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Recognizing the intention of others in real time is a critical aspect of many human tasks. This article describes 
a technique for interpreting the near-term intention of an agent performing a task in real time by inferring 
the behavioral context of the observed agent. Equally significant, the knowledge used in this approach 
can be captured semi-automatically through observation of an agent performing tasks on a simulator 
in the context to be recognized. A hierarchical, template-based reasoning technique is used as the basis 
for intention recognition, where there is a one-to-one correspondence between templates and behavioral 
contexts or sub-contexts. In this approach, the total weight associated with each template is critical to 
the correct selection of a template that identifies the agent’s current intention. A template’s total weight is 
based on the contributions of individual weighted attributes describing the agent’s state and its surrounding 
environment. The investigation described develops and implements a novel means of learning these weight 
assignments by observing actual human performance. It accomplishes this using back-propagation neural 
networks and fuzzy sets. This permits early discrimination between different pre-categorized behavioral 
contexts/sub-contexts on the human-controlled agent such as a military or passenger vehicle. We describe an 
application of this concept and the experimentation to determine the viability of this approach.
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1. Introduction and Background

There often is a need to determine the intention of others 
before making decisions. A driver making a left turn 
typically uses the left turn signal to advise other drivers 
of her intention, thereby preventing dangerous actions 
by other motorists. Strategic team games virtually 
require that both teams be able to predict the intention 
of the opposition when designing plays.
 In warfare, law enforcement and anti-terrorist 
activities, however, determining the intent of the enemy 
often becomes a life and death issue. Yet, like in team 
sports, it is quite unrealistic to directly ask the enemy 
about their intent. It must be inferred by unobtrusive 
observation, and it must be done in real time.
 Our work presented here is based on the assumption 
that one’s near-term intentions typically are based on a 

contextualized behavior — a set of actions and procedures 
humans perform while in a specific situation. Likewise, 
contextualized behaviors and their associated actions are 
used to control an agent while in a particular situation. 
We assert that once an agent’s near-term intentions have 
been identified by the observer, future (near-term) actions 
by the observed agent can be predicted relatively easily. 
For example, if the observer sees that a motorist agent 
intends to turn left (left turn signal on and approaching 
an intersection), he can predict its near-term movement 
very accurately, and thereby act accordingly.
 We base our approach on inferring the behavioral 
context of an observed agent whose intention we wish 
to discover. Behavioral contexts are defined in the 
Context-based Reasoning (CxBR) modeling paradigm 
for human tactical behavior representation. See [1] for 
details on CxBR. If the observer can infer the context 
in which an agent is operating, then prediction of the 
agent’s actions would follow relatively easily. In CxBR, 
the context currently controlling an agent (i.e., the active 
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context) contains the functionality to allow the agent to 
successfully “navigate” through the current situation. 
This approach relies on the fact that, normally, only a 
limited number of contexts could be realistically used by 
the agent in that situation. Furthermore, we assume that 
there is no desire on the part of the observed agent to 
disguise its intent to mislead the observer. However, the 
approach could be modified to account for purposeful 
deception in future work.

1.1 Previous Work

Previous research related to intention and plan recognition 
is indeed extensive. Schmidt and his colleagues pioneered 
the field of plan recognition with their seminal paper 
in 1978 [2]. In their BELIEVER system, they posed 
psychological theories for understanding how humans 
view and infer the plans of others by observing their 
actions. 
 Other research in intention recognition investigated 
the use of grammar parsing methodology to recognize 
behavior as matching previously defined sequences of 
events [3,4] while others investigated neural networks 
to do the same [5]. Wang & Arbib’s model [4], however, 
required that the complete pattern be presented before 
the pattern recognition would occur. This would not be 
useful for early recognition of actions to predict future 
behavior in real time. 
 In a different vein, a few investigators ran competing 
models of the expected behaviors in parallel, either 
as Kalman filters [6] or linear models [7]. They then 
observed which model best tracked the observations 
and used that model of behavior to represent the current 
behavior. The results of Liu & Pentland [6] were mixed, 
with typical success rates of between 40% and 70% 
in real-time tests, depending on the circumstances. In 
reports of later experiments, Pentland & Liu [8] used a 
hierarchy of Markov dynamic models to represent long-
time-scale driver behavior and fine-grain behavior. The 
Markov dynamic models using patterns of acceleration 
and heading produced a 95 ± 3% recognition accuracy 
two seconds after the command. 
 In one case [7], a model used for system control was 
adapted in real time to further reduce control errors. One 
unique research effort [9] used supervised neural network 
learning of processed inputs to directly discriminate 
between three distinct behaviors, showing the feasibility 
for automated machine learning of behavior at some 
level. Their results showed a maximum of 95% accuracy, 
but only one of the different neural networks tried could 
recognize more than 85% of the test cases. Furthermore, 
there is some question as to whether the recognition was 
conducted post facto, thereby precluding the advantage 
of predicting future behaviors by the agent. Another 
investigation [10] hints that the examples of behavior 

could be clustered using automated self-organization.
 Strohal and Onken [11] describe the Crew Assistant 
Military Aircraft (CAMA) system, a knowledge-based 
assistant to enhance situation awareness for crews of 
future military transport aircraft. To accomplish that 
goal, CAMA had to assess the situation on its own, 
including the crew’s intent. It was designed to infer the 
crew’s intentions, permitting the system to anticipate the 
need for assistance without a request by the pilot. They 
used neuro-fuzzy techniques, but required a human to 
translate the resulting learned knowledge into rules 
usable by CAMA.
 Plan recognition for human-computer collaboration 
is described by Lesh, et al., [12]. Plan recognition, as 
they define it, is “… the process of inferring intentions 
from action.” Their work exploits the properties of the 
collaborative setting to make plan recognition practical. 
These properties are the focus of attention, partially 
elaborated hierarchical plans, and the possibility of 
asking for clarification.
 Most recently, research in plan recognition has 
taken several different directions. The most popular 
of these involves developing logic theories to provide 
an algebra through which to reason about plans 
from observed agent actions. Wobke [13] presents an 
approach built upon Kautz’s keyhole plan recognition 
work. He presents two approaches, one monotonic 
and one non-monotonic. The latter of these neglects 
Kautz’s simplifying assumption of equal relevance for 
all competing plans. Wobke bases his approaches on 
defining a “... hierarchy of plan schemas.” Jiang and Ma 
[14] introduce plan knowledge graphs, along with a new 
formalism, to simplify the process of plan recognition. 
They claim to reduce the plan recognition problem to a 
graph search with their approach, and obtain the same 
results as Kautz.
 Patterson, et al. [15], address the problem of inferring 
high-level intentions from low-level sensors. They use 
Bayesian Nets to predict the position of a traveler in 
an urban setting, using auto, bus, and foot travel as the 
means of locomotion. They report high levels of accuracy 
in their predictions. Computer vision also has addressed 
the problem of plan recognition, albeit in different 
ways. Intille and Bobick [16] use Bayesian networks 
and model-based object recognition to recognize multi-
person actions in the real world. Other investigators 
have addressed the problem from a case-based point of 
view [17].
 Other researchers have followed somewhat different 
approaches. Charniak and Goldman [18] investigated 
Bayesian plan recognition. Tambe [19] and his 
colleagues [20,21] have focused on plan recognition 
of multi-agent systems involved in teamwork. Huber 
[22], Han and Veloso [23], Pynadath and Wellman [24}, 
Devaney and Ram [25] and Goldman, et al. [26], also 
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have contributed to advances in plan recognition. Our 
work presented here, however, focuses on the near-term 
intentions of a single agent — those that will manifest 
themselves within the next several seconds or minutes.
 We now briefly discuss the work of Drewes, upon 
which our work is largely based. Drewes, et al. [27], 
in his prototype system TRAMS, presents what he calls 
Template-based Interpretation (TBI) for interpreting 
a human’s intention in a simulation through external 
observation of this human’s actions. His work involves 
observing the human’s low-level actions and reflecting 
those actions within partially filled templates. These 
templates consist of attributes that represent low-level 
actions performed when that plan is being executed. As 
these low-level actions are performed by the human, the 
corresponding attributes are “checked-off.” A template 
can include temporal and sequential relationships 
between different low-level actions. Each template 
reflects a plan potentially followed by the agent. As 
templates come closer to having all of their attributes 
checked off, they compete with each other for the 
right to be proclaimed as the one reflecting the agent’s 
intent. His results on a prototype in the aviation domain 
indicate that this approach is able to correctly identify 
an agent’s intent. However, one challenge not addressed 
by his work was the significant difficulties associated 
with creating the templates and their related weights. 
The investigation described here addresses exactly this 
issue.
 Given that our work depends heavily on the concept of 
contexts and context-driven reasoning, it is worthwhile 
at this point to briefly mention related work in context-
driven human behavior representation. Turner [28,29] 
used behavioral contexts arranged in hierarchies to 
control a robot’s behavior. Both investigations used 
rules to recognize the environmental triggers to activate 
the behavior. Brezillon [30] and Bass [31] have also 
independently developed context-based approaches to 
modeling human behavior.

