
Context-driven Near-term Intention
Recognition
Avelino J. Gonzalez
Department of Electrical and Computer
Engineering
University of Central Florida
Orlando, FL 32816-2450
gonzalez@ucf.edu

William J. Gerber
Department of Electrical and Computer
Engineering
University of Central Florida
Orlando, FL 32816-2450
bill.gerber@ieee.org

Ronald F. DeMara
Department of Electrical and Computer
Engineering
University of Central Florida
Orlando, FL 32816-2450
demara@mail.ucf.edu

Michael Georgiopoulos
Department of Electrical and Computer
Engineering
University of Central Florida
Orlando, FL 32816-2450
michaelg@mail.ucf.edu

JDMS, Volume 1, Issue 3, August 2004 Page 153–170
© 2004 The Society for Modeling and Simulation International

Recognizing the intention of others in real time is a critical aspect of many human tasks. This article describes
a technique for interpreting the near-term intention of an agent performing a task in real time by inferring
the behavioral context of the observed agent. Equally significant, the knowledge used in this approach
can be captured semi-automatically through observation of an agent performing tasks on a simulator
in the context to be recognized. A hierarchical, template-based reasoning technique is used as the basis
for intention recognition, where there is a one-to-one correspondence between templates and behavioral
contexts or sub-contexts. In this approach, the total weight associated with each template is critical to
the correct selection of a template that identifies the agent’s current intention. A template’s total weight is
based on the contributions of individual weighted attributes describing the agent’s state and its surrounding
environment. The investigation described develops and implements a novel means of learning these weight
assignments by observing actual human performance. It accomplishes this using back-propagation neural
networks and fuzzy sets. This permits early discrimination between different pre-categorized behavioral
contexts/sub-contexts on the human-controlled agent such as a military or passenger vehicle. We describe an
application of this concept and the experimentation to determine the viability of this approach.

Keywords: DIS, network bandwidth

1. Introduction and Background

There often is a need to determine the intention of others
before making decisions. A driver making a left turn
typically uses the left turn signal to advise other drivers
of her intention, thereby preventing dangerous actions
by other motorists. Strategic team games virtually
require that both teams be able to predict the intention
of the opposition when designing plays.
 In warfare, law enforcement and anti-terrorist
activities, however, determining the intent of the enemy
often becomes a life and death issue. Yet, like in team
sports, it is quite unrealistic to directly ask the enemy
about their intent. It must be inferred by unobtrusive
observation, and it must be done in real time.
 Our work presented here is based on the assumption
that one’s near-term intentions typically are based on a

contextualized behavior — a set of actions and procedures
humans perform while in a specific situation. Likewise,
contextualized behaviors and their associated actions are
used to control an agent while in a particular situation.
We assert that once an agent’s near-term intentions have
been identified by the observer, future (near-term) actions
by the observed agent can be predicted relatively easily.
For example, if the observer sees that a motorist agent
intends to turn left (left turn signal on and approaching
an intersection), he can predict its near-term movement
very accurately, and thereby act accordingly.
 We base our approach on inferring the behavioral
context of an observed agent whose intention we wish
to discover. Behavioral contexts are defined in the
Context-based Reasoning (CxBR) modeling paradigm
for human tactical behavior representation. See [1] for
details on CxBR. If the observer can infer the context
in which an agent is operating, then prediction of the
agent’s actions would follow relatively easily. In CxBR,
the context currently controlling an agent (i.e., the active

Volume 1, Number 3 154 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

context) contains the functionality to allow the agent to
successfully “navigate” through the current situation.
This approach relies on the fact that, normally, only a
limited number of contexts could be realistically used by
the agent in that situation. Furthermore, we assume that
there is no desire on the part of the observed agent to
disguise its intent to mislead the observer. However, the
approach could be modified to account for purposeful
deception in future work.

1.1 Previous Work

Previous research related to intention and plan recognition
is indeed extensive. Schmidt and his colleagues pioneered
the field of plan recognition with their seminal paper
in 1978 [2]. In their BELIEVER system, they posed
psychological theories for understanding how humans
view and infer the plans of others by observing their
actions.
 Other research in intention recognition investigated
the use of grammar parsing methodology to recognize
behavior as matching previously defined sequences of
events [3,4] while others investigated neural networks
to do the same [5]. Wang & Arbib’s model [4], however,
required that the complete pattern be presented before
the pattern recognition would occur. This would not be
useful for early recognition of actions to predict future
behavior in real time.
 In a different vein, a few investigators ran competing
models of the expected behaviors in parallel, either
as Kalman filters [6] or linear models [7]. They then
observed which model best tracked the observations
and used that model of behavior to represent the current
behavior. The results of Liu & Pentland [6] were mixed,
with typical success rates of between 40% and 70%
in real-time tests, depending on the circumstances. In
reports of later experiments, Pentland & Liu [8] used a
hierarchy of Markov dynamic models to represent long-
time-scale driver behavior and fine-grain behavior. The
Markov dynamic models using patterns of acceleration
and heading produced a 95 ± 3% recognition accuracy
two seconds after the command.
 In one case [7], a model used for system control was
adapted in real time to further reduce control errors. One
unique research effort [9] used supervised neural network
learning of processed inputs to directly discriminate
between three distinct behaviors, showing the feasibility
for automated machine learning of behavior at some
level. Their results showed a maximum of 95% accuracy,
but only one of the different neural networks tried could
recognize more than 85% of the test cases. Furthermore,
there is some question as to whether the recognition was
conducted post facto, thereby precluding the advantage
of predicting future behaviors by the agent. Another
investigation [10] hints that the examples of behavior

could be clustered using automated self-organization.
 Strohal and Onken [11] describe the Crew Assistant
Military Aircraft (CAMA) system, a knowledge-based
assistant to enhance situation awareness for crews of
future military transport aircraft. To accomplish that
goal, CAMA had to assess the situation on its own,
including the crew’s intent. It was designed to infer the
crew’s intentions, permitting the system to anticipate the
need for assistance without a request by the pilot. They
used neuro-fuzzy techniques, but required a human to
translate the resulting learned knowledge into rules
usable by CAMA.
 Plan recognition for human-computer collaboration
is described by Lesh, et al., [12]. Plan recognition, as
they define it, is “… the process of inferring intentions
from action.” Their work exploits the properties of the
collaborative setting to make plan recognition practical.
These properties are the focus of attention, partially
elaborated hierarchical plans, and the possibility of
asking for clarification.
 Most recently, research in plan recognition has
taken several different directions. The most popular
of these involves developing logic theories to provide
an algebra through which to reason about plans
from observed agent actions. Wobke [13] presents an
approach built upon Kautz’s keyhole plan recognition
work. He presents two approaches, one monotonic
and one non-monotonic. The latter of these neglects
Kautz’s simplifying assumption of equal relevance for
all competing plans. Wobke bases his approaches on
defining a “... hierarchy of plan schemas.” Jiang and Ma
[14] introduce plan knowledge graphs, along with a new
formalism, to simplify the process of plan recognition.
They claim to reduce the plan recognition problem to a
graph search with their approach, and obtain the same
results as Kautz.
 Patterson, et al. [15], address the problem of inferring
high-level intentions from low-level sensors. They use
Bayesian Nets to predict the position of a traveler in
an urban setting, using auto, bus, and foot travel as the
means of locomotion. They report high levels of accuracy
in their predictions. Computer vision also has addressed
the problem of plan recognition, albeit in different
ways. Intille and Bobick [16] use Bayesian networks
and model-based object recognition to recognize multi-
person actions in the real world. Other investigators
have addressed the problem from a case-based point of
view [17].
 Other researchers have followed somewhat different
approaches. Charniak and Goldman [18] investigated
Bayesian plan recognition. Tambe [19] and his
colleagues [20,21] have focused on plan recognition
of multi-agent systems involved in teamwork. Huber
[22], Han and Veloso [23], Pynadath and Wellman [24},
Devaney and Ram [25] and Goldman, et al. [26], also

