
Data-partitioning using the Hilbert space filling curves: Effect on the speed

of convergence of Fuzzy ARTMAP for large database problems

José Castro, Michael Georgiopoulos*, Ronald Demara, Avelino Gonzalez

Department of Electrical and Computer Engineering, University of Central Florida, 4000 Central Florida Blvd. Engineering Building 1,

Suite 407, Orlando, FL 32816-2786, USA

Received 5 February 2004; revised 27 January 2005; accepted 27 January 2005

Abstract

The Fuzzy ARTMAP algorithm has been proven to be one of the premier neural network architectures for classification problems. One of

the properties of Fuzzy ARTMAP, which can be both an asset and a liability, is its capacity to produce new nodes (templates) on demand to

represent classification categories. This property allows Fuzzy ARTMAP to automatically adapt to the database without having to a priori

specify its network size. On the other hand, it has the undesirable side effect that large databases might produce a large network size (node

proliferation) that can dramatically slow down the training speed of the algorithm. To address the slow convergence speed of Fuzzy

ARTMAP for large database problems, we propose the use of space-filling curves, specifically the Hilbert space-filling curves (HSFC).

Hilbert space-filling curves allow us to divide the problem into smaller sub-problems, each focusing on a smaller than the original dataset.

For learning each partition of data, a different Fuzzy ARTMAP network is used. Through this divide-and-conquer approach we are avoiding

the node proliferation problem, and consequently we speedup Fuzzy ARTMAP’s training. Results have been produced for a two-class, 16-

dimensional Gaussian data, and on the Forest database, available at the UCI repository. Our results indicate that the Hilbert space-filling

curve approach reduces the time that it takes to train Fuzzy ARTMAP without affecting the generalization performance attained by Fuzzy

ARTMAP trained on the original large dataset. Given that the resulting smaller datasets that the HSFC approach produces can independently

be learned by different Fuzzy ARTMAP networks, we have also implemented and tested a parallel implementation of this approach on a

Beowulf cluster of workstations that further speeds up Fuzzy ARTMAP’s convergence to a solution for large database problems.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Fuzzy-ARTMAP; Hilbert space-filling curve; Data mining; Data-partitioning
1. Introduction

Neural Networks have been used extensively and

successfully to tackle a wide variety of problems. As

computing capacity and electronic databases grow, there is

an increasing need to process considerably larger databases.

In this context, the algorithms of choice tend to be ad hoc

algorithms (Agrawal & Srikant, 1994) or tree based

algorithms such as CART (King, Feng, & Shutherland,

1995) and C4.5 (Quinlan, 1993). Variations of these tree

learning algorithms, such as SPRINT (Shafer, Agrawal, &
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.01.007

* Corresponding author. Tel.: C1 407 823 5338; fax: C1 407 823 5835.

E-mail addresses: jcastro@pegasus.cc.ucf.edu (J. Castro), michaelg@

mail.ucf.edu (M. Georgiopoulos), demara@pegasus.cc.ucf.edu

(R. Demara), gonzalez@pegasus.cc.ucf.edu (A. Gonzalez).
Mehta, 1996) and SLIQ (Mehta, Agrawal, & Rissanen,

1996) have been successfully adapted to handle very large

datasets.

Neural network algorithms can have a prohibitively slow

convergence to a solution, especially when they are trained

on large databases. Even one of the fastest (in terms of

training speed) neural network algorithms, the Fuzzy

ARTMAP algorithm (Carpenter, Grossberg, Markuzon,

Reynolds, & Rosen, 1992; Carpenter, Grossberg, &

Reynolds, 1991), and its faster variations (Kasuba, 1993;

Taghi, Baghmisheh, & Pavesic, 2003) tend to converge

slowly to a solution as the size of the network increases. The

performance of Fuzzy ARTMAP and its variants has been

documented extensively in the literature. Some of these

references favor Fuzzy ARTMAP some of them do not, as

compared to other neural network classifiers or other

classifiers in general. For example, Joshi et al. (see Joshi,

Ramakrishman, Houstics, & Rice, 1997) compared more
Neural Networks 18 (2005) 967–984
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet

Nomenclature

�ra baseline vigilance, �ra 2½0; 1�

a choice parameter, aO0

3 small positive constant

w, wj weights in the neural network

T(I, w, a) activation of the FS-FAM node with template w
r(I, w) vigilance ratio

G repeat factor of matchtracking

k compression ratio

Tsequential sequential time of FS-FAM

T
sequential
p (PartitionsZp) sequential time of FS-FAM

with p partitions

T
parallel
p (PartitionsZp) parallel time of FS-FAM with p

partitions

Ma dimensionality of the input patterns

m order of approximation of a space-filling curve

N number of bits in a derived key of a Hilbert

index

r an N-Bit binary Hilbert derived-key

gi
j a binary digit in r

gi ith binary byte in r

aj a coordinate in dimension j of the point (a1,

a2,.,aj,.,aMa
)

ai
j a binary digit in a coordinate aj

ai a concatenation of all the ith entries of the aj’s

J. Castro et al. / Neural Networks 18 (2005) 967–984968
than 20 classifiers on seven different machine-learning

problems. The conclusion of this study was that Fuzzy Min–

Max (Simpson, 1992), a network that shares a lot of

similarities with the Fuzzy ARTMAP neural network, gives

the best or the second best classification accuracy over all

the other algorithms on these machine-learning problems.

Also, in Heinke and Hamker (1995), the authors compare

the performance of Fuzzy ARTMAP and three other neural

network classifiers, that is Growing Neural Gas (GNG),

Growing Cell Structures (GCS) and the multi-layer

perceptron (MLP) on a number of benchmark datasets.

The conclusion of their study is that Fuzzy ARTMAP

performance (classification accuracy) is inferior to the

performance of all the other neural networks. Nevertheless,

Fuzzy ARTMAP required lesser amount of time to converge

to a solution, and it created smaller size neural network

architectures.