1.2 Specific Problem and General Approach

The review above indicates that whereas significant 
research is on-going in intention recognition, the problem 
has yet to be fully solved. We present an approach to 
recognizing in real time the near-term intention of an 
observed agent as early as possible in the execution of its 
actions. This determination should be done as quickly 
as possible to permit the observing party to predict 
the observed agent’s future near-term actions as they 
unfold. This gives the observer maximum opportunity 
to counter the observed agent’s actions. The system 
resulting from this work observes the agent (typically 
a vehicle controlled by a human) and, after noting the 
execution of one or several low-level actions, declares 

the intention of the agent. It does so by identifying its 
context — a module of knowledge that is able to control 
the agent in a particular situation. If the context in 
which the observed agent is operating is known by the 
observer, then it is relatively easy to predict the agent’s 
future actions by modeling the agent with its active 
context.
 Applications of this work exist in military tactical 
planning as well as operations, where inferring the 
intentions of an enemy is important. Furthermore, the 
application of a tank rounding a turn on the road also 
has more specific application in military affairs. For 
example, being able to accurately predict the position 
of an enemy vehicle can be helpful in targeting it. 
Nevertheless, the original motivation for this work was 
in live-virtual embedded simulations for training where 
live and virtual units find themselves on the same virtual 
battlefield. Knowing where a live vehicle will be at a 
specific time can reduce the required communications 
bandwidth in the live range. The last application requires 
significant accuracy in predictions.
 The basis of our approach is Template-based 
Interpretation [27] and our extension of it, Temporal 
Template-based Interpretation [32]. This technique is 
described later in this article. To evaluate the feasibility 
of our approach, we use the prediction of the near-term 
driving pattern used by a tank driver as he rounds a turn 
on a road.
 The following questions were addressed in our 
investigation:

 •  Can Temporal Template-based Interpretation be  
  used to infer an agent’s near-term intentions in real  
  time by observing its actions and the situational  
  parameters of the environment in which it operates?
 •  How can one efficiently build an artifact to perform  
  this intention recognition? We specifically refer to  
  the need to build the templates and assign weights  
  to each and every low-level action attribute in the  
  templates.

 Our approach is founded upon recognizing actions 
associated with a previously defined template. We extend 
Drewes’ work in several ways. The two most significant are 
1) how we structure and manipulate the templates, making 
them capable of describing continuous actions and 2) how 
we arrive at the weights assigned to each attribute in the 
various templates. The first enhancement allows us to define 
a template attribute as a series of data points occurring 
sequentially over time. Thus, we call this enhanced version 
Temporal Template-based Interpretation (TTBI). 
 More importantly, whereas Drewes selected the 
values of the weights after consultation with experts 
and a significant amount of trial and error, we extract 
the weights from direct observation of prior agent 
behavior. Furthermore, we associate each template with 
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a context, as defined in CxBR. While contexts in CxBR 
are control mechanisms for an agent to successfully 
navigate a tactical situation, a template only contains the 
information about what could be externally observed 
about an agent being controlled by its corresponding 
context. This one-to-one correspondence between 
templates and contexts provides for integration of the 
two techniques and facilitates the prediction of the post-
recognition behavior of the observed agent.
 The objective of this research is to determine the 
technical feasibility of Temporal Template-based 
Interpretation for the general problem defined. The 
application used to evaluate the concept is only the 
test application and not the driving force behind the 
paper. A brief description of Temporal Template-based 
Interpretation (TTBI) is given in the next section.

2. Approach to Problem

Template-based Interpretation is a weak-model approach 
that makes real-time observations of an agent’s performance 
and matches its current observed behavior to predefined 
templates of potential high-level intentions. The template 
that most closely accounts for the agent’s observed actions 
(beyond a certain threshold level) is deemed the winner. 
We perform this match with a combination of single-layer, 
feed-forward neural networks with back-propagation 
training and fuzzy sets. We first briefly describe the original 
Template-based Interpretation concept, as it is an important 
component of our approach. Next, we (even more briefly) 
define the ideas behind Context-based Reasoning, as it 
is also influential in our work. We then discuss how, by 
combining the two approaches, we can accomplish our 
objectives. Then we describe our enhancement to TBI, 
called TTBI. Lastly, we explain how to automatically 
obtain the knowledge necessary to infer agent intention.

 2.1 Template-based Interpretation

Template-based interpretation involves using models, 
or templates, of typical human behavior to infer 
the intention of a human or of an agent acting like a 
human. In some ways, it can be said to be an extension 
of case-based reasoning in that a template represents 
the pattern defining each case. The case/template most 
closely matching the pattern of the inputs is declared 
as the one most representative of the observed inputs. 
However, TBI extends traditional case-based reasoning 
by considering the temporal ordering of discrete 
events and the time differences between these events. 
Furthermore, TBI monitors the inputs continuously, 
looking for the execution of low-level actions by the 
agent being observed. Each template has selected 
attributes that represent actions that would be executed 
by the agent if it were carrying out the plan identified 
by that template, as well as aspects of the agent’s state 
and of its environment. The attributes in a template 
include only those actions and aspects relevant to the 
intent represented by that particular template. At each 
monitoring cycle, each template’s attributes are updated 
by an evaluation mechanism. When an action is observed, 
attributes that represent that action are “checked off” in 
each template that contains that particular action. This 
enhances the overall score for those templates containing 
that checked-off attribute in relation to the attribute’s 
pre-assigned weight. 
 A template is not considered a candidate for 
identifying the agent’s intentions/context until its overall 
score exceeds a minimum threshold value called the 
Critical Threshold (Tc). The first template to exceed the 
Tc is chosen as the one representing the observed agent’s 
intentions/context. Figure 1 illustrates the components 
of the template-based interpretation approach. In this 

Figure 1. Template components
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figure, Wik is the weight associated with attribute k of 
template i, and Tx is the template from the set T of n 
competing templates that has the highest score above 
the minimum critical threshold value.
 More formally, each template is a model for a specific 
high-level action. It describes the observable low-level 
actions that a performing agent A would do if it were 
indeed performing that high-level action. TBI works by 
defining the set of templates T, so that

T = {T1, T2, T3, T4 … Tn}

where each template Ti contains several attributes. The 
attributes of one template are not the same as those of 
other templates, but they could have some attributes 
in common. Therefore, template Ti can be defined as 
consisting of several attributes atril, each describing an 
action made by agent A which partly indicates A’s current 
context, and which is observable by the observing agent 
O.