Volume 1, Number 3 JDMS 155

Context-driven Near-term Intention Recognition

have contributed to advances in plan recognition. Our
work presented here, however, focuses on the near-term
intentions of a single agent — those that will manifest
themselves within the next several seconds or minutes.
 We now briefly discuss the work of Drewes, upon
which our work is largely based. Drewes, et al. [27],
in his prototype system TRAMS, presents what he calls
Template-based Interpretation (TBI) for interpreting
a human’s intention in a simulation through external
observation of this human’s actions. His work involves
observing the human’s low-level actions and reflecting
those actions within partially filled templates. These
templates consist of attributes that represent low-level
actions performed when that plan is being executed. As
these low-level actions are performed by the human, the
corresponding attributes are “checked-off.” A template
can include temporal and sequential relationships
between different low-level actions. Each template
reflects a plan potentially followed by the agent. As
templates come closer to having all of their attributes
checked off, they compete with each other for the
right to be proclaimed as the one reflecting the agent’s
intent. His results on a prototype in the aviation domain
indicate that this approach is able to correctly identify
an agent’s intent. However, one challenge not addressed
by his work was the significant difficulties associated
with creating the templates and their related weights.
The investigation described here addresses exactly this
issue.
 Given that our work depends heavily on the concept of
contexts and context-driven reasoning, it is worthwhile
at this point to briefly mention related work in context-
driven human behavior representation. Turner [28,29]
used behavioral contexts arranged in hierarchies to
control a robot’s behavior. Both investigations used
rules to recognize the environmental triggers to activate
the behavior. Brezillon [30] and Bass [31] have also
independently developed context-based approaches to
modeling human behavior.

1.2 Specific Problem and General Approach

The review above indicates that whereas significant
research is on-going in intention recognition, the problem
has yet to be fully solved. We present an approach to
recognizing in real time the near-term intention of an
observed agent as early as possible in the execution of its
actions. This determination should be done as quickly
as possible to permit the observing party to predict
the observed agent’s future near-term actions as they
unfold. This gives the observer maximum opportunity
to counter the observed agent’s actions. The system
resulting from this work observes the agent (typically
a vehicle controlled by a human) and, after noting the
execution of one or several low-level actions, declares

the intention of the agent. It does so by identifying its
context — a module of knowledge that is able to control
the agent in a particular situation. If the context in
which the observed agent is operating is known by the
observer, then it is relatively easy to predict the agent’s
future actions by modeling the agent with its active
context.
 Applications of this work exist in military tactical
planning as well as operations, where inferring the
intentions of an enemy is important. Furthermore, the
application of a tank rounding a turn on the road also
has more specific application in military affairs. For
example, being able to accurately predict the position
of an enemy vehicle can be helpful in targeting it.
Nevertheless, the original motivation for this work was
in live-virtual embedded simulations for training where
live and virtual units find themselves on the same virtual
battlefield. Knowing where a live vehicle will be at a
specific time can reduce the required communications
bandwidth in the live range. The last application requires
significant accuracy in predictions.
 The basis of our approach is Template-based
Interpretation [27] and our extension of it, Temporal
Template-based Interpretation [32]. This technique is
described later in this article. To evaluate the feasibility
of our approach, we use the prediction of the near-term
driving pattern used by a tank driver as he rounds a turn
on a road.
 The following questions were addressed in our
investigation:

 • Can Temporal Template-based Interpretation be
 used to infer an agent’s near-term intentions in real
 time by observing its actions and the situational
 parameters of the environment in which it operates?
 • How can one efficiently build an artifact to perform
 this intention recognition? We specifically refer to
 the need to build the templates and assign weights
 to each and every low-level action attribute in the
 templates.

 Our approach is founded upon recognizing actions
associated with a previously defined template. We extend
Drewes’ work in several ways. The two most significant are
1) how we structure and manipulate the templates, making
them capable of describing continuous actions and 2) how
we arrive at the weights assigned to each attribute in the
various templates. The first enhancement allows us to define
a template attribute as a series of data points occurring
sequentially over time. Thus, we call this enhanced version
Temporal Template-based Interpretation (TTBI).
 More importantly, whereas Drewes selected the
values of the weights after consultation with experts
and a significant amount of trial and error, we extract
the weights from direct observation of prior agent
behavior. Furthermore, we associate each template with

Volume 1, Number 3 156 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

a context, as defined in CxBR. While contexts in CxBR
are control mechanisms for an agent to successfully
navigate a tactical situation, a template only contains the
information about what could be externally observed
about an agent being controlled by its corresponding
context. This one-to-one correspondence between
templates and contexts provides for integration of the
two techniques and facilitates the prediction of the post-
recognition behavior of the observed agent.
 The objective of this research is to determine the
technical feasibility of Temporal Template-based
Interpretation for the general problem defined. The
application used to evaluate the concept is only the
test application and not the driving force behind the
paper. A brief description of Temporal Template-based
Interpretation (TTBI) is given in the next section.

2. Approach to Problem

Template-based Interpretation is a weak-model approach
that makes real-time observations of an agent’s performance
and matches its current observed behavior to predefined
templates of potential high-level intentions. The template
that most closely accounts for the agent’s observed actions
(beyond a certain threshold level) is deemed the winner.
We perform this match with a combination of single-layer,
feed-forward neural networks with back-propagation
training and fuzzy sets. We first briefly describe the original
Template-based Interpretation concept, as it is an important
component of our approach. Next, we (even more briefly)
define the ideas behind Context-based Reasoning, as it
is also influential in our work. We then discuss how, by
combining the two approaches, we can accomplish our
objectives. Then we describe our enhancement to TBI,
called TTBI. Lastly, we explain how to automatically
obtain the knowledge necessary to infer agent intention.

 2.1 Template-based Interpretation

Template-based interpretation involves using models,
or templates, of typical human behavior to infer
the intention of a human or of an agent acting like a
human. In some ways, it can be said to be an extension
of case-based reasoning in that a template represents
the pattern defining each case. The case/template most
closely matching the pattern of the inputs is declared
as the one most representative of the observed inputs.
However, TBI extends traditional case-based reasoning
by considering the temporal ordering of discrete
events and the time differences between these events.
Furthermore, TBI monitors the inputs continuously,
looking for the execution of low-level actions by the
agent being observed. Each template has selected
attributes that represent actions that would be executed
by the agent if it were carrying out the plan identified
by that template, as well as aspects of the agent’s state
and of its environment. The attributes in a template
include only those actions and aspects relevant to the
intent represented by that particular template. At each
monitoring cycle, each template’s attributes are updated
by an evaluation mechanism. When an action is observed,
attributes that represent that action are “checked off” in
each template that contains that particular action. This
enhances the overall score for those templates containing
that checked-off attribute in relation to the attribute’s
pre-assigned weight.
 A template is not considered a candidate for
identifying the agent’s intentions/context until its overall
score exceeds a minimum threshold value called the
Critical Threshold (Tc). The first template to exceed the
Tc is chosen as the one representing the observed agent’s
intentions/context. Figure 1 illustrates the components
of the template-based interpretation approach. In this

Figure 1. Template components

Volume 1, Number 3 JDMS 157

Context-driven Near-term Intention Recognition

figure, Wik is the weight associated with attribute k of
template i, and Tx is the template from the set T of n
competing templates that has the highest score above
the minimum critical threshold value.
 More formally, each template is a model for a specific
high-level action. It describes the observable low-level
actions that a performing agent A would do if it were
indeed performing that high-level action. TBI works by
defining the set of templates T, so that

T = {T1, T2, T3, T4 … Tn}

where each template Ti contains several attributes. The
attributes of one template are not the same as those of
other templates, but they could have some attributes
in common. Therefore, template Ti can be defined as
consisting of several attributes atril, each describing an
action made by agent A which partly indicates A’s current
context, and which is observable by the observing agent
O.