Some of the advantages that Fuzzy ARTMAP has,

compared to other neural network classifiers: that it learns

the required task fast (especially its faster variants, such as

the Fast Simplified Fuzzy ARTMAP), it has the capability to

do on-line learning, and its learning structure allows the

explanation of the answers that the neural network

produces. One of the disadvantages of Fuzzy ARTMAP is

its tendency to create large size networks, especially when

the data presented to Fuzzy ARTMAP are of noisy and/or

overlapping nature. This Fuzzy ARTMAP shortcoming has

been coined as ‘the category proliferation’ problem. Quite

often, the category proliferation problem, observed in Fuzzy

ARTMAP architectures, is connected with the issue of over-

training in Fuzzy ARTMAP. Over-training happens when

Fuzzy ARTMAP is trying to learn the training data perfectly

at the expense of degraded generalization performance (i.e.

classification accuracy on unseen data) and also at the

expense of creating many categories to represent the

training data. A number of authors have tried to address

the category proliferation/over-training problem in

Fuzzy ARTMAP. Amongst them we refer to the work by
Marriott and Harrison (1995), where the authors eliminate

the match tracking mechanism of Fuzzy ARTMAP when

dealing with noisy data, the work by Charalampidis,

Kasparis, and Georgiopoulos (2001), where the Fuzzy

ARTMAP equations are appropriately modified to compen-

sate for noisy data, the work by Anagnostopoulos,

Bharadwaj, Georgiopoulos, Verzi, and Heileman (2003),

Gomez-Sanchez, Dimitriadis, Cano-Izquierdo, and Lopez-

Coronado (2002), and Verzi, Heileman, Georgiopoulos, and

Healy (2001), where different ways are introduced of

allowing the Fuzzy ARTMAP categories to encode patterns

that are not necessarily mapped to the same label, provided

that the percentage of patterns corresponding to the majority

label exceeds a certain threshold, the work by Koufakou,

Georgiopoulos, Anagnostopoulos, & Kasparis (2001),

where cross-validation is employed to avoid the over-

training/category proliferation problem in Fuzzy ARTMAP,

and the work by Carpenter (Carpenter, Milenova, & Noeske,

1998), Parrado-Hernandez, Gomez-Sanchez, and Dimitria-

dis (2003) and Williamson (1997), where the ART structure

is changed from a winner-take-all to a distributed version

and simultaneously slow learning is employed with the

intent of creating fewer ART categories and reducing the

detrimental effects of noisy patterns.

In this paper, our focus is to improve the convergence

speed of ART-like structures through a training data-

partitioning approach. In order to connect our work with

previous work on Fuzzy ARTMAP it is worth emphasizing

again the work by Kasuba (1993), where a simplified Fuzzy

ARTMAP structure (simplified Fuzzy ARTMAP) is intro-

duced that is simpler and faster than the original Fuzzy

ARTMAP structure, and functionally equivalent with Fuzzy

ARTMAP for classification problems. Furthermore, Taghi

et al. (2003), describe variants of simplified Fuzzy

ARTMAP, called Fast Simplified Fuzzy ARTMAP, that

reduce some of the redundancies of Simplified Fuzzy

ARTMAP and speed up its convergence to a solution, even

further. One of the Fuzzy ARTMAP fast algorithmic

J. Castro et al. / Neural Networks 18 (2005) 967–984 969
variants presented in Taghi et al. (1993) is called, SFAM2.0

and it has the same functionality as Fuzzy ARTMAP

(Carpenter et al., 1992) for classification problems. From

now we will refer to this variant of Fuzzy ARTMAP as

FS-FAM (Fast Simplified Fuzzy ARTMAP). The focus of

our paper is FS-FAM. Note that FS-FAM is faster than

Fuzzy ARTMAP because it eliminated some of the

redundancies of the original Fuzzy ARTMAP that are not

necessary when classification problems are considered.

Since the functionality of Fuzzy ARTMAP (Carpenter et al.,

1992) and FS-FAM (Taghi et al., 2003) are the same for

classification problems we will occasionally refer to

FS-FAM as Fuzzy ARTMAP. We chose to demonstrate

the effectiveness of our proposed data-partitioning approach

on the performance of FS-FAM since, if we demonstrate its

effectiveness for Fuzzy ARTMAP, its extension to other

ART structures can be accomplished without a lot of effort.

This is due to the fact that the other ART structures share a

lot of similarities with Fuzzy ARTMAP, and as a result, the

advantages of the proposed data-partitioning approach can

be readily extended to other ART variants (for instance

some of the ART variants, mentioned above, that address

the category proliferation/over-training issue in Fuzzy

ARTMAP).

One of the properties of Fuzzy ARTMAP, which can be

both an asset and a liability, is its capacity to produce new

neurons (templates) on demand to represent classification

categories. This property allows Fuzzy ARTMAP to

automatically adapt to the database without having to

arbitrarily specify its network size. On the other hand

though, this same property of Fuzzy ARTMAP has the

undesirable effect that on large databases it can produce a

large network size (category (node) proliferation problem)

that can dramatically slow down its convergence speed. It

would be desirable to be able to train Fuzzy ARTMAP on

large databases, while keeping Fuzzy ARTMAP’s conver-

gence speed reasonable. To address this problem we

propose the use of space-filling curves. A space-filling

curve is by definition a continuous mapping from a unit

hypercube [0,1]n to the unit interval [0,1]. Skopal, Krátký,

and Snášel (2002) analyze different space-filling curves,

amongst them the Peano curve, Z curve and the Hilbert

curve, and also provides measures for their appropriateness.

Moon, Jagadish, Faloutsos, and Saltz (2001) argues and

proves that the Hilbert space-filling curve (HSFC) is the

mapping that provides the least number of splits of compact

sets from [0,1]n to [0,1]. This can be interpreted as stating

that points that are close on the mapping will also be close

on the n-dimensional hypercube. Lawder (Lawder & King,

2000) has taken advantage of this property of HSFCs and

used them to develop a multi-dimensional indexing

technique.

In this paper, we use Hilbert space-filling curves to

partition the training data, prior to their presentation to

FS-FAM. Through the training set partitioning that the

HSFC produces we can train many Fuzzy ARTMAP
networks, each one of them with one of the partitions of

the training set that the HSFC generates. Through this

divide-and-conquer approach, facilitated by the Hilbert

space-filling curves, our research has shown that we can

dramatically reduce the convergence speed of a single

FS-FAM trained on the entire (large) training set. Our

experimentation also demonstrates that the many FS-FAMs

trained on the smaller training sets cumulatively produce a

combined Fuzzy ARTMAP structure, referred to as

hFS-FAM (Hilbert Fast Simplified Fuzzy ARTMAP),

whose size is comparable to the size of the single

FS-FAM trained on the large dataset. Furthermore, our

experiments show that hFS-FAM’s generalization perform-

ance is as good as, and at times better, than the single

FS-FAM’s performance.

It is worth mentioning that our literature review did not

produce any papers that addressed the issue of convergence

speed in Fuzzy ARTMAP for large databases through data-

partitioning approaches. But data-partitioning approaches

have been applied to other neural network architectures with

success. For instance, Kerstetter (1998) have used a data-

partitioning (clustering) approach that divides the data into

smaller datasets in an effort to effectively train a multi-layer

feedforward neural network for a target recognition

application. The clustering approach utilized in their paper

was tailored for the multi-layer feedforward neural network

and its associated learning algorithm (back-propagation).

Another neural network architecture for which data-

partitioning (clustering) has been very beneficial is the

probabilistic neural network developed by Specht (1990).

One of the major issues with the probabilistic neural

network is that it uses too many exemplars (templates) to

represent the patterns in the training set, resulting in

unnecessary long computations in order to respond with a

predicted classification for new patterns that it has never

seen before. Radial basis function neural networks (Moody

& Darken, 1989) suffer from a similar type of deficiency.