Ti = {atri1, atri2, atri3, …, atrik}

 Each attribute is assigned a Boolean value indicating 
whether the action described by it has been performed 
by agent A. If relevant, it also is possible to assign a time 
stamp for that action.
 Furthermore, the importance of the attributes may 
not be equal for interpreting the actions of the agent 
A. Some may be more significant than others, and this 
can be indicated through a weight assigned to each 
attribute. Thus, attribute atriil for template Ti is a triple 
consisting of its weight, the Boolean “check off” and the 
time stamp.

atril = < Wil, YES/NO, t>

where the weight, Wil, is a real number between 0.0 and 
1.0.
 As agent A is being observed by agent O, the latter 
monitors the execution of low-level actions by A. Upon 
noticing that an action represented by atril has been 
executed by A, it will search each template in T and 
look for attribute atril in each template Ti∈T. When it 
finds one, it will place a YES and a time stamp on the 
attribute. This can be likened to the game of Bingo, when 
a number is called and players place a game piece on the 
called number in every card where the called number is 
found.
 As agent O continues to observe A, the numbers 
of “check-offs” on the various competing templates 
grow. Templates progressively become more completely 
“checked off” as more of the actions symbolized by their 
attribute are executed by A. Templates that truly reflect 
A’s intention will have more checked off attributes, 

which will translate to a higher overall score for these 
templates. This process represents a competition among 
the templates in T to be designated as the one truly 
describing the intention behind the actions of agent A. 
At some point, the cumulative weight of one template 
exceeds its critical threshold Tc, at which time, this 
template is considered the winner of the competition. 
The reader is referred to Drewes et al. [27], and Drewes 
[33] for details on TBI.

2.2 Context-based Representation of Behavior

The behavior of A can be said to be controlled by several 
behavioral contexts that prescribe its actions. These 
contexts, called Ci, are members of a set of contexts that 
define the behavioral universe for agent A. 

C = {C1, C2, C3, C4… Cn}

 Each such behavioral context contains the functions 
and procedures that result in agent A’s actions and 
decisions while in that context. One and only one 
behavioral context can be in control of the agent at any 
time. This context in control is called the active context, 
while all others are inactive. Each context also contains 
the knowledge of how to transition to other behavioral 
contexts that, over time, emerge as being more relevant 
to the situation currently faced by the agent. This is 
called context transition, and it is triggered by certain 
environmental events that signify that the situation 
faced by the agent has changed sufficiently to warrant 
activation of another behavioral context to better 
handle the emerging situation. This transition represents 
the simultaneous self-deactivation of the active context 
and the activation of another, more relevant context. 
Context-based Reasoning (CxBR) is a human behavior 
modeling technique that uses this approach to model 
human behavior in tactical situations. See [1] for more 
details on CxBR.
 Therefore, if agent A can be said to be in context Ci, 
we represent this as A[Ci]. Furthermore, if agent O can 
infer that agent A is operating under context Ci, and 
the description of Ci is known to O, then O can predict 
the future near-term actions of agent A. Our approach 
is based on doing exactly this — inferring context Ci in 
A by observing its actions externally. Therefore, while 
Ti and Ci are naturally associated, the viewpoints and 
functionality are radically different. This paper only 
addresses the first part of the process — inferring Ti. 

2.3 Temporal Template-based Interpretation

The original version of TBI could only detect and record 
discrete low-level actions — e.g., putting down the 
landing gear, firing the main gun, etc. TBI is not capable of 
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interpreting intent if the actions indicative of such intent 
are continuous in nature and last for several minutes. 
An example of this would be that a drunk driver would 
be prone to continuously swerve her car on the road. 
Such actions cannot be identified or interpreted with a 
static attribute. TTBI permits the definition of temporal 
templates containing attributes defined as sequences of 
time- or distance-related data points. Incidentally, this 
would make the determination of the weights by hand 
very complex, providing the inspiration for the other 
major enhancement to TBI — the automatic assignment 
of weights based on observed behavior by an agent in a 
simulator.
 To better correlate with corresponding behavioral 
contexts, TTBI implements a hierarchical organization of 
templates. The top-level templates are called competing 
templates. These templates can describe an agent’s 
high-level intent, and correspond to Major Contexts 
in CxBR. Supporting templates, on the other hand, 
are used to provide attribute values if they are needed 
by a competing template or another support template. 
Competing templates are evaluated in a bottom-up 
fashion. Each supporting template is evaluated before 
the competing templates are evaluated. Template 
attributes can be Mandatory or Non-mandatory. A 
template is considered able to compete (referred to as 
being valid) if all of its Mandatory attributes (if any) are 
true, and unable to compete (invalid) if there is one or 
more Mandatory attributes, and at least one of them is 
not true.
 Non-mandatory attributes contribute to the total 
value of the template. Their weights are indication of 
how relevant they are to the agent’s perceived intent. 
However, they don’t have to have a value or be true for 
their template to be considered valid. Valid competing 
templates whose output value exceeds Tc are compared 
immediately upon exceeding Tc, and the one with the 
highest value is announced as the current template 
representing the context active in agent A.
 Mandatory attributes can be allowed to contribute 
to the value of the template if a non-zero weight is used. 
Conversely, if a zero weight is used for a Mandatory 
attribute, it contributes nothing to the output value of 
the template. It merely needs to be true for the template 
to be even considered in the competition. A zero weight 
for Mandatory attributes is typically more commonly 
used than non-zero.

2.4 Automated Weight Determination

Observing the structure of a template, one could make 
the analogy that each template is similar to a single 
layer neural network with a linear activation function. 
Specifically, the inputs (attributes) each are individually 
multiplied by their own weights and the summation 

of each of those results becomes the output. Figure 2 
illustrates the analogy. Let Ik be the kth input attribute 
and Wik be the corresponding weight associated with 
the kth input. Their product is summed with the other 
products for the output of the ith template, Ti. This is 
equivalent to a single-layer neural network with a linear 
activation function and output Ti.

Figure 2. Template weight learning by observation 
using NN framework

 That being so, a neural network training algorithm, 
such as back-propagation, could be used to set the value 
of the weights [34]. For a one-layer neural network, this 
algorithm is called LMS. In this case, the template output 
value, the sum of the weights of each input attribute 
multiplied by its associated weight, corresponds to the 
output of the neural network with a linear activation 
function.
 With this intuition, we used the neural network 
training procedures for determining these template 
weights by presentation of examples of the complex 
behavior to be recognized. Additionally, the templates 
were not restricted to a single layer neural network for 
implementation. For each template, only the template 
output resulting from the inputs is a consideration. 
This is because the important thing is that the output 
from each of the competing templates has to compare 
correctly against each of the other templates. Specifically, 
the template that wins the competition should be the one 
with the highest output value, or score. Furthermore, 
multiple internal neural network layers would allow 
for greater output discrimination with more complex 
behaviors than could be possible with a simple 
summation of weighted values.