Ti = {atri1, atri2, atri3, …, atrik}

 Each attribute is assigned a Boolean value indicating
whether the action described by it has been performed
by agent A. If relevant, it also is possible to assign a time
stamp for that action.
 Furthermore, the importance of the attributes may
not be equal for interpreting the actions of the agent
A. Some may be more significant than others, and this
can be indicated through a weight assigned to each
attribute. Thus, attribute atriil for template Ti is a triple
consisting of its weight, the Boolean “check off” and the
time stamp.

atril = < Wil, YES/NO, t>

where the weight, Wil, is a real number between 0.0 and
1.0.
 As agent A is being observed by agent O, the latter
monitors the execution of low-level actions by A. Upon
noticing that an action represented by atril has been
executed by A, it will search each template in T and
look for attribute atril in each template Ti∈T. When it
finds one, it will place a YES and a time stamp on the
attribute. This can be likened to the game of Bingo, when
a number is called and players place a game piece on the
called number in every card where the called number is
found.
 As agent O continues to observe A, the numbers
of “check-offs” on the various competing templates
grow. Templates progressively become more completely
“checked off” as more of the actions symbolized by their
attribute are executed by A. Templates that truly reflect
A’s intention will have more checked off attributes,

which will translate to a higher overall score for these
templates. This process represents a competition among
the templates in T to be designated as the one truly
describing the intention behind the actions of agent A.
At some point, the cumulative weight of one template
exceeds its critical threshold Tc, at which time, this
template is considered the winner of the competition.
The reader is referred to Drewes et al. [27], and Drewes
[33] for details on TBI.

2.2 Context-based Representation of Behavior

The behavior of A can be said to be controlled by several
behavioral contexts that prescribe its actions. These
contexts, called Ci, are members of a set of contexts that
define the behavioral universe for agent A.

C = {C1, C2, C3, C4… Cn}

 Each such behavioral context contains the functions
and procedures that result in agent A’s actions and
decisions while in that context. One and only one
behavioral context can be in control of the agent at any
time. This context in control is called the active context,
while all others are inactive. Each context also contains
the knowledge of how to transition to other behavioral
contexts that, over time, emerge as being more relevant
to the situation currently faced by the agent. This is
called context transition, and it is triggered by certain
environmental events that signify that the situation
faced by the agent has changed sufficiently to warrant
activation of another behavioral context to better
handle the emerging situation. This transition represents
the simultaneous self-deactivation of the active context
and the activation of another, more relevant context.
Context-based Reasoning (CxBR) is a human behavior
modeling technique that uses this approach to model
human behavior in tactical situations. See [1] for more
details on CxBR.
 Therefore, if agent A can be said to be in context Ci,
we represent this as A[Ci]. Furthermore, if agent O can
infer that agent A is operating under context Ci, and
the description of Ci is known to O, then O can predict
the future near-term actions of agent A. Our approach
is based on doing exactly this — inferring context Ci in
A by observing its actions externally. Therefore, while
Ti and Ci are naturally associated, the viewpoints and
functionality are radically different. This paper only
addresses the first part of the process — inferring Ti.

2.3 Temporal Template-based Interpretation

The original version of TBI could only detect and record
discrete low-level actions — e.g., putting down the
landing gear, firing the main gun, etc. TBI is not capable of

Volume 1, Number 3 158 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

interpreting intent if the actions indicative of such intent
are continuous in nature and last for several minutes.
An example of this would be that a drunk driver would
be prone to continuously swerve her car on the road.
Such actions cannot be identified or interpreted with a
static attribute. TTBI permits the definition of temporal
templates containing attributes defined as sequences of
time- or distance-related data points. Incidentally, this
would make the determination of the weights by hand
very complex, providing the inspiration for the other
major enhancement to TBI — the automatic assignment
of weights based on observed behavior by an agent in a
simulator.
 To better correlate with corresponding behavioral
contexts, TTBI implements a hierarchical organization of
templates. The top-level templates are called competing
templates. These templates can describe an agent’s
high-level intent, and correspond to Major Contexts
in CxBR. Supporting templates, on the other hand,
are used to provide attribute values if they are needed
by a competing template or another support template.
Competing templates are evaluated in a bottom-up
fashion. Each supporting template is evaluated before
the competing templates are evaluated. Template
attributes can be Mandatory or Non-mandatory. A
template is considered able to compete (referred to as
being valid) if all of its Mandatory attributes (if any) are
true, and unable to compete (invalid) if there is one or
more Mandatory attributes, and at least one of them is
not true.
 Non-mandatory attributes contribute to the total
value of the template. Their weights are indication of
how relevant they are to the agent’s perceived intent.
However, they don’t have to have a value or be true for
their template to be considered valid. Valid competing
templates whose output value exceeds Tc are compared
immediately upon exceeding Tc, and the one with the
highest value is announced as the current template
representing the context active in agent A.
 Mandatory attributes can be allowed to contribute
to the value of the template if a non-zero weight is used.
Conversely, if a zero weight is used for a Mandatory
attribute, it contributes nothing to the output value of
the template. It merely needs to be true for the template
to be even considered in the competition. A zero weight
for Mandatory attributes is typically more commonly
used than non-zero.

2.4 Automated Weight Determination

Observing the structure of a template, one could make
the analogy that each template is similar to a single
layer neural network with a linear activation function.
Specifically, the inputs (attributes) each are individually
multiplied by their own weights and the summation

of each of those results becomes the output. Figure 2
illustrates the analogy. Let Ik be the kth input attribute
and Wik be the corresponding weight associated with
the kth input. Their product is summed with the other
products for the output of the ith template, Ti. This is
equivalent to a single-layer neural network with a linear
activation function and output Ti.

Figure 2. Template weight learning by observation
using NN framework

 That being so, a neural network training algorithm,
such as back-propagation, could be used to set the value
of the weights [34]. For a one-layer neural network, this
algorithm is called LMS. In this case, the template output
value, the sum of the weights of each input attribute
multiplied by its associated weight, corresponds to the
output of the neural network with a linear activation
function.
 With this intuition, we used the neural network
training procedures for determining these template
weights by presentation of examples of the complex
behavior to be recognized. Additionally, the templates
were not restricted to a single layer neural network for
implementation. For each template, only the template
output resulting from the inputs is a consideration.
This is because the important thing is that the output
from each of the competing templates has to compare
correctly against each of the other templates. Specifically,
the template that wins the competition should be the one
with the highest output value, or score. Furthermore,
multiple internal neural network layers would allow
for greater output discrimination with more complex
behaviors than could be possible with a simple
summation of weighted values.

2.5 Fuzzy Functions for Attributes

For training neural networks to recognize the complex
behavioral contexts, a means for representing and

Volume 1, Number 3 JDMS 159

Context-driven Near-term Intention Recognition

normalizing the attribute input values was needed
because the neural networks train most efficiently when
the input values are in the range of -1.0 to +1.0. The
approach taken was to use fuzzy sets to represent the
membership of the attribute to the behavior pattern
classification whose detection is being sought. As Zadeh
[35] points out, fuzzy sets provide a natural way for
handling problems where sharply defined criteria for
class membership are absent. That is the situation here,
since specific attributes could be members of more than
one template. In other words, we use fuzzy membership
functions to define the weights.
 Fuzzy sets are characterized by a membership
function that assigns a grade of membership between
0.0 and 1.0 for each member of the set. A membership
value of 1.0 indicates full membership, while 0.0
indicates no membership. Values in between indicate
partial membership. Langari and Yen [36] provide
some examples of membership functions based on the
exponential function. One of their membership functions
is shown below for the membership of the parameter T
to the class “medium.”

µmedium (T) = exp (- α |T – T0|
p), p ≥ 1

 The above equation provides a description for a class
where the membership, µmedium(T), is highest for the
parameter T around a given value T0, and decreases as
the parameter deviates from that value. T0 denotes the
center value where the membership is strongest. The
scaling factor α affects how broadly or narrowly the
membership function is defined.
 The values of the inputs for each set of behavior
patterns to be recognized were statistically analyzed
to determine the mean value and standard deviation
for each parameter for the examples representing
each pattern type. The mean corresponded to the T0

in the above equation, and the inverse of the standard
deviation was used as a scaling factor to define how
narrow the membership function would be. Thus,
each input parameter for neural network training was
transformed to a range of 0.0 to 1.0 through a fuzzy
membership function. We now describe an application
of this approach that identifies the intention of the
observed entity and can determine the value of the
weights through observation.

2.6 High-level Algorithm Describing this
Approach

The approach presented in this paper can be described
by the following high-level algorithm:

 1) Observe the entity to be modeled either in a
 simulator or in the real world. Record the values of

 all variables of interest. There will be one data set
 for each run executed.
 2) Classify the results of the observation into types of
 actions that were executed by the performing agent
 A during the observation phase.
 3) Design a membership function for each of the
 identified action types. Transform each data set
 with each of the membership functions defined.
 Assign a value of 1.0 or 0.0 to each data set
 depending on whether or not the transformed data
 set describes the intention/behavior corresponding
 to each membership function.
 4) Partition the data sets into training, validation, and
 testing data in accordance with established
 procedures.
 5) Design the architecture of the neural networks to be
 used according to established procedures.
 6) Train neural networks to determine the weights of
 each template attribute.