Clustering (data-partitioning) approaches to remedy this

problem for the PNN and RBF neural networks have been

proposed in the literature. For example, in Burrascano

(1991), Kohonen’s learning vector quantization (LVQ) has

been successfully used to find representative exemplars to

be used with the PNN. In a similar fashion, Traven (1991)

reduces the number of templates needed by the PNN by

replacing groups of training patterns with exemplar patterns

using an approach that estimates the probability density

functions needed in the PNN with Gaussian functions of

appropriate mean and covariances. Our intent in this paper

was similar with the intent in the aforementioned papers,

where data-partitioning was applied. We wanted to reduce

the number of templates that Fuzzy ARTMAP had to

consider during its training phase. So, instead of training

Fuzzy ARTMAP on all the available data we partitioned the

data in smaller sets, and we trained many Fuzzy ARTMAPs,

in an effort to reduce the training time required by a single

Fuzzy ARTMAP. We used the HSFC (Hilbert Space-Filling

J. Castro et al. / Neural Networks 18 (2005) 967–984970
Curve) approach to partition the data because it is very fast

(it takes N log2(N) operations to partition a dataset contain-

ing N points), and as a result it is expected to provide

significant savings in the required computations that Fuzzy

ARTMAP needs to solve a ‘large dataset’ problem. In our

paper, we demonstrate that the performance of Fuzzy

ARTMAP (generalization and size) is not affected by the

data-partitioning (clustering) that the HSFC enforces.

This paper is organized as follows. First, we review the

FS-FAM architecture and its functionality. Then we

examine the computational complexity of FS-FAM and

analyze how and why a partitioning approach can

considerably reduce the algorithm’s training time. Sub-

sequently, we discuss space-filling curves in general and the

Hilbert space-filling curve in particular; furthermore, we

discuss of why this curve can be instrumental in improving

FS-FAM’s convergence time. Also, experimental results are

presented on a sequential machine and on a Beowulf cluster

of workstations that illustrate the merit of our approach. The

datasets that we have used in our experiments to

demonstrate the effectiveness of hFS-FAM, compared to

FS-FAM are (i) a two-class, 16-dimensional Gaussianly

distributed dataset, and (ii) the Forest database that resides

at the UCI repository (University of California, Irvine,

2003). We close the paper with a summary of the findings

and suggestions for further research.
Fig. 1. Block diagram of the FS-FAM architecture.
2. The FS-FAM architecture

The Fuzzy ARTMAP neural network and its associated

architecture was introduced by Carpenter and Grossberg in

their seminal paper (Carpenter et al., 1992). Since its

introduction, a number of Fuzzy ARTMAP variations and

associated successful applications of this ART family of

neural networks have appeared in the literature (for

instance, ARTEMAP (Carpenter & Ross, 1995), ART-

MAP-IC (Carpenter & Markuzon, 1998), Ellipsoid-ART/

ARTMAP (Anagnostopoulos & Georgiopoulos, 2001),

Fuzzy Min–Max (Simpson, 1992), LAPART2 (Caudell &

Healy, 1999), and s-FLNMAP (Petridis, Kaburlasos,

Fragkou, & Kehagais, 2001), to mention only a few). For

the purposes of the discussion that follows in this section it

is worth mentioning again the work by Kasuba (1993) and

Taghi et al. (2003). In his paper, Kasuba introduces a

simpler Fuzzy ARTMAP architecture, called Simplified

Fuzzy ARTMAP. Kasuba’s simpler Fuzzy ARTMAP

architecture is valid only for classification problems.

Taghi et al. (2003) have eliminated some of the unnecessary

computations involved in Kasuba’s Simplified Fuzzy

ARTMAP, and introduced two faster variants of Simplified

Fuzzy ARTMAP, called SFAM2.0 and SFAM2.1. Kasuba’s

simpler Fuzzy ARTMAP variants were denoted as

SFAM1.0 and 1.1 in Taghi’s paper. In order to connect

the version of Fuzzy ARTMAP, implemented in this paper,

with Carpenter’s and Grossberg’s Fuzzy ARTMAP,
Kasuba’s simplified Fuzzy ARTMAP (SFAM1.0) and

Taghi’s simplified Fuzzy ARTMAP versions, such as

SFAM1.1, SFAM2.0 and SFAM2.1, it is worth mentioning

that in our paper we have implemented the Fuzzy ARTMAP

version, called SFAM2.0 in Taghi’s paper. As, we have

mentioned in Section 1, we refer to this Fuzzy ARTMAP

variant as FS-FAM. Once more, FS-FAM is algorithmically

equivalent with Fuzzy ARTMAP for classification pro-

blems. Classification problems are the only focus in our

paper.

The block diagram of FS-FAM is shown in Fig. 1. Notice

that this block diagram is different than the block diagram of

Fuzzy ARTMAP mentioned in Carpenter et al. (1991), but

very similar to the block diagram depicted in Kasuba’s work

(see Kasuba, 1993). The Fuzzy ARTMAP architecture of

the block diagram of Fig. 1 has three major layers. The input

layer ðFa
1Þ, where the input patterns (designated by I) are

presented, the category representation layer ðFa
2Þ, where

compressed representations of these input patterns are

formed (designated as wa
j , and called templates), and the

output layer ðFb
2Þ that holds the labels of the categories

formed in the category representation layer. Another layer,

shown in Fig. 1 and designated by Fa
0, is a pre-processing

layer and its functionality is to pre-process the input

patterns, prior to their presentation to FS-FAM. This pre-

processing operation (called complementary coding is

described in more detail below).

Fuzzy ARTMAP can operate in two distinct phases: the

training phase and the performance phase. The training

phase of Fuzzy ARTMAP can be described as follows.

J. Castro et al. / Neural Networks 18 (2005) 967–984 971
Given a set of inputs and associated label pairs, {(I1,

label(I1)),.,(Ir, label(Ir)),.,(IPT, label(IPT))}, we want to

train Fuzzy ARTMAP to map every input pattern of the

training set to its corresponding label. To achieve the

aforementioned goal we present the training set to the Fuzzy

ARTMAP architecture repeatedly. That is, we present I1

to Fa
1, label(I1) to Fb

2 , I2 to Fa
1 label(I2) to Fb

2 and finally IPT

to Fa
1, and label(OPT) to Fb

2. We present the training set to

Fuzzy ARTMAP as many times as it is necessary for Fuzzy

ARTMAP to correctly classify all these input patterns. The

task is considered accomplished (i.e. the learning is

complete) when the weights do not change during a training

set presentation. The aforementioned training scenario is

called off-line learning. There is another training scenario,

the one considered in this paper, that is called on-line

training, where each one of the input/label pairs are

presented to Fuzzy ARTMAP only once. The performance

phase of Fuzzy ARTMAP works as follows. Given a set of

input patterns, such as ~I
1
; ~I

2
;.; ~I

PS
, we want to find the

Fuzzy ARTMAP output (label) produced when each one of

the aforementioned test patterns is presented at its Fa
1 layer.