2.5 Fuzzy Functions for Attributes

For training neural networks to recognize the complex 
behavioral contexts, a means for representing and 
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normalizing the attribute input values was needed 
because the neural networks train most efficiently when 
the input values are in the range of -1.0 to +1.0. The 
approach taken was to use fuzzy sets to represent the 
membership of the attribute to the behavior pattern 
classification whose detection is being sought. As Zadeh 
[35] points out, fuzzy sets provide a natural way for 
handling problems where sharply defined criteria for 
class membership are absent. That is the situation here, 
since specific attributes could be members of more than 
one template. In other words, we use fuzzy membership 
functions to define the weights. 
 Fuzzy sets are characterized by a membership 
function that assigns a grade of membership between 
0.0 and 1.0 for each member of the set. A membership 
value of 1.0 indicates full membership, while 0.0 
indicates no membership. Values in between indicate 
partial membership. Langari and Yen [36] provide 
some examples of membership functions based on the 
exponential function. One of their membership functions 
is shown below for the membership of the parameter T 
to the class “medium.”

µmedium (T) = exp ( - α |T – T0| 
p ), p ≥ 1

 The above equation provides a description for a class 
where the membership, µmedium(T), is highest for the 
parameter T around a given value T0, and decreases as 
the parameter deviates from that value. T0 denotes the 
center value where the membership is strongest. The 
scaling factor α affects how broadly or narrowly the 
membership function is defined.
 The values of the inputs for each set of behavior 
patterns to be recognized were statistically analyzed 
to determine the mean value and standard deviation 
for each parameter for the examples representing 
each pattern type. The mean corresponded to the T0 

in the above equation, and the inverse of the standard 
deviation was used as a scaling factor to define how 
narrow the membership function would be. Thus, 
each input parameter for neural network training was 
transformed to a range of 0.0 to 1.0 through a fuzzy 
membership function. We now describe an application 
of this approach that identifies the intention of the 
observed entity and can determine the value of the 
weights through observation.

2.6 High-level Algorithm Describing this 
Approach

The approach presented in this paper can be described 
by the following high-level algorithm:

 1) Observe the entity to be modeled either in a  
  simulator or in the real world. Record the values of  

  all variables of interest. There will be one data set  
  for each run executed.
 2) Classify the results of the observation into types of  
  actions that were executed by the performing agent  
  A during the observation phase.
 3) Design a membership function for each of the  
  identified action types. Transform each data set  
  with each of the membership functions defined.  
  Assign a value of 1.0 or 0.0 to each data set  
  depending on whether or not the transformed data  
  set describes the intention/behavior corresponding  
  to each membership function.
 4) Partition the data sets into training, validation, and  
  testing data in accordance with established  
  procedures.
 5) Design the architecture of the neural networks to be  
  used according to established procedures.
 6) Train neural networks to determine the weights of  
  each template attribute.

 We should note that no effort was made in this 
investigation to automate the selection of the variables 
of interest. In our evaluated application, the variables 
of interest were selected by a human who considered 
what was strictly necessary to infer the agent’s intention. 
However, we see variable selection as an important issue, 
not only to select those variables that are necessary, but 
also to leave out those that are not. We leave this for 
future research.

3. Evaluation of Approach

To evaluate the effectiveness of our approach, we 
implemented TTBI in an application for predicting how 
an agent is driving a vehicle in a military simulation. The 
vehicle in question is a battle tank (M1A2) and the task 
is how to navigate a turn with this vehicle in a simulated 
environment. There are many ways experienced tank 
drivers can perform this maneuver. This application calls 
for an accurate prediction of a simulated tank’s path 
around a turn. The accuracy requirements are indeed 
unforgiving. Lateral deviations (positive to the right; 
negative to the left) are limited to no more than 14.4 
inches. Motional discrepancies (forward being positive) 
were limited to less than 29 inches. Our use for such 
accurate prediction was to reduce the communication 
bandwidth required in a distributed simulation by being 
able to predict accurately the location of the vehicle 
[37].
 To eliminate the difficulties involved with sensors 
interpretation in the real world, we restrict the 
performance of agent A’s behavior to a simulation. 
Furthermore, we restrict our evaluation to recognizing 
the agent’s near-term intentions to follow a particular 
path when driving the tank around a turn in the road. 
The selected path is one of several paths pre-classified 
through observation of the agent’s past behavior. While 
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this admittedly does not involve recognition of high level-
intentions per se, it does provide the ability to predict the 
exact location of the agent by recognizing the path upon 
which it is embarking at an early stage of the action. It 
represents a special case of the general case described in 
Section 2, but with little loss of significance. In effect, 
the template has several sub-context templates vying 
for selection as the one the agent is executing. Given 
the structural and functional similarity of major context 
templates and sub-context templates, the evaluation of 
how TTBI infers sub-context level templates does not in 
any way invalidate the evaluation of the TTBI method 
as it would approach the major context template.

3.1 Simulation Infrastructure Used

The simulation system used for this experiment was 
the ModSAF system, a constructive military simulation 
environment. A specific turn was selected in the terrain 
database for the National Training Center in California. 
Figure 3 depicts the turn, all its related parameter 
definitions, and a typical outside path taken by the 
simulated tank. ModSAF contains the functionality to 
steer a virtual tank though a turn, albeit imperfectly.
 The road segment of interest here is defined by its 
waypoints. Waypoints typically are placed in locations that 
mark a change in direction for the vehicle of interest. A 
turn, therefore, is defined as a segment of road consisting 
of three waypoints that are not in line with each other. 
Figure 3 depicts three of them, one at each terminus and 
one at the center of the turn. Depending on the angle of 
the turn, the driver may choose to take the turn either on 
the inside, thus cutting off the angle, or on the outside, 
thereby curving wide around the turn to provide room 
for maneuver. How the tank merges back into the center 
of the road after the turn also can vary in many ways. 
Therefore, the tank’s path is decomposed into two phases 

— its approach to the waypoint, defining the turn of 
interest, and its departure from that waypoint toward 
the next waypoint. The approach is the path taken by 
the agent prior to reaching the center waypoint. The 
departure is its path thereafter. The objective is to predict 
where the simulated tank (agent A) would be at all times 
within the strict accuracy requirements stated above. We 
accomplished this by observing a priori that there is only a 
handful of ways the turns are taken, and later classified the 
real time data into one of these paths using TTBI.

