summation terms that correspond to relatively small singular values are omitted
to increase robustness in the direction vector calculations. This phenomenon may occur
when J(t) is close to being rank deficient and the unaltered search vector may not represent
a descent direction.Another alternative would be using the negative gradient as in GN–RTRL
for that particular time step until J(t) becomes full rank again. By virtue of the direction
vector’s nature, GN–RTRL equipped with a decent line minimization technique is expected
to feature super-linear convergence for small-residual problems, when the Jacobian matrix
is of full column rank. In an effort to fulfill the last requirement, GN–RTRL must compute its
direction vector based on T �UV /L time instances, which contrasts GD–RTRL that needs
only current time instance information. Although this very fact might be considered as a
disadvantage of GN–RTRL from a computational or memory-storage perspective, utilizing
information of T instead of just one time instance to perform on-line learning may cause
a smoothing/averaging effect in time and allow GN–RTRL to converge faster in on-line
mode, as it is shown in our experiments.
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Table 1
Santa-Fe time series

TSUC KFlops SSE

Min. Mean Max. Min. Mean Max. Min. Mean Max.

GD–RTRL 163 750.43 1596 153.01 710.74 1517.35 10.86 90.58 1016
GN–RTRL 16 55.92 472 13.72 96.95 941.41 1.86 109.27 1016

Table 2
Sunspot time series

TSUC KFlops SSE

Min. Mean Max. Min. Mean Max. Min. Mean Max.

GD–RTRL 39 168.17 186 36.16 153.86 170.37 6.88 35.95 101.44
GN–RTRL 16 58.48 1992 19.28 127.93 5262.52 1.65 18.08 1013.5

4. Experimental results

In order to demonstrate the merits of the Gauss–Newton RTRL we compared it to the
original algorithm on two one-step-ahead prediction problems. For both methods we used
the same parabolic interpolation technique for approximate line minimization, the same set
of initial weights and the same, maximum learning rate. For each dataset the two algorithms
performed training using 100 different initial configurations (weights and number of hid-
den units). Once the algorithms converged, they were tested on all available data and the
produced SSE was measured. The datasets we considered were:

1. Santa-Fe time series competition dataset: The dataset consists of a computer-generated,
one-dimensional temporal sequence of 500 time instances. [Link: http://www-psych.
stanford.edu/∼ andreas/Time-Series/SantaFe.html].

2. Sunspot dataset: The dataset consists of a temporal sequence representing the annual, av-
erage number of sunspot activity as measured in the interval 1749 to 1915. The sequence
is one-dimensional and contains 2000 samples. [Link: http://science.msfc.nasa.gov/
ssl/pad/solar/greenwch.htm].

The results obtained are summarized in Tables 1 and 2 illustrated on the next page.
TSUC denotes time steps until convergence, while KFlops denotes thousands of floating
point operations performed during training. The experimental results for both datasets reflect
that GN–RTRL is superior in terms of convergence. In the first dataset GN–RTRL achieved
convergence on average in only 7% of the time steps required by GD–RTRL, while in the
second one in 35%. In terms of computational effort, GN–RTRL seems to be comparable
on average in the worst case (Sunspot series: 128 vs. 154 KFlops).

http://wwwpsychstanfordeduandreasimeeriessantafehtml/
http://wwwpsychstanfordeduandreasimeeriessantafehtml/
http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm
http://science.msfc.nasa.gov/ssl/pad/solar/greenwch.htm
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Fig. 2. Boxplot of KFlops for GN–RTRL and GD–RTRL.

Fig. 3. Plot of performance of GN against GD.

Boxplots describing the distribution of required KFlops for the first dataset is given in
Fig. 2. From this plot it can be again concluded that GN–RTRL is relatively more compu-
tationally efficient in comparison to GD–RTRL. Despite the fact that GD–RTRL has small
computational overhead per time instance, when compared to GN–RTRL that incorporates
an SVD step, the latter method compensates by performing significantly less iterations.
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In terms of solution quality,Tables 1 and 2 clearly emphasize the superiority of GN–RTRL.
The SSE of GN–RTRL is by almost an order of magnitude smaller than the one achieved
by GD–RTRL. Fig. 3 shows a representative plot of SSE computed during the testing phase
versus the TSUC for both methods, which demonstrates that GN–RTRL converges much
faster to a solution and, simultaneously, the solution is of higher quality, when compared
to the GD–RTRL experimental results. Additionally, Fig. 3 indicates cases, where it seems
that GN–RTRL may have terminated training rather prematurely, which resulted in high
SSE values. On the other hand, GD–RTRL exhibits less cases of this sort. This phenomenon
is attributed to the near rank deficiency of the Jacobian matrix for certain choices of the
random initial weights and can be addressed by taking negative gradient steps, as it has
been stated in the previous section.

5. Conclusions

In this paper we presented a Gauss-Newton variation of the Real Time Recurrent Learning
algorithm [21] for the on-line training of Fully Recurrent Neural Networks. The modified
algorithm, GN–RTRL, performs error minimization using Gauss–Newton direction vectors
that are computed from information collected over a period of time rather than only using in-
stantaneous gradient information. GN–RTRL is a robust and effective compromise between
the original, gradient-based RTRL (low computational complexity, slow convergence) and
Newton-based variants of RTRL (high computational complexity, fast convergence). Ex-
perimental results were reported that reflect the superiority of GN–RTRL over the original
version in terms of speed of convergence and solution quality. Furthermore, the results
indicate that in practice GN–RTRL features a lower-than-expected computational cost due
to its fast convergence: GN–RTRL required fewer computations than the original RTRL to
accomplish its learning task.
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