In order to achieve the aforementioned goal we present the

test set to the trained Fuzzy ARTMAP architecture and we

observe the network’s output.

The training process in FS-FAM is succinctly described

in Taghi’s et al. paper (Taghi et al., 2003). We repeat it here

to give the reader a good, well-explained overview of the

operations involved in its training phase.
(1)
 Find the nearest category in the category representation

layer of Fuzzy ARTMAP that ‘resonates’ with the input

pattern.
(2)
 If the labels of the chosen category and the input pattern

match, update the chosen category to be closer to the

input pattern.
(3)
 Otherwise, reset the winner, temporarily increase the

resonance threshold (called vigilance parameter), and

try the next winner.
(4)
 If the winner is uncommitted, create a new category

(assign the representative of the category to be equal to

the input pattern, and designate the label of the new

category to be equal to the label of the input pattern).
The nearest category to an input pattern Ir presented to

FS-FAM is determined by finding the category that

maximizes the function:

Ta
j ðI

r;wa
j ;aÞ Z

jIr owa
j j

a C jwa
j j

(1)

The above function is called the bottom-up input (or

choice function) pertaining to the Fa
2 node j with category

representation (template) equal to the vector wa
j , due to the

presentation of input pattern Ir. This function obviously

depends on an FS-FAM network parameter a, called choice

parameter, that assumes values in the interval (0,N).
In most simulations of Fuzzy ARTMAP, the useful range of

a is the interval (0,10]. Larger values of a create more

category nodes in the category representation layer of

FS-FAM.

The resonance of a category is determined by examining

if the function, called vigilance ratio, and defined below

rðIr;wa
j Þ Z

jIr owa
j j

jIrj
(2)

satisfies the following condition:

rðIr;wa
j ÞRra (3)

If the above equation is satisfied we say that resonance is

achieved. The parameter ra appearing in the above equation

is called vigilance parameter and assumes values in the

interval [0,1]. As the vigilance parameter increases, more

category nodes are created in the category representation

layer ðFa
2Þ of Fuzzy ARTMAP. If the label of the input pattern

(Ir) is the same as the label of the resonating category, then

the category’s template ðwa
j Þ is updated to incorporate the

features of this new input pattern (Ir). The update of a

category’s template ðwa
j Þ is performed as depicted below:

wa
j Z wa

j oIr (4)

The update of templates, illustrated by the above equation,

has been called fast-learning in Fuzzy ARTMAP. Our paper

is concerned only with the fast-learning Fuzzy ARTMAP.

If the category j is chosen as the winner and it resonates,

but the label of this category wa
j is different than the label of

the input pattern Ir, then this category is reset and the

vigilance parameter ra is increased to the level defined in

the following equation. Note that the label of a category j, in

the category representation layer of FS-FAM, is encoded

in the interconnection weight vector Wab
j emanating from

node j of the category representation layer Fa
2 and conver-

ging to all the nodes in the output layer Fb
2 of FS-FAM

jIr owa
j j

jIrj
C3 (5)

The parameter 3 assumes very small values. Increasing

the value of vigilance barely above the level of vigilance

ratio of the category that is reset guarantees that after this

input/label-of-input pair is learned by FS-FAM, immediate

presentation of this input to FS-FAM will result in correct

recognition of its label by Fuzzy ARTMAP. It is difficult to

correctly set the value of 3 so that you can guarantee that

after category resets no legitimate categories are missed by

FS-FAM. Nevertheless, in practice, typical values of the

parameter 3 are taken from the interval [0.00001, 0.001]. In

our experiments, we took 3Z0.001. After the reset of

category j, other categories are searched that maximize the

bottom-up input and they satisfy the vigilance (resonate).

This process continues until a category is found that

maximizes the bottom-up input, satisfies the vigilance and

has the same label as the input pattern presented to

J. Castro et al. / Neural Networks 18 (2005) 967–984972
FS-FAM. Once this happens, update of the category’s

template as indicated by Eq. (4) ensues. If through this

search process an uncommitted category (an uncommitted

category is a category that has not encoded any input

pattern before) is chosen, it will pass the vigilance, its label

will be set to be equal to the label of the presented input

pattern, and the update of the category’s template will

create a template that is equal to the presented input

pattern.

In all of the above equations (Eqs. (1)–(5)), there is

specific operand involved, called fuzzy min operand, and

designated by the symbol o. Actually, the fuzzy min

operation of two vectors x, and y, designated as xoy, is a

vector whose components are equal to the minimum of

components of x and y. Another specific operand involved in

these equations is designated by the symbol j$j. In

particular, jxj is the size of a vector x and is defined to be

the sum of its components.

It is worth mentioning that an input pattern I presented at

the input layer ðFa
1Þ of FS-FAM has the following form

I Z ða; acÞ Z ða1; a2;.aMa
; ac

1; a
c
2;.; ac

Ma
Þ (6)

where

ac
i Z 1 Kai; c i2f1; 2;.;Mag (7)

The assumption here is that the input vector a is such that

each one of its components lies in the interval [0, 1]. Any

input pattern can be, through appropriate normalization, be

represented by the input vector a, where Ma stands for the

dimensionality of this input pattern. The above operation

that creates I from a is called complementary coding and it

is required for the successful operation of Fuzzy ARTMAP.

The number of nodes (templates) created in the Fa
2 layer of

FS-FAM (category representation layer) is designated by

Na, and it is not a parameter that need to be defined by the

user before training commences; Na is parameter, whose

value is dictated by the needs of the problem that FS-FAM is

trained with and the setting of the choice parameter (a) and

baseline vigilance parameter �ra. The baseline vigilance

parameter is a parameter set by the user as a value in the

interval [0,1]. The vigilance parameter ra, mentioned earlier

(see Eq. (3)), is related with the baseline vigilance �ra since

at the beginning of training with a new input/label pattern

pair, the vigilance parameter is set equal to the baseline

vigilance parameter; during training with this input/label

pattern pair the vigilance parameter could be raised above

the baseline vigilance parameter (see Eq. (5)), only to be

reset back the baseline vigilance parameter value once a

new input/label pattern pair appears.

Prior to initiating the training phase of FS-FAM the user

has to set the values for the choice parameter a (chosen as a

value in the interval [0,10]), baseline vigilance parameter

value �ra (chosen as a value in the interval [0,1]).

In the performance phase of FS-FAM, a test input is

presented to FS-FAM and the category node in Fa
2 of
FS-FAM that has the maximum bottom-up input is chosen.