3.2 A Priori Observations of Agent A in the 
Simulation Environment 

To learn the weights to be used in the templates, 110 
simulations runs of the agent A taking the designated turn 
were executed in ModSAF and recorded. Only these 110 
recorded paths were used to learn the values of the weight 
of the template attributes. The headings of agent A at the 
start of these simulations varied by one degree, from 6° to 
the left of north to 4° to the right of north. Ten runs were 
executed for each initial heading, with each run beginning 
20 waypoints and 3 km before the designated turn. Given 
the slightly different initial headings, the actual paths taken 
by agent A tank in ModSAF varied significantly, but all 
within the realm of realism as if executed by a human.
 Analysis of the results indicate that the approaches 
can be classified into three categories: 1) Early — the 
tank began to curve away from the road centerline 
more than 45m before the turn center waypoint; 2) 
Nominal — between 30m and 45m before the turn 
waypoint; and 3) Late — less than 30m. Furthermore, 
each category could be further divided into single curve 
and double curve. Table 1 shows the distribution of 
the classifications, indicating that early and nominal 
single curves were the most prevalent. Figure 4 shows 

Figure 3. Turn used for experiments
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Approach Categories No. of Runs

Early, Single Curve 47

Early, Double Curve 15

Nominal, Single Curve 41

Nominal, Double Curve 0

Late, Single Curve 7

Late, Double Curve 0

Total 110

Table 1. Summary of approach category frequencies

Figure 4. X-Y coordinates of sample experiemental runs

Departure Types No. 
of 
Runs

Description

Flat Nominal (FN) 15 Parallels outbound segment, then turns to intercept at about 45 meters beyond 
the turn

Flat Bow Low (FBL) 16 Same as FN, but slight bow before turn to intercept

Flat Bow High (FBH) 17 Same as FBL, but slightly more pronounced bow

Bow Nominal (BN) 35 Definite bow on the departure that continues to an intercept at about 45 meters 
beyond the turn

Straight Angled (SA) 10 After initial turn, maintains an intercept heading with little or no change to an 
inctercept beyond 80 meters

Bow Wide (BW) 7 Much wider bow than BN with intercept beyond 80 meters

Bow Asymptotic (BA) 3 Initially similar to BN, then smoothly reduces intercept heading to asymptotically 
intercept beyond 60 meters

Bow Distant (BD) 3 After initial turn, slowly turns to an intercept heading beyond 80 meters 
resulting in an extended slight bow

Double Curve (DC) 3 Initially turns to a heading that would intercept close to the turn, then turns 
away from the segment followed by a turn back that closely resembles the SA 
pattern

Close Intercept (CI) 1 Intercepts within about 10 meters followed by a long-lasting overshoot before 
eventual re-intercept

Table 2. Departure pattern types

Y-Coordinate

A B
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two data samples — graph A depicts an early, single 
curve approach while B shows a nominal single curve 
approach.
 The departure categories were somewhat more 
complex. Ten different categories were identified. Table 
2 contains a summary description. See Table 11 in [32] 
for details. Note that these pre-classifications were 
done manually by the investigators. However, the work 
could be reasonably extended in the future to do this 
automatically with a clustering algorithm.

3.3 Extracting the Weights from the Observations

Training, validation, and testing examples were created 
from the 110 simulation runs. These runs were used to 
train neural networks to recognize the six most frequently 
occurring departure types on the turn. First, the runs 
for the departures were selected and the XD, HR, and 
SP variables (defined in Figure 3) were calculated for 
each run. Then, six fuzzy set membership functions 
were created from those variables by calculating the 
means and standard deviations for the XD, HR, and SP 
variables at 26 locations for the each of the six different 
data sets. These 26 locations were at the beginning of 
each 2-meter segment from the turn’s center waypoint 
(its knee) to the third, as shown in Figure 3. The runs 
in each data set included only those runs of a specific 
departure type, e.g., 35 BN categorized runs were used 
for the BN set and 17 FBH runs were used for the FBH 
set.
 The fuzzy membership functions expressed how close 
the values for the individual runs were to the average 
value for that variable for that classification data set. 
These membership functions were based on the Gaussian 
probability density function, given by the equation 
below:

f(y) = 

ffG(y) = 

where μ is the sample mean and σ is the sample standard 
deviation of a normal random variable y.
 The constant in front of the exponential term was 
removed because for the transformation function, the 
desired output is 1 when the variable is equal to the 
mean (y = µ), and approaches 0 when |y - µ| is not close 
to the mean (i.e., the value is much greater than σ). In 
the resulting Gaussian fuzzy function shown below, the 
variable Z = (y - µ) / σ is a measure of the number of 
standard deviations that the variable is above or below 
the mean value.

 After creating those six fuzzy functions, they were 
applied to the selected data for each of the 110 runs, 
thus creating six master data sets of transformed inputs 
for each of the 110 runs, regardless of which type they 
were. Within each of the six master sets, those runs that 
were classified as being of the same type as the fuzzy 
function used for the transformation had their single 
output value set to 1.0. All other runs in the set had 
their single output value set to 0.0. The runs from those 
data sets were then separated into training, validation, 
and testing sets. The neural networks were then trained 
with the training and validation sets for each of the six 
classes, and their learned weights were the attribute 
weights for the template they represented.
 The format for the data set examples for the three 
data values (XD, HR, and SP) for the 26 locations 
(from 0 through 50 meters past the center waypoint) 
is a sequential representation of the three variables in 
each of 26 rows with the output value (1.0 or 0.0) as 
the single data item on the 27th line. Table 3 shows 
examples for a run with an FBL departure type at the 
turn. The raw, calculated values for XD, HR, and SP are 
in the box on the left with the nominal values of DA, the 
distance after the turn, next to the applicable rows. The 
two examples on the right were transformed using the 
FBL and BN fuzzy membership functions, respectively. 
Note that there are 26 examples produced from each 
run, one for each 2-meter increment of DA, since the 
XD, HR, and SP values are zero at each DA value until 
the agent has reached it. The 1.000 at the end of the 
middle box indicates that the data indeed represents an 
FBL departure. On the other hand, the 0.000 at the end 
of the right box indicates that the raw data in the left 
box do not represent a BN departure.

3.4 Templates for Application

The context and sub-context templates developed for 
this research addressed only the limited case of a Road 
March task — the tactical process followed by the 
military to move men and materiel from one place to 
another by way of a road, without enemy presence. As 
such, there was only one major context template created 
— RoadMarch. Nevertheless, separate template files 
were created for both the RoadMarch major context 
and the sub-contexts relevant to the RoadMarch 
major context. The experiment, however, centered on 
identifying the sub-context controlling the tank entity. 
Given the identical structure of sub-contexts and major 
contexts, this was not considered a limitation to the 
experiment.
 The RoadMarch major context template is simplified 
— it contains only one attribute and it is mandatory. 
That attribute, NearRoad, is true and produces a 
template value of 1.0 if the current value of XD, the 
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0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

DA XD HR SP

2.283
2.467
2.730
2.909
3.039
3.134
3.193
3.231
3.236
3.222
3.189
3.155
3.120
2.991
2.821
2.553
2.272
1.903
1.493
1.186
0.823
0.473
0.182
-0.187
-0.416
-0.437

7.348
7.348
5.167
5.167
3.228
1.549
1.549
0.144
0.144
-0.972
-0.972
-0.972
-0.972
-5.721
-5.721
-9.310
-9.310
-10.763
-10.763
-10.763
-9.410
-9.410
-9.410
-11.930
-0.715
-0.491

5.138
5.518
5.879
5.922
6.258
6.354
6.598
6.883
6.935
7.220
7.264
7.550
7.930
8.311
8.596
8.629
8.629
8.189
8.189
8.189
7.990
7.990
5.846
3.259
2.193
2.903