 We should note that no effort was made in this
investigation to automate the selection of the variables
of interest. In our evaluated application, the variables
of interest were selected by a human who considered
what was strictly necessary to infer the agent’s intention.
However, we see variable selection as an important issue,
not only to select those variables that are necessary, but
also to leave out those that are not. We leave this for
future research.

3. Evaluation of Approach

To evaluate the effectiveness of our approach, we
implemented TTBI in an application for predicting how
an agent is driving a vehicle in a military simulation. The
vehicle in question is a battle tank (M1A2) and the task
is how to navigate a turn with this vehicle in a simulated
environment. There are many ways experienced tank
drivers can perform this maneuver. This application calls
for an accurate prediction of a simulated tank’s path
around a turn. The accuracy requirements are indeed
unforgiving. Lateral deviations (positive to the right;
negative to the left) are limited to no more than 14.4
inches. Motional discrepancies (forward being positive)
were limited to less than 29 inches. Our use for such
accurate prediction was to reduce the communication
bandwidth required in a distributed simulation by being
able to predict accurately the location of the vehicle
[37].
 To eliminate the difficulties involved with sensors
interpretation in the real world, we restrict the
performance of agent A’s behavior to a simulation.
Furthermore, we restrict our evaluation to recognizing
the agent’s near-term intentions to follow a particular
path when driving the tank around a turn in the road.
The selected path is one of several paths pre-classified
through observation of the agent’s past behavior. While

Volume 1, Number 3 160 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

this admittedly does not involve recognition of high level-
intentions per se, it does provide the ability to predict the
exact location of the agent by recognizing the path upon
which it is embarking at an early stage of the action. It
represents a special case of the general case described in
Section 2, but with little loss of significance. In effect,
the template has several sub-context templates vying
for selection as the one the agent is executing. Given
the structural and functional similarity of major context
templates and sub-context templates, the evaluation of
how TTBI infers sub-context level templates does not in
any way invalidate the evaluation of the TTBI method
as it would approach the major context template.

3.1 Simulation Infrastructure Used

The simulation system used for this experiment was
the ModSAF system, a constructive military simulation
environment. A specific turn was selected in the terrain
database for the National Training Center in California.
Figure 3 depicts the turn, all its related parameter
definitions, and a typical outside path taken by the
simulated tank. ModSAF contains the functionality to
steer a virtual tank though a turn, albeit imperfectly.
 The road segment of interest here is defined by its
waypoints. Waypoints typically are placed in locations that
mark a change in direction for the vehicle of interest. A
turn, therefore, is defined as a segment of road consisting
of three waypoints that are not in line with each other.
Figure 3 depicts three of them, one at each terminus and
one at the center of the turn. Depending on the angle of
the turn, the driver may choose to take the turn either on
the inside, thus cutting off the angle, or on the outside,
thereby curving wide around the turn to provide room
for maneuver. How the tank merges back into the center
of the road after the turn also can vary in many ways.
Therefore, the tank’s path is decomposed into two phases

— its approach to the waypoint, defining the turn of
interest, and its departure from that waypoint toward
the next waypoint. The approach is the path taken by
the agent prior to reaching the center waypoint. The
departure is its path thereafter. The objective is to predict
where the simulated tank (agent A) would be at all times
within the strict accuracy requirements stated above. We
accomplished this by observing a priori that there is only a
handful of ways the turns are taken, and later classified the
real time data into one of these paths using TTBI.

3.2 A Priori Observations of Agent A in the
Simulation Environment

To learn the weights to be used in the templates, 110
simulations runs of the agent A taking the designated turn
were executed in ModSAF and recorded. Only these 110
recorded paths were used to learn the values of the weight
of the template attributes. The headings of agent A at the
start of these simulations varied by one degree, from 6° to
the left of north to 4° to the right of north. Ten runs were
executed for each initial heading, with each run beginning
20 waypoints and 3 km before the designated turn. Given
the slightly different initial headings, the actual paths taken
by agent A tank in ModSAF varied significantly, but all
within the realm of realism as if executed by a human.
 Analysis of the results indicate that the approaches
can be classified into three categories: 1) Early — the
tank began to curve away from the road centerline
more than 45m before the turn center waypoint; 2)
Nominal — between 30m and 45m before the turn
waypoint; and 3) Late — less than 30m. Furthermore,
each category could be further divided into single curve
and double curve. Table 1 shows the distribution of
the classifications, indicating that early and nominal
single curves were the most prevalent. Figure 4 shows

Figure 3. Turn used for experiments

����������������������
������������������

�� �� �� �� �� � � �

��������������

��
��

�������������������
������������������������

����������������������
�������������������

���������
����

���
��

�������������������������
��������������������������������������
����������������

��

Volume 1, Number 3 JDMS 161

Context-driven Near-term Intention Recognition

Approach Categories No. of Runs

Early, Single Curve 47

Early, Double Curve 15

Nominal, Single Curve 41

Nominal, Double Curve 0

Late, Single Curve 7

Late, Double Curve 0

Total 110

Table 1. Summary of approach category frequencies

Figure 4. X-Y coordinates of sample experiemental runs

Departure Types No.
of
Runs

Description

Flat Nominal (FN) 15 Parallels outbound segment, then turns to intercept at about 45 meters beyond
the turn

Flat Bow Low (FBL) 16 Same as FN, but slight bow before turn to intercept

Flat Bow High (FBH) 17 Same as FBL, but slightly more pronounced bow

Bow Nominal (BN) 35 Definite bow on the departure that continues to an intercept at about 45 meters
beyond the turn

Straight Angled (SA) 10 After initial turn, maintains an intercept heading with little or no change to an
inctercept beyond 80 meters

Bow Wide (BW) 7 Much wider bow than BN with intercept beyond 80 meters

Bow Asymptotic (BA) 3 Initially similar to BN, then smoothly reduces intercept heading to asymptotically
intercept beyond 60 meters

Bow Distant (BD) 3 After initial turn, slowly turns to an intercept heading beyond 80 meters
resulting in an extended slight bow

Double Curve (DC) 3 Initially turns to a heading that would intercept close to the turn, then turns
away from the segment followed by a turn back that closely resembles the SA
pattern

Close Intercept (CI) 1 Intercepts within about 10 meters followed by a long-lasting overshoot before
eventual re-intercept

Table 2. Departure pattern types

Y-Coordinate

A B

Volume 1, Number 3 162 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

two data samples — graph A depicts an early, single
curve approach while B shows a nominal single curve
approach.
 The departure categories were somewhat more
complex. Ten different categories were identified. Table
2 contains a summary description. See Table 11 in [32]
for details. Note that these pre-classifications were
done manually by the investigators. However, the work
could be reasonably extended in the future to do this
automatically with a clustering algorithm.

3.3 Extracting the Weights from the Observations

Training, validation, and testing examples were created
from the 110 simulation runs. These runs were used to
train neural networks to recognize the six most frequently
occurring departure types on the turn. First, the runs
for the departures were selected and the XD, HR, and
SP variables (defined in Figure 3) were calculated for
each run. Then, six fuzzy set membership functions
were created from those variables by calculating the
means and standard deviations for the XD, HR, and SP
variables at 26 locations for the each of the six different
data sets. These 26 locations were at the beginning of
each 2-meter segment from the turn’s center waypoint
(its knee) to the third, as shown in Figure 3. The runs
in each data set included only those runs of a specific
departure type, e.g., 35 BN categorized runs were used
for the BN set and 17 FBH runs were used for the FBH
set.
 The fuzzy membership functions expressed how close
the values for the individual runs were to the average
value for that variable for that classification data set.
These membership functions were based on the Gaussian
probability density function, given by the equation
below:

f(y) =

ffG(y) =

where μ is the sample mean and σ is the sample standard
deviation of a normal random variable y.
 The constant in front of the exponential term was
removed because for the transformation function, the
desired output is 1 when the variable is equal to the
mean (y = µ), and approaches 0 when |y - µ| is not close
to the mean (i.e., the value is much greater than σ). In
the resulting Gaussian fuzzy function shown below, the
variable Z = (y - µ) / σ is a measure of the number of
standard deviations that the variable is above or below
the mean value.