The label of the chosen Fa
2 category is the label that

FS-FAM predicts for this test input. By knowing the correct

labels of test inputs belonging to a test set allows us, in this

manner, to calculate the classification error of FS-FAM for

this test set.
2.1. A FS-FAM pseudocode

In this paper, we primarily focus on one-epoch FS-FAM

training, or as it was referred before the ‘on-line training’

FS-FAM. Whatever speedup we achieve for the ‘on-line

training’ FS-FAM, it will also be applicable to the ‘off-line

training’ FS-FAM, since the ‘off-line training’ FS-FAM is

an ‘on-line training’ FS-FAM, where after an on-line

training cycle is completed, another cycle starts with the

same set of training input patterns/label pairs. These ‘on-

line training’ FS-FAM cycles are repeated for as long as it is

necessary for the FS-FAM network to learn the required

mapping. The following pseudocode pertains to the ‘on-line

training’ FS-FAM.

The step-by-step procedure of the training phase of FS-

FAM (considered in this paper, and outlined above in terms

of its associated pseudocode) is described in every detail in

Taghi et al. (2003). It is only repeated here, in less detail, to

assure completeness of the manuscript.
2.2. On-line FS-FAM complexity analysis

We can see from the pseudocode that the algorithm tests

every input pattern I in the training set against each template

J. Castro et al. / Neural Networks 18 (2005) 967–984 973
wa
j at least once. Let us call G the average number of times

that the repeat loop in the pseudocode is executed for each

input pattern. Notice that this G parameter is not specified as

a numerical value but it is introduced as an unspecified

constant to help us produce an analytical formula that

describes the complexity of the on-line training FS-FAM.

Our experiments with many datasets indicate that this

parameter is small compared to the number of templates that

FS-FAM creates during its training phase. As a result, the

number of times that a given input pattern I passes through

the code will be:

TimeðIÞ Z OðG!jtemplatesjÞ (8)

Also, under the unrealistic condition that the number of

templates does not change during training it is easy to see

that the time complexity of the algorithm is:

TimeðFS-FAMÞ Z OðG!PT !jtemplatesjÞ (9)

Usually for a fixed database the FS-FAM algorithm

achieves a certain compression ratio. This means that the

number of templates created is actually a fraction of the

number of patterns PT in the training set

jtemplatesj Z kPT (10)

and

TimeðFS-FAMÞ Z OðGPTkPTÞ Z OðkGPT2Þ (11)

Note that the parameter k is also an unspecified

numerical value. As it was the case with G, the introduction

of k as an unspecified constant helps us in deriving an

analytical formula for the on-line complexity of FS-FAM.

The actual value of the parameter k, defined in the above

equation, depends on �ra, a and obviously on the training set

that is presented to FS-FAM. Assuming that �ra and a are

kept fixed, the value of k decreases the more redundant data

the training set contains. For a fixed training set, the value of

k increases as a, or �ra, or both increase.

Now if we divide the training set into p partitions this

will reduce the number of patterns in each partition to

(PT/p) and the number of templates in each partition to

(kPT/p), on the average. On a sequential machine the

speedup obtained by partitioning the training set into p

subsets will be proportional to

T sequential

T
sequential
p ðPartitions Z pÞ

(12)

which using our assumptions above simplifies to

T sequential

T
sequential
p ðPartitions Z pÞ

Z
kGPT2

pG kPT
p

PT
p

Z p (13)

and on a parallel machine with p processors the speedup will

be proportional to

T sequential

T
parallel
p ðPartitions Z pÞ

(14)
and again with our assumptions above simplifies to:

Tsequential

T
parallel
p ðPartitions Z pÞ

Z
kGPT2

G kPT
p

PT
p

Z p2 (15)

The previous speedup (i.e. Eqs. (13) and (15)) still hold

even if we do not assume that the number of times that the

repeat loop is executed (i.e. the parameter G) is fixed. In that

case we expect G to get smaller as the number of templates

that a pattern has to go through decreases. So we expect the

G in the numerator of Eqs. (13) and (15) to be larger than the

G in the denominator of these equations; thus resulting in

higher than the pjp2 speedup that Eqs. (13) and (15) predict.

Furthermore, we also assumed that the parameter k is fixed.

In reality, it is expected that the parameter k will become

smaller as the size PT and the number of templates is

reduced. So it is reasonable to expect speedups greater than

p for p partitions run in sequence, or p2 for p partitions run in

parallel.

Furthermore, additional assumptions that were needed to

make the speedup equations valid are as follows:
(1)
 The partitioning scheme is well balanced and distri-

butes the learning task fairly amongst the different

partitions.
(2)
 The partitioning scheme is not computationally expens-

ive so as to outweigh its benefits.
2.3. Partitioned FS-FAM versus non-partitioned FS-FAM

It is worth mentioning how the data-partitioning works.

Whatever approach is used to partition the data in the

training set will lead us into a collection of smaller training

sets. Each one of these sets will be used to independently

train a different FS-FAM network. The resulting collection

of trained FS-FAM partitions is what we refer to as

hFS-FAM for reasons that will become apparent in

Section 3. In the performance phase, a test input is

presented to hFS-FAM and this test input activates only the

templates of the partition to which the input pattern

belongs. This is accomplished by finding the Hilbert space

index of the test pattern and then matching it with the

Hilbert space-filling curve indices of the training patterns

associated with one of the trained FS-FAMs in the hFS-

FAM collection. Hence, a test input pattern is presented

only to one of the trained FAMs in the hFS-FAM

collection. The most active category that passes the

vigilance criterion will produce the predicted label of the

input pattern. It is apparent from the above statements, that

the hFS-FAM and the single FS-FAM trained on the

original dataset are two distinct methods for solving the

same classification problem. Our intent, with hFS-FAM, in

addition to achieving convergence speedup compared to

FS-FAM, is to create a trained hFS-FAM whose size is not

larger than the size of FS-FAM, and whose generalization

J. Castro et al. / Neural Networks 18 (2005) 967–984974
performance is comparable to the generalization perform-

ance of FS-FAM.
3. Space-filling curves

A space-filling curve is a mapping from a unit hypercube

½0; 1�Ma to the unit interval [0,1]. Mokbel and Aref (2001)

describe them as a ‘thread that goes through all the points in

a space but visiting every point only once’. A space-filling

curve S is defined to as the limit of an infinite sequence of

curves fS
Ma
m : m20; 1;.g so that SZ

def
limm/NS

Ma
m , where

S
Ma
m is the mth-order approximation of the space-filling

curve S in the Ma-dimensional space. Every mth-order

space-filling curve approximation has a finite number of

segments and connects a finite number of points in the

multi-dimensional space. The grid size N of the space-filling

curve will be the number of divisions into which each of the

Ma dimensions is split.

There are many space-filling curves available, amongst

them we have the Peano curve, the Z curve, the Hilbert

curve, the Sweep, the scan and the gray curves. An

Ma-dimensional space-filling curve with grid size N

connects NMa points and has NMa K1 segments. Fig. 2

shows the Sweep and Peano space-filling curves, respecti-

vely. The grid size in these examples is 4, the number of

dimensions MaZ2, the number of points that they connect is

42Z16, and the number of segments is 15.