0.906
0.966
0.999
1.000
0.998
0.998
0.997
0.995
0.995
0.994
0.997
0.997
0.996
0.999
0.997
0.996
0.999
0.982
0.946
0.978
0.936
0.876
0.855
0.743
0.738
0.918
1.000

0.865
0.865
0.991
0.696
0.845
0.872
0.842
1.000
0.955
0.950
0.950
0.982
0.812
0.945
0.945
0.875
0.915
0.807
0.830
0.583
0.809
0.792
0.788
0.644
0.438
0.547

0.949
0.908
0.879
0.950
0.907
0.964
0.951
0.883
0.984
0.953
0.980
0.950
0.957
0.996
0.980
0.988
0.874
0.990
0.873
0.821
0.910
0.887
0.135
0.325
0.278
0.255

Transform

0.999
0.473
0.313
0.213
0.145
0.112
0.101
0.094
0.111
0.150
0.232
0.323
0.424
0.481
0.578
0.684
0.770
0.817
0.830
0.887
0.909
0.893
0.892
0.833
0.851
0.984
0.000

0.232
0.232
0.054
0.010
0.304
0.241
0.999
0.993
0.550
0.675
0.121
0.030
0.139
0.844
0.360
0.882
0.733
0.866
0.874
0.878
0.789
0.999
0.998
0.725
0.045
0.170

0.077
0.218
0.367
0.272
0.389
0.333
0.375
0.429
0.320
0.449
0.381
0.616
0.898
0.995
1.000
0.976
0.934
0.625
0.678
0.679
0.636
0.762
0.001
0.000
0.000
0.338

Transform

Table 3. Gaussian transformed examples

Raw Values FBL Gaussian BN Gaussian

entity’s cross distance measured perpendicularly from 
the current road segment’s centerline, is less than 5.0 
meters on either side. This equates to a simple rule: “If 
the entity is within five meters of the road segment’s 
centerline, then the RoadMarch template is valid with 
a competing value of 1.0; else, it is invalid and does not 
compete.” This is reasonable. Otherwise the tank agent 
would not be following a road and would be involved in 
some other action.
 The sub-context templates that competed for selection 
were divided into two groups — approach templates and 
departure templates. The approach templates (A_EAR, 
A_NOM, A_LATE, and A_DBL) identified the type of 
approach the agent being observed (A) was taking. These 
approach templates are rule-based, and the rules turned 
out to be quite simple: If the agent began to separate 
from the centerline of the road more than 45m before the 
center waypoint, then it was classified as early (A-EAR). 
If the separation began between 45 and 30m before the 
center waypoint, then it was considered nominal (A_
NOM). If separation began closer than 30m, it was late 
(A_LATE). The double curve — a double “hump” as it 

separated from the road centerline — introduced a bit of 
intrigue into the process, but in general, these templates 
were too simple to be interesting and were not pursued 
any further.
 The departure templates, on the other hand, did 
present interesting challenges. These used neural 
networks with weights trained by observation of 
examples of the behaviors as described earlier. They are 
described in this next section

   3.4.1 Neural Network-based Competing 
Templates for Turn Departure Sub-contexts

 There were six competing departure templates based 
on the observed behavior categorized into sub-contexts 
for the RoadMarch. The six departure templates were 
DepartureOutsideBN (DP_BN), DepartureOutsideFBH 
(DP_FBH), DepartureOutsideFBL (DP_FBL), 
DepartureOutsideFN (DP_FN), DepartureOutsideSA 
(DP_SA), and DepartureOutsideBW (DP_BW). The 
“DepartureOutside” label indicates that in each of these 
categories the agent took a wide turn on the outside road, 
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as opposed to cutting off the turn inside to minimize the 
distance.
 The only mandatory attribute, which calls the support 
template DPOUT to return its validity, is the same for 
all six departure templates. DPOUT indicates whether 
the departure is outside or inside. Its weight is set as 0.0, 
so this mandatory attribute contributes nothing to the 
confidence value of the template, but is necessary for the 
template to be considered for competition. The DPOUT 
support template can be valid only as long as the entity 
is closer to the previous waypoint than the current one 
being approached. This identifies that the entity is on 
the departure phase of the turn, and not its approach. 
Thus, none of these competing departure templates can 
be valid at the same time as the competing approach 
templates.
 Two non-mandatory attributes respectively call two 
functions that return the History and the Recent neural 
network outputs for the departure type of the template. 
For example, the DP_BN template calls the BN_NN_
HISTORY and BN_NN_RECENT function attributes 
and the DPFBL template calls the FBL_NN_HISTORY 
and FBL_NN_RECENT function attributes. The 
History neural network takes advantage of all the data 
being built up as the entity progresses through the turn. 
In other words, the more ground the observed agent has 
covered, the more certain the observer becomes that it 
is properly identifying the turn classification. However, 
because of the nature of neural network training with 
examples that are more heavily filled in with the earliest 
data in the departure, a change in behavior part way 
through the departure would not easily overcome the 
earlier identification. The History neural networks were 
trained to output 1.0 for its recognized turn type and 
0.0 for all other types.
 The Recent neural network, on the other hand, focuses 
on a moving window of the most recent data points in 
order to counteract the inertia of the History neural 
network. They were trained to output 1.0 for recognized 
turn types and -1.0 for all others. The attribute to which 
the History neural network is assigned has a Certainty 
Factor (CF) value of CFH, while the attribute assigned 
the Recent neural net has a CF of CFR.
 Those returned attribute values, when multiplied by 
their individual weights (CFH and CFR, respectively), 
are combined using standard certainty factor procedures 
to produce a template confidence value. That value is 
then compared to the template’s critical threshold, Tc, 
to determine whether the template can be considered the 
winner if it has the highest total output. The values to use 
for the weights and Tc were determined by experiment, 
which will be discussed in the next section on testing.

4. Testing and Evaluation of Prototype

Performance of the prototype was assessed using two 
measures: 1) number of correct identifications of the path 
actually taken by the observed agent and 2) how early a 
correct identification of the path could be made. There 
were two series of tests performed on the prototype 
system developed as part of the work described. In part 
1, the template evaluation mechanism was subjected 
to the previously collected data representing an agent 
making a series of runs not used in training the neural 
networks, but for the same turn on which the training 
data was obtained. This we refer to as Turn #1 testing. 
The second set of tests evaluated the generalization 
ability of the system. We subjected the same templates to 
runs executed on a similar, but different turn in the same 
National Training Center terrain database. We refer to 
this as Turn #2 testing. Runs from Turn #2 were not 
used in training the neural nets.
 Of the 110 (non-repeatable) runs used as data for our 
work, 18 of these, arbitrarily selected, were designated 
for use only during testing, and not used for training or 
validating the neural network. Each run was composed 
of the approach phase and the departure phase. As 
mentioned above, however, the approach phase was 
deemed almost trivial and thus was not evaluated. More 
interesting was the departure, as there were several 
different types and they were not easily distinguished 
from one another by simple rules. This evaluation of the 
departure portion of the turn formed the basis for our 
testing. We begin by describing Turn #1 Testing.