 After creating those six fuzzy functions, they were
applied to the selected data for each of the 110 runs,
thus creating six master data sets of transformed inputs
for each of the 110 runs, regardless of which type they
were. Within each of the six master sets, those runs that
were classified as being of the same type as the fuzzy
function used for the transformation had their single
output value set to 1.0. All other runs in the set had
their single output value set to 0.0. The runs from those
data sets were then separated into training, validation,
and testing sets. The neural networks were then trained
with the training and validation sets for each of the six
classes, and their learned weights were the attribute
weights for the template they represented.
 The format for the data set examples for the three
data values (XD, HR, and SP) for the 26 locations
(from 0 through 50 meters past the center waypoint)
is a sequential representation of the three variables in
each of 26 rows with the output value (1.0 or 0.0) as
the single data item on the 27th line. Table 3 shows
examples for a run with an FBL departure type at the
turn. The raw, calculated values for XD, HR, and SP are
in the box on the left with the nominal values of DA, the
distance after the turn, next to the applicable rows. The
two examples on the right were transformed using the
FBL and BN fuzzy membership functions, respectively.
Note that there are 26 examples produced from each
run, one for each 2-meter increment of DA, since the
XD, HR, and SP values are zero at each DA value until
the agent has reached it. The 1.000 at the end of the
middle box indicates that the data indeed represents an
FBL departure. On the other hand, the 0.000 at the end
of the right box indicates that the raw data in the left
box do not represent a BN departure.

3.4 Templates for Application

The context and sub-context templates developed for
this research addressed only the limited case of a Road
March task — the tactical process followed by the
military to move men and materiel from one place to
another by way of a road, without enemy presence. As
such, there was only one major context template created
— RoadMarch. Nevertheless, separate template files
were created for both the RoadMarch major context
and the sub-contexts relevant to the RoadMarch
major context. The experiment, however, centered on
identifying the sub-context controlling the tank entity.
Given the identical structure of sub-contexts and major
contexts, this was not considered a limitation to the
experiment.
 The RoadMarch major context template is simplified
— it contains only one attribute and it is mandatory.
That attribute, NearRoad, is true and produces a
template value of 1.0 if the current value of XD, the

Volume 1, Number 3 JDMS 163

Context-driven Near-term Intention Recognition

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

DA XD HR SP

2.283
2.467
2.730
2.909
3.039
3.134
3.193
3.231
3.236
3.222
3.189
3.155
3.120
2.991
2.821
2.553
2.272
1.903
1.493
1.186
0.823
0.473
0.182
-0.187
-0.416
-0.437

7.348
7.348
5.167
5.167
3.228
1.549
1.549
0.144
0.144
-0.972
-0.972
-0.972
-0.972
-5.721
-5.721
-9.310
-9.310
-10.763
-10.763
-10.763
-9.410
-9.410
-9.410
-11.930
-0.715
-0.491

5.138
5.518
5.879
5.922
6.258
6.354
6.598
6.883
6.935
7.220
7.264
7.550
7.930
8.311
8.596
8.629
8.629
8.189
8.189
8.189
7.990
7.990
5.846
3.259
2.193
2.903

0.906
0.966
0.999
1.000
0.998
0.998
0.997
0.995
0.995
0.994
0.997
0.997
0.996
0.999
0.997
0.996
0.999
0.982
0.946
0.978
0.936
0.876
0.855
0.743
0.738
0.918
1.000

0.865
0.865
0.991
0.696
0.845
0.872
0.842
1.000
0.955
0.950
0.950
0.982
0.812
0.945
0.945
0.875
0.915
0.807
0.830
0.583
0.809
0.792
0.788
0.644
0.438
0.547

0.949
0.908
0.879
0.950
0.907
0.964
0.951
0.883
0.984
0.953
0.980
0.950
0.957
0.996
0.980
0.988
0.874
0.990
0.873
0.821
0.910
0.887
0.135
0.325
0.278
0.255

Transform

0.999
0.473
0.313
0.213
0.145
0.112
0.101
0.094
0.111
0.150
0.232
0.323
0.424
0.481
0.578
0.684
0.770
0.817
0.830
0.887
0.909
0.893
0.892
0.833
0.851
0.984
0.000

0.232
0.232
0.054
0.010
0.304
0.241
0.999
0.993
0.550
0.675
0.121
0.030
0.139
0.844
0.360
0.882
0.733
0.866
0.874
0.878
0.789
0.999
0.998
0.725
0.045
0.170

0.077
0.218
0.367
0.272
0.389
0.333
0.375
0.429
0.320
0.449
0.381
0.616
0.898
0.995
1.000
0.976
0.934
0.625
0.678
0.679
0.636
0.762
0.001
0.000
0.000
0.338

Transform

Table 3. Gaussian transformed examples

Raw Values FBL Gaussian BN Gaussian

entity’s cross distance measured perpendicularly from
the current road segment’s centerline, is less than 5.0
meters on either side. This equates to a simple rule: “If
the entity is within five meters of the road segment’s
centerline, then the RoadMarch template is valid with
a competing value of 1.0; else, it is invalid and does not
compete.” This is reasonable. Otherwise the tank agent
would not be following a road and would be involved in
some other action.
 The sub-context templates that competed for selection
were divided into two groups — approach templates and
departure templates. The approach templates (A_EAR,
A_NOM, A_LATE, and A_DBL) identified the type of
approach the agent being observed (A) was taking. These
approach templates are rule-based, and the rules turned
out to be quite simple: If the agent began to separate
from the centerline of the road more than 45m before the
center waypoint, then it was classified as early (A-EAR).
If the separation began between 45 and 30m before the
center waypoint, then it was considered nominal (A_
NOM). If separation began closer than 30m, it was late
(A_LATE). The double curve — a double “hump” as it

separated from the road centerline — introduced a bit of
intrigue into the process, but in general, these templates
were too simple to be interesting and were not pursued
any further.
 The departure templates, on the other hand, did
present interesting challenges. These used neural
networks with weights trained by observation of
examples of the behaviors as described earlier. They are
described in this next section

 3.4.1 Neural Network-based Competing
Templates for Turn Departure Sub-contexts

 There were six competing departure templates based
on the observed behavior categorized into sub-contexts
for the RoadMarch. The six departure templates were
DepartureOutsideBN (DP_BN), DepartureOutsideFBH
(DP_FBH), DepartureOutsideFBL (DP_FBL),
DepartureOutsideFN (DP_FN), DepartureOutsideSA
(DP_SA), and DepartureOutsideBW (DP_BW). The
“DepartureOutside” label indicates that in each of these
categories the agent took a wide turn on the outside road,

Volume 1, Number 3 164 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

as opposed to cutting off the turn inside to minimize the
distance.
 The only mandatory attribute, which calls the support
template DPOUT to return its validity, is the same for
all six departure templates. DPOUT indicates whether
the departure is outside or inside. Its weight is set as 0.0,
so this mandatory attribute contributes nothing to the
confidence value of the template, but is necessary for the
template to be considered for competition. The DPOUT
support template can be valid only as long as the entity
is closer to the previous waypoint than the current one
being approached. This identifies that the entity is on
the departure phase of the turn, and not its approach.
Thus, none of these competing departure templates can
be valid at the same time as the competing approach
templates.
 Two non-mandatory attributes respectively call two
functions that return the History and the Recent neural
network outputs for the departure type of the template.
For example, the DP_BN template calls the BN_NN_
HISTORY and BN_NN_RECENT function attributes
and the DPFBL template calls the FBL_NN_HISTORY
and FBL_NN_RECENT function attributes. The
History neural network takes advantage of all the data
being built up as the entity progresses through the turn.
In other words, the more ground the observed agent has
covered, the more certain the observer becomes that it
is properly identifying the turn classification. However,
because of the nature of neural network training with
examples that are more heavily filled in with the earliest
data in the departure, a change in behavior part way
through the departure would not easily overcome the
earlier identification. The History neural networks were
trained to output 1.0 for its recognized turn type and
0.0 for all other types.
 The Recent neural network, on the other hand, focuses
on a moving window of the most recent data points in
order to counteract the inertia of the History neural
network. They were trained to output 1.0 for recognized
turn types and -1.0 for all others. The attribute to which
the History neural network is assigned has a Certainty
Factor (CF) value of CFH, while the attribute assigned
the Recent neural net has a CF of CFR.
 Those returned attribute values, when multiplied by
their individual weights (CFH and CFR, respectively),
are combined using standard certainty factor procedures
to produce a template confidence value. That value is
then compared to the template’s critical threshold, Tc,
to determine whether the template can be considered the
winner if it has the highest total output. The values to use
for the weights and Tc were determined by experiment,
which will be discussed in the next section on testing.