A curve S is space-filling iff:

S Z
def

lim
m/N

SMa
m Z ½0; 1�Ma (16)

The above equation states that a space-filling curve is

such that, as its order becomes larger and larger, it ends up

connecting more and more points in the space (of

dimensionality Ma) that it is trying to represent, and

eventually in the limit (as m/N) it connects all the points

in the Ma-dimensional space.
Fig. 2. Second-order Sweep and Peano space-filling curves with a grid si
Peano was the first to use space-filling curves, and

Hilbert generalized the definition to arbitrary number of

dimensions. To be able to characterize their properties,

Mokbel & Aref (2001) concentrate on the nature of

the segments that connect adjacent points in the space-

filling curve by cataloging them as either a jump, contiguity,

reverse, forward or still. Different applications will require

different space-filling curves. If, for example, we wanted to

access a database by an index in which the order is relevant

then a space-filling curve that preserves the order of the

dimension will probably be best (low reverse, i.e. the Peano

curve).
3.1. The Hilbert space-filling curve

Moon et al. (2001) concentrates on the Hilbert space-

filling curve (HSFC) and show that for range queries the

HSFC curve produces the least number of splits in an index.

This result is a consequence of the property that the HSFC

does not have any jumps, it is continuous, and that it does

not have a bias towards any dimension.

We will denote the mth-order approximation of the

Ma-dimensional Hilbert space-filling curve as H
Ma
m .

Examples of the first four approximations of the two-

dimensional Hilbert space-filling curve can be seen in

Figs. 3 and 4. The mth-order approximation H
Ma
m of the

HSFC has a grid size of NZ2m. In practice, H
Ma
m divides the

Ma-dimensional space into 2mMa boxes and orders them in a

contiguous sequence. For a more detailed exposition of the

clustering properties of this curve we refer the reader to

Moon et al. (2001).
3.2. The Hilbert space-filling curve index calculation

There are various algorithms for calculating the Hilbert

index of a given Ma-dimensional data point. The one we

present here is based on Lawder (2000) which is a

modification of an iterative algorithm originally found in
ze of NZ4, 2NZ16 partitions and 2NK1Z15 line segments each.

Fig. 4. Third and fourth-order approximations of the two-dimensional

Hilbert space-filling curve.

Fig. 3. First and second-order approximations of the two-dimensional

Hilbert space-filling curve.

J. Castro et al. / Neural Networks 18 (2005) 967–984 975
Butz (1971). This is a table driven algorithm. It assumes that

we are mapping binary numbers into binary numbers, and

the precision of the mapping is limited by the order of the

approximation m. Any precision can be achieved by

increasing the approximation order m. Also this algorithm

assumes that the number of bits in the full representation of

the Ma-dimensional data point is the same as the number of

bits in the resulting key r 2½0; 1Þ. All operations are fully

reversible, and as a result, the HSFC is a one-to-one

mapping.

The algorithm requires the following definitions.
†
 Ma: number of dimensions
†
 m: the order of approximation
†
 N: the number of bits in a derived-key, NZmMa
†
 r: an N-Bit binary Hilbert derived-key expressed as a real

number in the range [0, 1).
†
 byte: a word containing Ma bits
†
 gi
j : i2f1;.;mg; j2f1;.;Mag a binary digit in r such that

r Z0$g1
1g1

2.g1
Ma

g2
1g2

2.g2
Ma

g3
1.gm

Ma
†
 gi: ith binary byte in r, giZgi
1gi

2.gi
j.gi

Ma
†
 aj: a coordinate in dimension j of the point

ða1; a2;.; aj;.; aMa
Þ

whose derived-key is r, (each aj2[0, 1))
†
 ai
j: a binary digit in a coordinate aj

aj Z 0$a1
j a2

j .ai
j.am

j

†
 ai: a concatenation of all the ith entries of the aj’s

ai Z ai
1ai

2.ai
Ma
†
 principal position: the least significant position of a byte

that is different from the last position of the byte. If all

positions are equal then the principal position is Ma (the

first or most significant bit is bit 1).
†
 parity: number of bits in a byte that are equal to 1.

Given these definitions we can succinctly state the HSFC

mapping as

HMa
m ða1; a2;.; aMa

Þ Z 0$g1g2.gm

J. Castro et al. / Neural Networks 18 (2005) 967–984976
where the gi’s are calculated using the following algorithm:

Here, 4 is taken to mean the bitwise Exclusive-Or (XOR)

operation. Notice that all operations can be performed in

constant time, and if we fix the order of approximation m we

can safely state that H
Ma
m ð$Þ is a constant time operation. In

practice, the efficiency of the XOR operation makes the time

spent in the calculation of the Hilbert index negligible even

for large databases.
3.3. The Hilbert space-filling curve for data-partitioning

in FS-FAM

The FS-FAM algorithm is a distance based algorithm in

which all dimensions are treated equally. Fuzzy ART

(unsupervised learning), on which FS-FAM is based, is a

clustering algorithm that uses the distance function as a

means of selecting its templates. Our interest in providing

a data-partitioning method for the FS-FAM algorithm made

us contemplate different options. Naı̈vely dividing the space

into hyper-boxes has the disadvantage of having to decide

which dimension to select. Using all dimensions is not

viable in high-dimensional spaces, since the amount of

partitions would be at least 2Ma where Ma is the number of

dimensions. The entropy measure used in decision trees can

be used here to select dimensions and split points (Quinlan,

1993) per dimension. However, this approach, which gives

priority to some dimensions over others, runs counter to FS-

FAM’s learning process in which, using an L1 distance

function, all dimensions are treated impartially. On the other

hand, the Hilbert space-filling curve has been successfully

used by Lawder (2000) for distance queries. Moon et al.

(2001) prove that the Hilbert space-filling curve does not

have a bias towards any dimension. We concentrate on the

HSFC because its properties make it more compatible with

the characteristics of the FS-FAM algorithm. Our claim is

that the Ma-dimensional distance function is best preserved

by a space-filling curve like the HSFC. Points that are close

in the index will be close in the Ma-dimensional space (the

converse is not necessarily true, though).

Our approach is as follows: we take the set of training

pairs (Ir, Or), apply the Hilbert index rZH
Ma
m ðaÞ, where a is

the non-complement coded part of IZ(a, ac). The resulting
values are added to an index file and sorted. Once sorted, the

index is split into p contiguous and equally sized partitions,

each partition is processed independently. The complexity

of the partitioning operation is equal to the complexity of

the sorting algorithm used. For any reasonable sorting

algorithm this is O(PT log(PT)) and therefore does not add

to the complexity of the FS-FAM learning process itself

(which was found to be at least O(PT2)). In our paper, we

used the quicksort sorting algorithm.