4.1 Turn #1 Testing

The 18 runs saved for system testing were evaluated 
using the templates and their accompanying neural 
networks for identification. The output of the competing 
templates (six in all) was a value between -1.0 and 1.0. 
The value indicated the confidence that each template 
had that the current run being presented to them was of 
their type. The results were evaluated as either Correct 
ID, False ID or No ID. A Correct ID was indicated 
when the winning template in the template competition 
agreed with the a priori classification of the test run. A 
False ID result indicated disagreement. A No ID came 
about when the template competition did not offer any 
template that arose above the Tc value selected for that 
competition. One must note that in two of the 18 test 
cases, the correct classification of the run was not found 
among the six template classifications. This happened 
because there were more than six original classifications, 
but only the six most popular in terms of frequency of 



Volume 1, Number 3 JDMS  165

Context-driven Near-term Intention Recognition

appearance were formalized and used in the evaluation. 
Therefore, for those cases not represented by a template, 
the correct identification in fact should have been No 
ID. For those two cases, if the template competition 
returned a No ID, this was evaluated as a Correct ID.
 Figure 5 depicts the results obtained with CFH and 
CFR, certainty factors for “History” and “Recent” 
neural network outputs (which acted as template 
attributes), both being set to either 0.5 or 1.0 each, and 
Tc set at 0.3. This mix of CFH and CFR maximized the 
ratios of correct percent over false percent compared to 
other mixtures of CFH and CFR with values of 0.0, 0.5, 
and 1.0. These results indicated that when CFH = CFR 
= 1.0 rather than CFH = CFR = 0.5, the Correct IDs 
increased a bit, as did the False IDs, both at the expense 
of the No IDs. This difference is not seen as significant.
 Additional experiments were performed varying the 
value of Tc. The objective here was to determine how 
selective to be in the template competition. Naturally, 
we expected the number of No IDs to increase as Tc was 
increased. This is in fact what happened. The Correct 
IDs and False IDs, however, remained relatively constant 
until Tc reached 0.70.
 With regard to how early the identifications were 
made, we noted the first instance when the correct 
identification was made for those runs for which a Correct 
ID was made. Table 4 indicates an example of how early 
it was in one case to identify correctly the path taken by 
the simulated test entity. The results indicate that for the 
most part, the correct template was identified very early 
in the process, as in the first 2 to 6 meters beyond the 
turn waypoint. This is a tremendous advantage in that it 

Figure 5. Averages of correctness results versus equally weighted CFH/CFR

DA BN FBH FBL FN SA BW

0.0 -1.00 -1.00 -1.00 -1.00 -0.97 -0.93
2.1 0.87 -0.99 -1.00 -1.00 -0.97 -0.95
4.3 -1.00 0.01 -1.00 -1.00 -0.97 -0.99
6.2 0.93 -0.73 -0.98 -1.00 -0.97 -0.99
8.1 0.91 -0.74 -0.99 -1.00 -0.97 -0.99
10.2 0.93 -1.00 -1.00 -1.00 -0.97 -0.99
12.2 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
14.3 0.99 -0.99 -1.00 -1.00 -0.97 -0.99
16.5 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
18.1 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
20.3 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
22.4 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
24.1 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
26.3 0.98 -0.97 -1.00 -1.00 -0.97 -0.99
28.5 0.98 -0.99 -1.00 -1.00 -0.97 -0.99
30.2 0.95 0.75 -1.00 -1.00 -0.97 -0.99
32.4 -1.00 0.82 -1.00 -1.00 -0.97 -0.99
34.1 -1.00 -0.99 -1.00 -1.00 -0.97 -0.99
36.4 -1.00 -1.00 -0.72 -1.00 -0.97 -0.99
38.1 0.66 -0.99 0.14 -1.00 -0.97 -0.99
40.4 0.98 -0.99 -1.00 -1.00 -0.97 -0.99
42.1 -0.12 -0.93 -1.00 -1.00 -0.97 -0.99
44.4 0.70 0.92 -1.00 -1.00 -0.97 -0.99
46.1 0.96 -0.69 -1.00 -1.00 -0.97 -0.99
48.3 0.97 0.92 -1.00 -1.00 -0.97 -0.99

Table 4. Competing template values (Turn1, BN Test 
Run r4.2). Note: Competitive templates are bolded 
and winning templates are italicized as well.
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DA Correct ID False ID No ID

0-2 72.2% 22.2% 5.6%

2-4 77.8% 16.7% 5.5%

4-6 72.2% 16.7% 11.1%

6-8 77.8% 11.1% 11.1%

8-50 83.3% 11.1% 5.6%

Table 5. Real-time recognition of agent intention for 
Turn #1

 Table 6 depicts the 18 runs on Turn #2. It shows 
that most of the runs could be labelled FBL, at least for 
the first half of the road segment after the waypoint. 
Two others could be categorized as FBH and one (run 
#2) had no similarity whatsoever to the classifications 
determined in Turn #1.
 These determinations of what the templates should 
reasonably show were used as the basis for comparison 
to what the templates actually produced. In making this 
evaluation, ten sets of trained History neural networks 
and ten sets of Recent neural networks were used in 
various combinations so that each set was used three 
times with three different sets of the other type of neural 
network. Each set of trained neural networks consisted 
of six neural networks, each trained for a different 
one of the six major categorized turn types. Thus, 30 
evaluations were made of each of the 18 repeatable 
test runs. The percentage results of correct, false, and 
No IDs for these 30 evaluations for each test run are 
shown in Table 7. Overall, approximately 84.9% of the 
template responses were correct, including No IDs when 
no match should have been made; 11.1% were false; 
and 4.1% were of No ID, when a match should have 
been made. 
 While these results do not provide the fidelity for the 
correctness average shown for Turn #1, it gives us an 
appreciation for the ability of the system to generalize, 
to some degree, and extend the results of one turn to 
another, similar one. The results indicate that, except for 
run #2, the system was able to identify the path taken 
by the simulated entity for at least the first half of the 
trajectory past the initial waypoint. Thereafter, the path 
diverges from any known categorization of Turn #1, 
and no identification was possible.
 Continuing with the evaluation of how early the 
system can identify the agent’s intent for Turn #2, Table 
8 depicts the results tabulated for only the first 10 meters 
of Turn #2 departure. We used 30 sets of History and 
Recent NN’s combined using CFH and CFR = 0.5 and 
Tc = 0.3 on the 18 test scenarios used for Turn #1.

4.3 Summary of Testing

The evaluation of the intention recognition of agent 
A on Turn #1 was generally good overall. Correct 
identifications were in the 75% to 85% range, false 
identifications in the 3% to 13% range, and no 
identifications in the 7% to 12% range. On Turn #2, 
the ModSAF agent used to generate the data did not 
reproduce the same behaviors that were identified on 
Turn #1. However, the early portions of most of the test 
runs were very similar to the early portions of one of 
the behaviors identified on Turn #1. If the identifications 
for the portions of the departures that were judged to 
successfully match are counted as correct and those 

permits early identification of observed behavior, giving 
the observer time to react to the intended actions. This 
is particularly important in conflicts where knowledge 
of an opponent’s intention can lead to better counter 
tactics and/or preparation.
 The results for a single 78-5-1 History NN and a Tc 
of 0.3 on the 18 runs are depicted in Table 5. (78-5-1 
indicates 78 input nodes, 5 hidden nodes, and 1 output 
node.) The early recognition is admittedly a characteristic 
of the data presented to the system, and it may not be 
the case in all applications. Nevertheless, when the data 
did permit early identification, the system was capable 
of doing so.