4. Testing and Evaluation of Prototype

Performance of the prototype was assessed using two
measures: 1) number of correct identifications of the path
actually taken by the observed agent and 2) how early a
correct identification of the path could be made. There
were two series of tests performed on the prototype
system developed as part of the work described. In part
1, the template evaluation mechanism was subjected
to the previously collected data representing an agent
making a series of runs not used in training the neural
networks, but for the same turn on which the training
data was obtained. This we refer to as Turn #1 testing.
The second set of tests evaluated the generalization
ability of the system. We subjected the same templates to
runs executed on a similar, but different turn in the same
National Training Center terrain database. We refer to
this as Turn #2 testing. Runs from Turn #2 were not
used in training the neural nets.
 Of the 110 (non-repeatable) runs used as data for our
work, 18 of these, arbitrarily selected, were designated
for use only during testing, and not used for training or
validating the neural network. Each run was composed
of the approach phase and the departure phase. As
mentioned above, however, the approach phase was
deemed almost trivial and thus was not evaluated. More
interesting was the departure, as there were several
different types and they were not easily distinguished
from one another by simple rules. This evaluation of the
departure portion of the turn formed the basis for our
testing. We begin by describing Turn #1 Testing.

4.1 Turn #1 Testing

The 18 runs saved for system testing were evaluated
using the templates and their accompanying neural
networks for identification. The output of the competing
templates (six in all) was a value between -1.0 and 1.0.
The value indicated the confidence that each template
had that the current run being presented to them was of
their type. The results were evaluated as either Correct
ID, False ID or No ID. A Correct ID was indicated
when the winning template in the template competition
agreed with the a priori classification of the test run. A
False ID result indicated disagreement. A No ID came
about when the template competition did not offer any
template that arose above the Tc value selected for that
competition. One must note that in two of the 18 test
cases, the correct classification of the run was not found
among the six template classifications. This happened
because there were more than six original classifications,
but only the six most popular in terms of frequency of

Volume 1, Number 3 JDMS 165

Context-driven Near-term Intention Recognition

appearance were formalized and used in the evaluation.
Therefore, for those cases not represented by a template,
the correct identification in fact should have been No
ID. For those two cases, if the template competition
returned a No ID, this was evaluated as a Correct ID.
 Figure 5 depicts the results obtained with CFH and
CFR, certainty factors for “History” and “Recent”
neural network outputs (which acted as template
attributes), both being set to either 0.5 or 1.0 each, and
Tc set at 0.3. This mix of CFH and CFR maximized the
ratios of correct percent over false percent compared to
other mixtures of CFH and CFR with values of 0.0, 0.5,
and 1.0. These results indicated that when CFH = CFR
= 1.0 rather than CFH = CFR = 0.5, the Correct IDs
increased a bit, as did the False IDs, both at the expense
of the No IDs. This difference is not seen as significant.
 Additional experiments were performed varying the
value of Tc. The objective here was to determine how
selective to be in the template competition. Naturally,
we expected the number of No IDs to increase as Tc was
increased. This is in fact what happened. The Correct
IDs and False IDs, however, remained relatively constant
until Tc reached 0.70.
 With regard to how early the identifications were
made, we noted the first instance when the correct
identification was made for those runs for which a Correct
ID was made. Table 4 indicates an example of how early
it was in one case to identify correctly the path taken by
the simulated test entity. The results indicate that for the
most part, the correct template was identified very early
in the process, as in the first 2 to 6 meters beyond the
turn waypoint. This is a tremendous advantage in that it

Figure 5. Averages of correctness results versus equally weighted CFH/CFR

DA BN FBH FBL FN SA BW

0.0 -1.00 -1.00 -1.00 -1.00 -0.97 -0.93
2.1 0.87 -0.99 -1.00 -1.00 -0.97 -0.95
4.3 -1.00 0.01 -1.00 -1.00 -0.97 -0.99
6.2 0.93 -0.73 -0.98 -1.00 -0.97 -0.99
8.1 0.91 -0.74 -0.99 -1.00 -0.97 -0.99
10.2 0.93 -1.00 -1.00 -1.00 -0.97 -0.99
12.2 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
14.3 0.99 -0.99 -1.00 -1.00 -0.97 -0.99
16.5 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
18.1 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
20.3 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
22.4 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
24.1 0.99 -1.00 -1.00 -1.00 -0.97 -0.99
26.3 0.98 -0.97 -1.00 -1.00 -0.97 -0.99
28.5 0.98 -0.99 -1.00 -1.00 -0.97 -0.99
30.2 0.95 0.75 -1.00 -1.00 -0.97 -0.99
32.4 -1.00 0.82 -1.00 -1.00 -0.97 -0.99
34.1 -1.00 -0.99 -1.00 -1.00 -0.97 -0.99
36.4 -1.00 -1.00 -0.72 -1.00 -0.97 -0.99
38.1 0.66 -0.99 0.14 -1.00 -0.97 -0.99
40.4 0.98 -0.99 -1.00 -1.00 -0.97 -0.99
42.1 -0.12 -0.93 -1.00 -1.00 -0.97 -0.99
44.4 0.70 0.92 -1.00 -1.00 -0.97 -0.99
46.1 0.96 -0.69 -1.00 -1.00 -0.97 -0.99
48.3 0.97 0.92 -1.00 -1.00 -0.97 -0.99

Table 4. Competing template values (Turn1, BN Test
Run r4.2). Note: Competitive templates are bolded
and winning templates are italicized as well.

Volume 1, Number 3 166 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

DA Correct ID False ID No ID

0-2 72.2% 22.2% 5.6%

2-4 77.8% 16.7% 5.5%

4-6 72.2% 16.7% 11.1%

6-8 77.8% 11.1% 11.1%

8-50 83.3% 11.1% 5.6%

Table 5. Real-time recognition of agent intention for
Turn #1

 Table 6 depicts the 18 runs on Turn #2. It shows
that most of the runs could be labelled FBL, at least for
the first half of the road segment after the waypoint.
Two others could be categorized as FBH and one (run
#2) had no similarity whatsoever to the classifications
determined in Turn #1.
 These determinations of what the templates should
reasonably show were used as the basis for comparison
to what the templates actually produced. In making this
evaluation, ten sets of trained History neural networks
and ten sets of Recent neural networks were used in
various combinations so that each set was used three
times with three different sets of the other type of neural
network. Each set of trained neural networks consisted
of six neural networks, each trained for a different
one of the six major categorized turn types. Thus, 30
evaluations were made of each of the 18 repeatable
test runs. The percentage results of correct, false, and
No IDs for these 30 evaluations for each test run are
shown in Table 7. Overall, approximately 84.9% of the
template responses were correct, including No IDs when
no match should have been made; 11.1% were false;
and 4.1% were of No ID, when a match should have
been made.
 While these results do not provide the fidelity for the
correctness average shown for Turn #1, it gives us an
appreciation for the ability of the system to generalize,
to some degree, and extend the results of one turn to
another, similar one. The results indicate that, except for
run #2, the system was able to identify the path taken
by the simulated entity for at least the first half of the
trajectory past the initial waypoint. Thereafter, the path
diverges from any known categorization of Turn #1,
and no identification was possible.
 Continuing with the evaluation of how early the
system can identify the agent’s intent for Turn #2, Table
8 depicts the results tabulated for only the first 10 meters
of Turn #2 departure. We used 30 sets of History and
Recent NN’s combined using CFH and CFR = 0.5 and
Tc = 0.3 on the 18 test scenarios used for Turn #1.