The p partitions obtained will be completely balanced in

the number of patterns they process, although they may have

different number of templates depending on the complexity

of the classification task in each partition. On the

experimental level we found that the calculation of a fifth-

order Hilbert index for 581,012 patterns of dimensionality

12 of the Forest Covertype database (see Section 4) took

about 2 s. This is a negligible amount of time compared to

the training time of the FS-FAM algorithm on the same data.

We also found that a fifth-order curve for the Forest

Covertype database and the Gaussian databases was

sufficient to map every point of the training dataset to a

unique Hilbert index. This could also be a rule of thumb of

choosing an order for the Hilbert curve when we are

confronted with other datasets (other than the ones used in

this paper).
4. Design of experiments

Experiments were conducted on three databases: one

real-world database (Forest Covertype) and two artificially-

generated databases (16-dimensional, two-class Gaussianly

distributed data with 5 and 15% overlap between classes).

In particular, the first database used for testing hFS-FAM

versus FS-FAM was the Forest Covertype database

provided by Blackard (1999), and donated to the UCI

Machine-Learning Repository (University of California,

Irvine, 2003). The database consists of a total of 581,012

patterns each one associated with 1 of 7 different forest tree

cover types. The number of attributes of each pattern is 54,

but this number is misleading since attributes 11–14 are

Fig. 5. A random sample of 5000 Forest Covertype data points out of the

available 581,012 data points is shown. The data points are projected to the

first three dimensions of the database. Different colors for the data points

represent different class labels. (For interpretation of the reference to color

in this legend, the reader is referred to the web version of this article.)

J. Castro et al. / Neural Networks 18 (2005) 967–984 977
actually a binary tabulation of the attribute Wilderness-
Area, and attributes 15–54 (40 of them) are a binary

tabulation of the attribute Soil-Type. The original

database values are not normalized to fit in the unit

hypercube. Thus, we transformed the data to achieve this.

There are no omitted values in the data. For the purpose

of generating the Hilbert index the binary attributes,

Wilderness-Area and Soil-Type were re-packed

and the database was treated as if it consisted of only 12 real

valued attributes. In the FS-FAM training, the input patterns

had their original dimension of 54. Patterns 1–512,000 were

used for training. The test set for all trials were patterns

561,001–581,000. A visualization of the first three dimen-

sions of the Forest Covertype database can be seen in Fig. 5.

Different tones correspond to different classes. As it can be

seen from the figure the class boundaries are quite complex.

Classification performance of different machine-learning

algorithms for this database has been reported in the range

of 75% (Blackard, 1999).

Furthermore, we tested the hFS-FAM versus FS-FAM

for simulated data (Gaussianly distributed data). The

Gaussian data was artificially generated using the polar

form of the Box–Muller transform with the R250 random

number generator by Kirkpatrick and Scholl (1981). We

generated two-class, 16-dimensional data. All the dimen-

sions are identically distributed with the same mean m and

variance s2 except one. The discriminating dimension has

offset means so that the overlap between the Gaussian

curves is at 5% for one database and at 15% for the other.

Five hundred and thirty-two thousand patterns were

generated for each Gaussian database. Five hundred and

twelve thousand patterns were used for training; the

remaining 20,000 patterns were used for testing.

Training set sizes of 1000!2i, i2{0, 1,.,9}, that is

1000–512,000 patterns were used for the training of
FS-FAM and hFS-FAM. The test set size was fixed at

20,000 patterns. The number of partitions varied from pZ1

(FS-FAM) to pZ32 (hFS-FAM). Partition sizes were also

increased in powers of 2.

To avoid additional computational complexities in the

experiments (beyond the one that the size of the training set

brings along) the values of the FS-FAM network parameters

�ra, and a were fixed (i.e. the values chosen were ones that

gave reasonable results for the database of focus). In

particular, we used a �ra value of 0.94 for the Forest

Covertype database and a �ra value of 0.8 for the Gaussian

databases. The value of the choice parameter a was chosen

equal to 0.01 for all databases. For each database and for

every combination of (p, PT)Z(partition, training set size)

values, we conducted 32 independent experiments (training

and performance phases), corresponding to different orders

of pattern presentations within the training set. As a

reminder FS-FAM’s performance depends on the values

of the network parameters �ra, and a, as well as the order of

pattern presentation within the training set.

All the tests where conducted on the SCEROLA Beowulf

cluster of workstations (Micikevicius, 2003) of the Institute

for Simulation and Training. This cluster consists of 64

900 MHz machines running with 250 MBytes of RAM

each. In the sequential implementation of hFS-FAM, one of

these machines was used for the training of the p FS-FAMs.

In the parallel implementation of hFS-FAM, p of these

machines were used for the training of the p FS-FAMs (one

machine for the training of one of the p FS-FAMs).

Obviously, one of these machines was used for the training

of the FS-FAM (this FS-FAM was trained on the entire

training set). Since there is no communication between

processors for the parallel implementation of the p FS-

FAMs on p machines, the time required to train hFS-FAM

on the parallel (Beowulf cluster) machine was taken to be

the maximum time required to train any of the p FS-FAMs.

The metrics used to measure the performance of our

Hilbert Space-Filling Curves partitioning approach (hFS-

FAM) were:
(1) Classification performance of hFS-FAM compared

with the classification performance of FS-FAM (Higher

classification performance is better).
(2) Size of the trained hFS-FAM compared against the

size of FS-FAM (smaller size is better).
(3) Speedup of hFS-FAM versus FS-FAM, calculated

experimentally for the sequential and parallel implemen-

tations, respectively.

To calculate the speedup we used two measures, the first

one is total CPU time of each test and the second one is the

total number of iterations of the FS-FAM main loop (lines

8–17 of the pseudocode). This approach allowed us to check

how closely the wall clock speedup values are correlated

with the number of computations performed by the

algorithm. Wall clock time refers to the time in milliseconds

J. Castro et al. / Neural Networks 18 (2005) 967–984978
that it took for the algorithm to run from start of

computation to finish. Wall clock time was measured

using the system’s clock. A discrepancy between these

measures would mean that we might be obtaining speedup

from other implementation dependent sources (like cache

non-linearities or operating system dependent issues).
5. Experimental results

The first set of results reports on the network sizes

created by hFS-FAM and FS-FAM. Note that the network

size of hFS-FAM is the sum of the sizes of all the FS-FAM

networks trained on the partitions of the data produced by

the HSFC data-partitioning technique. On the other hand,

the size of FS-FAM is the network size created by FS-FAM,

when it is trained with all the data. In Fig. 6, we show a bar

graph of the number of templates on the Z axis, the training

set size on the X axis increasing from left to right

(in thousands of patterns), and the number of partitions of

the training dataset on the Y axis increasing from front to

back. All the following graphs, unless otherwise stated, have

this format with the measured variable of interest in the Z

dimension and the controlled variables training set size and

number of partitions in the X and Y dimensions, respect-

ively. It is evident from this graph that the number of data

partitions, up to the quantity tested, does not significantly

affect the size of hFS-FAM. In other words, we see that the

ratio of the number of templates (representing the size of the

ART architecture) in hFS-FAM versus the number of

templates in FS-FAM is slightly higher than 1. Never-

theless, it is worth noting that hFS-FAM consistently creates

larger size ART architectures compared to the sizes of
Fig. 6. Number of templates in hFS-FAM and FS-FAM trained with the Covertype

partitions and Z axis shows number of templates.
the architectures that FS-FAM creates. The fact that the

number of data partitions has little effect on the size of the

hFS-FAM architecture created is also true for the Gaussian

data, and confirmed in Fig. 7.