4.2 Turn #2 Testing

These tests were conducted with runs from the agent 
taking a similar, but not identical, turn in the same 
database. This test introduced several differences in how 
the test was performed. First of all, since we used the 
networks trained on data obtained for Turn #1, the idea 
of using training, validation, and testing runs was not 
applicable. Because the 110 original runs were executed 
for the entire route (encompassing both Turns #1 and #2 
as well as other terrain), the same 18 runs were used for 
testing on Turn #2, except that the data specific for Turn 
#2 were used. Secondly, since the departure classes on 
Turn #2 were not categorized as they were for Turn #1, 
there was no automatic means to check for Correct ID, 
False ID, or No ID for the outputs. Thus, the winning 
template outputs from combining the History and 
Recent NN attributes could not be evaluated directly 
for correctness, as was done for Turn #1. Instead, 
the template program used for testing on Turn #1 
was modified to record the winning template number 
along with the details of the template outputs rather 
than information on the correctness of the output. For 
Turn #2 test evaluation, the XD, HR, and SP outputs 
for each test run were compared against the XD, HR, 
and SP mean values for the departure type identified as 
the winning template output for each of the 18 runs to 
check for reasonableness. 
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Test 
Runs

Departure
Types

Location
(Meters)

Comments

1 FBL 0 – 24

4, 6-13, 15 FBL 2 – 24

16, 17, 18 FBL 0 – 28

3 FBL 8 – 28

5
FBL 0 – 6 Only departure type in this region

FBH/FBL 8 – 16 FBH is best match, but either is acceptable

FBH 18 – 24 Only departure type in this region

2 None 0 – 50 No departure type matches expected anyplace

14 FBL 16 – 24

Table 6. Summary of test runs at Turn #2 evaluations. Note: Lack of a winning template outside the locations shown 
is counted as a Correct ID

that did not as false, the off-line responses on Turn #2 
would be 85% correct, 11% false, and 4% with no 
identification. These results are generally within the 
ranges noted for Turn #1.
 None of the turn action types observed on Turn #2 
were the same as the ones observed on Turn #1. However, 
the portions of the turn actions on Turn #2 that were 
very similar to an observed action type on Turn #1 
were identified as that similar behavior. That showed 

reasonable generalization by recognizing portions of 
actions that matched what had been previously learned 
on Turn #1. There was a small but finite group of 
identifications of action types for the portions of the 
Turn #2 actions that did not match the learned actions 
from Turn #1. It is also seen that TTBI avoids incorrect 
identification of behaviors (including No IDs) where 
significant ambiguities existed and thus classification 
was not appropriate.

Test Runs Correct ID (%) False ID (%) No ID (%)

1
2
3

86.9
42.9
91.5

12.3
57.1
3.8

0.8
0.0
4.6

4
5
6

88.6
76.4
82.7

10.6
9.7
10.8

0.8
13.8
6.5

7
8
9

92.6
94.2
92.6

1.3
3.5
1.9

6.2
2.3
5.5

10
11
12

95.4
91.9
93.8

3.8
6.5
0.8

0.8
1.5
5.4

13
14
15

91.5
66.0
93.3

1.9
25.0
1.3

6.5
9.0
5.4

16
17
18

83.1
83.5
80.4

16.9
16.5
15.0

0.0
0.0
4.6

Average 84.86% 11.05% 4.10%

Table 7. Correct, false, and no ID percentages for test runs at Turn #2
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DA Correct ID False ID No ID

0-2 76.7% 16.7% 16.7%

2-4 72.8% 7.2% 20%

4-6 93.3% 5.0% 1.7%

6-8 94.4% 5.6% 0.0%

8-10 87.2% 7.8% 5.0%

10-12 89.6% 8.7% 1.7%

Table 8. Real-time evaluation for Turn #2

5. Summary and Conclusions

The results of our evaluation of our weak-model 
approach to recognize the intentions of a tank driver to 
follow a certain path around a turn in the road proved 
to be largely successful at identifying its near-term 
intentions and predict its lower level actions. However, 
we believe that the similarity in structures to higher-level 
identification makes it such that the TTBI approach could 
be similarly applied at any level of context abstraction.
 The intuition of equating the template attribute 
weights to neural network weights resulted in a good 
method to learn the weights directly from observation 
of prior agent behavior. This is critical for a weak-model 
approach such as presented here. While the process is 
not completely automated, future research could more 
readily make this learning process highly automated by 
using clustering algorithms to group similar types of 
runs.
 In conclusion, while the method yielded good results, 
it required significant manual effort to review the runs 
and classify them, build the fuzzy set membership 
functions and train the neural networks. Much of the 
effort was application-specific. Table 9 lists important 
characteristics for generalizing the TTBI technique to 
other applications. These characteristics impact the 
feasibility of TTBI, as well as its context identification 
process during operation. Each characteristic is 
determined either by the knowledge engineer at 
design time, or at runtime by the constraints of the 
operational environment and entity operation itself. 
As listed in Table 9, the knowledge engineer must 
be able to decompose the behaviors into mutually 
exclusive contexts that are complete and consistent. It is 

important for the knowledge engineer to select the most 
indicative environmental variables for observation and 
a suitable level of behavioral abstraction. Automating 
the selection of these variables is beyond the scope 
of this research and is the subject of future research. 
Furthermore, the operational environment needs to 
be properly instrumented to gather the observation 
stream required by TTBI and it must do so in real time. 
Finally, the entity’s behavior needs to exhibit all modes 
during training while exhibiting minimal unforeseen 
or inconsistent modes during operation. Making the 
system noise tolerant also is beyond the scope of this 
investigation and the subject of future research.
 Lastly, we present a discussion about the 
computational complexity for scaling this concept to 
other major behavioral contexts and their behavioral 
sub-contexts for the extended TTBI approach. Let N 
denote the number of major context templates, with 
an average number of attributes being A. The number 
of comparisons to determine the major context would 
be on the order of N*A, or O(N*A). If the number 
of attributes per template were considered relatively 
constant, the complexity would be expressed as 
O(N). For any given major context that was selected 
as the winning template, the sub-contexts that would 
compete are limited to the sub-contexts of that major 
context. Thus, if the number of sub-context templates 
and their attributes were relatively constant from one 
major context to another, the complexity still would 
be expressed as O(N). Therefore, the addition of new 
major contexts to be considered would scale with a 
linear complexity thereby demonstrating good potential 
for scalability.
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Important Characteristics Responsible Information Source Criticality for Success

Ability to decompose entity behaviors 
into mutually-exclusive contexts within 
the given domain

Knowledge Engineer Essential: must be accurate, 
complete, and internally consistent

Ability to identify which of all possible 
observable environmental variables 
should be monitored as being most 
indicative of current context/transitions

Knowledge Engineer Important: very strong positive 
correlation desired, but set 
of variables selected need not 
be optimal for TTBI to work 
correctly

Ability to select a tractable yet useful 
level of abstraction of the entity’s actions

Knowledge Engineer Important: low-level behaviors can 
be more readily correlated with 
environmental observations 

Availability of instrumentation to 
observe the identified environmental 
variables to create a stream of discrete or 
continuously-valued observations 

Operational Environment Essential: required during both the 
training and performance phases

Sufficient breadth and consistency in 
the entity’s behavior as quantified by 
template inputs

Entity Operation Important: lack of breadth during 
training or inconsistencies during 
operation will decrease the context 
identification rate

Table 9. Factors affecting the applicability of TTBI technique
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