4.3 Summary of Testing

The evaluation of the intention recognition of agent
A on Turn #1 was generally good overall. Correct
identifications were in the 75% to 85% range, false
identifications in the 3% to 13% range, and no
identifications in the 7% to 12% range. On Turn #2,
the ModSAF agent used to generate the data did not
reproduce the same behaviors that were identified on
Turn #1. However, the early portions of most of the test
runs were very similar to the early portions of one of
the behaviors identified on Turn #1. If the identifications
for the portions of the departures that were judged to
successfully match are counted as correct and those

permits early identification of observed behavior, giving
the observer time to react to the intended actions. This
is particularly important in conflicts where knowledge
of an opponent’s intention can lead to better counter
tactics and/or preparation.
 The results for a single 78-5-1 History NN and a Tc
of 0.3 on the 18 runs are depicted in Table 5. (78-5-1
indicates 78 input nodes, 5 hidden nodes, and 1 output
node.) The early recognition is admittedly a characteristic
of the data presented to the system, and it may not be
the case in all applications. Nevertheless, when the data
did permit early identification, the system was capable
of doing so.

4.2 Turn #2 Testing

These tests were conducted with runs from the agent
taking a similar, but not identical, turn in the same
database. This test introduced several differences in how
the test was performed. First of all, since we used the
networks trained on data obtained for Turn #1, the idea
of using training, validation, and testing runs was not
applicable. Because the 110 original runs were executed
for the entire route (encompassing both Turns #1 and #2
as well as other terrain), the same 18 runs were used for
testing on Turn #2, except that the data specific for Turn
#2 were used. Secondly, since the departure classes on
Turn #2 were not categorized as they were for Turn #1,
there was no automatic means to check for Correct ID,
False ID, or No ID for the outputs. Thus, the winning
template outputs from combining the History and
Recent NN attributes could not be evaluated directly
for correctness, as was done for Turn #1. Instead,
the template program used for testing on Turn #1
was modified to record the winning template number
along with the details of the template outputs rather
than information on the correctness of the output. For
Turn #2 test evaluation, the XD, HR, and SP outputs
for each test run were compared against the XD, HR,
and SP mean values for the departure type identified as
the winning template output for each of the 18 runs to
check for reasonableness.

Volume 1, Number 3 JDMS 167

Context-driven Near-term Intention Recognition

Test
Runs

Departure
Types

Location
(Meters)

Comments

1 FBL 0 – 24

4, 6-13, 15 FBL 2 – 24

16, 17, 18 FBL 0 – 28

3 FBL 8 – 28

5
FBL 0 – 6 Only departure type in this region

FBH/FBL 8 – 16 FBH is best match, but either is acceptable

FBH 18 – 24 Only departure type in this region

2 None 0 – 50 No departure type matches expected anyplace

14 FBL 16 – 24

Table 6. Summary of test runs at Turn #2 evaluations. Note: Lack of a winning template outside the locations shown
is counted as a Correct ID

that did not as false, the off-line responses on Turn #2
would be 85% correct, 11% false, and 4% with no
identification. These results are generally within the
ranges noted for Turn #1.
 None of the turn action types observed on Turn #2
were the same as the ones observed on Turn #1. However,
the portions of the turn actions on Turn #2 that were
very similar to an observed action type on Turn #1
were identified as that similar behavior. That showed

reasonable generalization by recognizing portions of
actions that matched what had been previously learned
on Turn #1. There was a small but finite group of
identifications of action types for the portions of the
Turn #2 actions that did not match the learned actions
from Turn #1. It is also seen that TTBI avoids incorrect
identification of behaviors (including No IDs) where
significant ambiguities existed and thus classification
was not appropriate.

Test Runs Correct ID (%) False ID (%) No ID (%)

1
2
3

86.9
42.9
91.5

12.3
57.1
3.8

0.8
0.0
4.6

4
5
6

88.6
76.4
82.7

10.6
9.7
10.8

0.8
13.8
6.5

7
8
9

92.6
94.2
92.6

1.3
3.5
1.9

6.2
2.3
5.5

10
11
12

95.4
91.9
93.8

3.8
6.5
0.8

0.8
1.5
5.4

13
14
15

91.5
66.0
93.3

1.9
25.0
1.3

6.5
9.0
5.4

16
17
18

83.1
83.5
80.4

16.9
16.5
15.0

0.0
0.0
4.6

Average 84.86% 11.05% 4.10%

Table 7. Correct, false, and no ID percentages for test runs at Turn #2

Volume 1, Number 3 168 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

DA Correct ID False ID No ID

0-2 76.7% 16.7% 16.7%

2-4 72.8% 7.2% 20%

4-6 93.3% 5.0% 1.7%

6-8 94.4% 5.6% 0.0%

8-10 87.2% 7.8% 5.0%

10-12 89.6% 8.7% 1.7%

Table 8. Real-time evaluation for Turn #2

5. Summary and Conclusions

The results of our evaluation of our weak-model
approach to recognize the intentions of a tank driver to
follow a certain path around a turn in the road proved
to be largely successful at identifying its near-term
intentions and predict its lower level actions. However,
we believe that the similarity in structures to higher-level
identification makes it such that the TTBI approach could
be similarly applied at any level of context abstraction.
 The intuition of equating the template attribute
weights to neural network weights resulted in a good
method to learn the weights directly from observation
of prior agent behavior. This is critical for a weak-model
approach such as presented here. While the process is
not completely automated, future research could more
readily make this learning process highly automated by
using clustering algorithms to group similar types of
runs.
 In conclusion, while the method yielded good results,
it required significant manual effort to review the runs
and classify them, build the fuzzy set membership
functions and train the neural networks. Much of the
effort was application-specific. Table 9 lists important
characteristics for generalizing the TTBI technique to
other applications. These characteristics impact the
feasibility of TTBI, as well as its context identification
process during operation. Each characteristic is
determined either by the knowledge engineer at
design time, or at runtime by the constraints of the
operational environment and entity operation itself.
As listed in Table 9, the knowledge engineer must
be able to decompose the behaviors into mutually
exclusive contexts that are complete and consistent. It is

important for the knowledge engineer to select the most
indicative environmental variables for observation and
a suitable level of behavioral abstraction. Automating
the selection of these variables is beyond the scope
of this research and is the subject of future research.
Furthermore, the operational environment needs to
be properly instrumented to gather the observation
stream required by TTBI and it must do so in real time.
Finally, the entity’s behavior needs to exhibit all modes
during training while exhibiting minimal unforeseen
or inconsistent modes during operation. Making the
system noise tolerant also is beyond the scope of this
investigation and the subject of future research.
 Lastly, we present a discussion about the
computational complexity for scaling this concept to
other major behavioral contexts and their behavioral
sub-contexts for the extended TTBI approach. Let N
denote the number of major context templates, with
an average number of attributes being A. The number
of comparisons to determine the major context would
be on the order of N*A, or O(N*A). If the number
of attributes per template were considered relatively
constant, the complexity would be expressed as
O(N). For any given major context that was selected
as the winning template, the sub-contexts that would
compete are limited to the sub-contexts of that major
context. Thus, if the number of sub-context templates
and their attributes were relatively constant from one
major context to another, the complexity still would
be expressed as O(N). Therefore, the addition of new
major contexts to be considered would scale with a
linear complexity thereby demonstrating good potential
for scalability.

Volume 1, Number 3 JDMS 169

Context-driven Near-term Intention Recognition

Important Characteristics Responsible Information Source Criticality for Success

Ability to decompose entity behaviors
into mutually-exclusive contexts within
the given domain

Knowledge Engineer Essential: must be accurate,
complete, and internally consistent

Ability to identify which of all possible
observable environmental variables
should be monitored as being most
indicative of current context/transitions

Knowledge Engineer Important: very strong positive
correlation desired, but set
of variables selected need not
be optimal for TTBI to work
correctly

Ability to select a tractable yet useful
level of abstraction of the entity’s actions

Knowledge Engineer Important: low-level behaviors can
be more readily correlated with
environmental observations

Availability of instrumentation to
observe the identified environmental
variables to create a stream of discrete or
continuously-valued observations

Operational Environment Essential: required during both the
training and performance phases

Sufficient breadth and consistency in
the entity’s behavior as quantified by
template inputs

Entity Operation Important: lack of breadth during
training or inconsistencies during
operation will decrease the context
identification rate

Table 9. Factors affecting the applicability of TTBI technique

6. References

[1] Gonzalez, A. J. & Ahlers, R. 1998. Context-based representation of
intelligent behavior in training simulations. Transactions of the
Society for Computer Simulation, 15(4), 153-166.

[2] Schmidt, CF, Sridharan, N. S. and Goodson, J. L. 1978. “The Plan
Recognition Problem: An Intersection of Psychology and Artificial
Intelligence”, Artificial Intelligence, Vol. 11, No. 1&2, pp. 45-83.

[3] Clark, A. N. 1994. Pattern recognition of noisy sequences of behavioral
events using functional combinators. The Computer Journal, 37(5),
385-398.

[4] Wang, D. & Arbib, M. 1993. Timing and chunking in processing
temporal order. IEEE Transactions on Systems, Man, and
Cybernetics, 23(4), 993-1009.

[5] Maskara, A. & Noetzel, A. 1993. Training auto-associative recurrent
neural network with preprocessed training data. Proceedings of the
SPIE – The International Society for Optical Engineering: Science
of Artificial Neural Networks II, 1966 (pp. 420-428). Orlando, FL.

[6] Liu, A. & Pentland, A. 1997. Towards real-time recognition of driver
intentions. Proceedings of the 1997 IEEE Conference on Intelligent
Transportation Systems (pp. 236-241). Boston MA.

[7] Narendra, K. S., Balakrishnan, J., & Ciliz, M. K. 1995. Adaptation
and learning using multiple models, switching, and tuning. IEEE
Control Systems Magazine, 15(3), 37-51.

[8] Pentland, A. & Liu, A. 1999. Modeling and prediction of human
behavior. Neural Computation, 11, 229-242.

[9] Austin, K. B. & Rose, G. M. 1997. Automated behavior recognition
using continuous-wave Doppler radar and neural networks.
Proceedings of the 19th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society: Magnificent
Milestones and Emerging Opportunities in Medical Engineering, 4,
1997, Chicago, IL, October 30 to November 2, pp. 1458-1461.

[10] Weng, J. J. & Hwang, W. 1998. Toward automation of learning: the
state self-organization problem for a face recognizer. Proceedings
Third IEEE International Conference on Automatic Face and
Gesture Recognition, 1 (pp. 384-389). Nara, Japan.

[11] Strohal, M. & Onken, R. 1998. Intent and error recognition as part of
a knowledge-based cockpit assistant. In S. K. Rodgers, D. B. Fogel,
J. C. Bezdek & B. Bosacchi (Eds.), Applications and Science of
Computational Intelligence: Proceedings of the SPIE, 3390, 287-
299.

[12] Lesh, N., Rich, C. and Sidner, C. L. 1999. Using plan recognition
in human-computer collaboration. In J. Kay (Ed.), Proceedings of
UM99: Seventh International Conference on User Modeling (pp.
23-32). Wien, Austria: Springer.

[13] Wobke, W. 2002. “Two Logical Theories of Plan Recognition”,
Journal of Logic and Computation, 12(3), pp. 371-412, June 2002.

[14] Jiang, Y. F. and Ma, N. 2002. “Plan Recognition Algorithm based on
Plan Knowledge Graph”, Journal of Software, 13(4), pp. 686-692,
April, 2002.

[15] Patterson, D., Liao, L., Fox, D., and Kautz, H. 2003. “Inferring
High Level Behaviors from Low Level Sensors”, Fifth Annual
Conference on Ubiquitous Computing (UBICOMP 2003), Seattle,
WA.

[16] Intille, S. S. and Bobick, A. F. 2001. “Recognizing Planned Multi-
person Action”, Computer Vision and Image Understanding, 81(3),
pp. 414-445.

[17] Kerkez, B. and Cox, M. T. 2002. “Local Predictions for Case-based
Plan Recognition”, Proceedings of the 2002 European Conference
on Case-Based Reasoning, pp. 189-203.

[18] Charniak, E. and Goldman, R. P. 1993. “A Bayesian Model of Plan
Recognition”, Artificial Intelligence, 64(1), pp. 53-79.

[19] Tambe, M. 1996. “Tracking Dynamic Team Activity”, Proceedings of
the National Conference on Artificial Intelligence (AAAI), 1996.

Volume 1, Number 3 170 JDMS

Gonzalez, Gerber, DeMara, and Georgiopoulos

[20] Kaminka, G. A and Tambe, M. 2000. “Robust Multi-agent Teams via
Socially-attentive Monitoring”, Journal of Artificial Intelligence
Research, 12, pp. 105-147.

[21] Kaminka, G. A., Pynadath, D. V, and Tambe, M. 2002. Monitoring
Teams by Overhearing: A Multi-Agent Plan Recognition
Approach”, Journal of Artficial Intelligence Research, 1(124).

[22] Huber, M. J. 1996. “Plan-based Plan Recognition for Effective
Coordination of Agents Through Observation”, PhD dissertation, U.
of Michigan.

[23] Han, K. and Veloso, M. 1999. “Automated Robot Behavior
Recognition Applied to Robotic Soccer”, Proc. of IJCAI-1999
Workshop on Team Behavior and Plan Recognition, 1999.

[24] Pynadath, D. V. and Wellman, M. P. 2000. “Probabilistic State-
Dependent Grammars for Plan Recognition”, Proc. of UAI-2000,
pp. 507-514.

[25] Devaney, M. and Ram, A. 1998. “Needles in a Haystack: Plan
Recognition in Large Spatial Domains involving Multiple
Agents”, Proceedings of the 15th national Conference on Artificial
Intelligence, pp 942-947.

[26] Goldman, R. P., Geib, C. W. and Miller, C. A. 1999. “A New Model
of Plan Recognition”, Proc. of the Conf. on Uncertainty in Artificial
Intelligence, 1999.

[27] Drewes, P. J., Gonzalez, A. J. and Gerber, W. 2000. “Interpreting
Trainee Intent in Real Time in a Simulation-based Training
System”, Transactions of the Society for Computer Simulation, Vol.
17, No. 3, September 2000, pp. 120-134.

[28] Turner, R. M. 1994. Adaptive reasoning for real-world problems:
a schema based approach. Hillsdale, NJ: Lawrence Erlbaum
Associates.

[29] Turner, R. M. 1998. Context-mediated behavior for intelligent agents.
In B. R. Gaines (Ed.), International Journal of Human-Computer
Studies: Incorporating Knowledge Acquisition, 48(3), 307-330.

[30] Brezillon, P. 2004. “Representation of Procedures and Practices in
Contextual Graphs”, The Knowledge Engineering Review.

[31] Bass, E. J., Zenyuh, J.P., Small, R.L. and Fortin, S.T. 1996. “A
Context-based Approach to Training Situation Awareness”,
Proceedings of the Third Annual Symposium on Human Interaction
with Complex Systems, Los Alamitos, CA: IEEE Computer Society
Press, pp. 89-95

[32] Gerber, W. J. 2001. Real-Time Synchronization of Behavioral Models
With Human Performance in a Simulation. Doctoral Dissertation,
University of Central Florida, Orlando.

[33] Drewes, P. J. 1997. Automated Student Performance Monitoring in
Training Simulation. Doctoral Dissertation, University of Central
Florida, Orlando.

[34] Hertz, J. A., Krough, A. S. & Palmer, R. G. 1991. Introduction to
the Theory of Neural Computation. Redwood City, CA: Addison-
Wesley Publishing Company.

[37] Gerber, W. J. and Gonzalez, A. J. 2001. Behavior recognition results
for behavioral vehicle model synchronization in distributed
simulations. Proceedings of the 2001 Interservice/Industry Training,
Simulation and Education Conference (pp. 260-270). Orlando, FL.

[35] Zadeh, L. A. 1987. Fuzzy sets. In R. R. Yager, S Ovchinnikov, R. M.
Tong & H. T. Nguyen (Eds.), Fuzzy Sets and Applications: Selected
Papers by L. A. Zadeh (pp. 29-44). New York: John Wiley & Sons,
Inc. (Reprinted from Information and Control, 8, 338-353, 1965,
New York: Academic Press)

[36] Langari, R. & Yen, J. 1995. Introduction to fuzzy logic control. In
J. Yen, R Langari & L A. Zadeh (Eds.), Industrial Applications of
Fuzzy Logic and Intelligent Systems (pp. 3-39). Piscataway, NJ:
IEEE Press.