The generalization performance of the forest type

database can be seen in Fig. 8. The classification performance

of hFS-FAM is very similar with the classification perform-

ance of FS-FAM. In fact, the classification performance

curve for the hFS-FAM is smoother than that of FS-FAM.

Also, the hFS-FAM attained a slightly better classification

than FS-FAM, reaching a peak of 76.63% for 32 data-

partitions and 512,000 patterns. The Tree Covertype

database classification performance consistently improves

up to 512,000 patterns. This phenomenon clearly indicates

that there is useful information in all of the data-points of the

Forest Covertype database. Hence, training with more and

more data-points from this dataset consistently improves the

trained network’s generalization performance on an inde-

pendent test set. This behavior is not observed with the

Gaussian artificial data (5 or 15% data), whose classification

performance peaks at 32,000 patterns (Fig. 9). Beyond this

number of training patterns the classification performance

graph is flat. Also, classification improved considerably by

partitioning regardless of the amount of patterns used for

training. This is a consequence of the artificial nature of the

data since the best split point for the classes coincides with

the first split point obtained by Hilbert partitioning.

The turn-around time of the Forest Covertype data is

presented in Fig. 10. We can compare this graph with the graph

counting the number of iterations in Fig. 11 and observe that

their shape is almost identical. Also, the difference in training

time for the algorithm with 512,000 patterns and 32 partitions

(26 s) and FS-FAM (4 h 7 min) is very dramatic.
Data; X axis shows thousands of training patterns, Y axis shows number of

Fig. 7. Number of templates in hFS-FAM and FS-FAM trained with the 5% overlap Gaussian data; X axis shows thousands of training patterns, Y axis shows

number of partitions and Z axis shows number of templates.

J. Castro et al. / Neural Networks 18 (2005) 967–984 979
Fig. 12 shows the speedup in turn-around time of hFS-

FAM with p partitions running in parallel. The best

speedups obtained were in the order of 565. If we look at

the table of this figure for the speedup values when the

database size is 512,000, we can see that the numbers seem

to increase quadratically as the number of partitions p is

increased from 1 up to 16. At pZ32, there seems to be an
Fig. 8. Classification (generalization) performance of hFS-FAM and FS-FAM wit

axis shows the % of correctly classified patterns in the test set.
anomaly and a dip in the speedup. The speedup measured

using number of iterations can be seen in Fig. 13, where the

best speedup is in the order of 100 and is not obviously

quadratic. Nevertheless, we provide the log–log graph of the

same data in Fig. 14. This figure clearly shows a slope on

the graph close to 2 for the largest (and most representative

for our purposes) training set size, which indicates that
h the Forest Cover database; X axis shows thousands of training patterns, Y

Fig. 9. Classification (generalization) performance of hFS-FAM and FS-FAM for the Gaussian 5% Overlap Data; X axis shows thousands of training patterns,

Y axis shows the % of correctly classified patterns in test set.

J. Castro et al. / Neural Networks 18 (2005) 967–984980
the speedup in terms of the number of iterations is as

predicted close to p2 for the parallel implementation. We

speculate that the difference in speedup obtained between

these two measures is due to platform restrictions that slow

the sequential FS-FAM algorithm when the size of the

database is too large.
Fig. 10. hFS-FAM versus FS-FAM parallel partitioning absolute elapsed time in s

Y axis shows the number of seconds.
The speedup measured in iterations for the same data

using a sequential processing machine can be seen in

Fig. 15. We can see from this figure that the speedup for a

single processor is in the order of p. Again the speedup

observed from 16 to 32 partitions does not follow the same

progression for this data.
econds for the Covertype Data; X axis shows thousands of training patterns,

Fig. 12. hFS-FAM versus FS-FAM parallel partitioning speedup on the Covertype Data using the elapsed time in seconds to calculate speedup; X axis shows

thousands of training patterns, Y axis shows number of partitions and Z axis shows the parallel speedup.

Fig. 11. hFS-FAM versus FS-FAM parallel partitioning absolute number of iterations for the Covertype Data; X axis shows thousands of training patterns,

Y axis shows the number of iterations.

J. Castro et al. / Neural Networks 18 (2005) 967–984 981

Fig. 13. hFS-FAM versus FS-FAM parallel partitioning speedup on the Covertype Data using the number of iterations to calculate speedup; X axis shows

thousands of training patterns, Y axis shows number of partitions and Z axis shows the parallel speedup.

J. Castro et al. / Neural Networks 18 (2005) 967–984982
6. Conclusions

We observed that FS-FAM’s training time tends to slow

considerably when FS-FAM is applied to large classification

problems. After analyzing the complexity of the algorithm,

we conjectured that by partitioning the dataset we would

theoretically be able to reach a speedup of p in the

sequential machine and p2 in an efficient parallel machine

with sufficient number of processors. We proposed the

use of Hilbert space-filling curves to enforce some sort of
Fig. 14. hFS-FAM versus FS-FAM parallel partitioning speedup on log–log graph

Database; X axis shows the logarithm of the number of partitions, and Y axi

i2{0,2,.,9}.
data-partitioning (the resulting scheme was called

hFS-FAM). Experimental results on three databases con-

firmed our expectations. The classification performance of

hFS-FAM is not affected, as compared to the classification

performance of FS-FAM. The size of the resulting

hFS-FAM is slightly higher than the corresponding

FS-FAM size. Finally, and most importantly, the conver-

gence time of hFS-FAM is improved linearly on the

sequential machine and quadratically on the parallel

machine. Nevertheless, there is still room for improvement.
using the number of iterations to calculate speedup for the Forest Covertype

s shows the log2(speedup). Database sizes are represented as 1000!2i,

Fig. 15. hFS-FAM versus FS-FAM sequential partitioning speedup on log–log graph using the number of iterations to calculate speedup for the Forest

Covertype Database; X axis shows thousands of training patterns, Y axis shows the speedup.

J. Castro et al. / Neural Networks 18 (2005) 967–984 983
Analysis of the workload balance in the parallel machine

indicates that not all processes are being utilized to the

maximum level. This is because even though the number of

patterns processed by each partition is the same, the number

of templates varies considerably from one processor to

another depending on the complexity of the region it has to

classify. We believe that combining our data-partitioning

approach with a networking partitioning approach will help

us achieve optimal workload balance in the parallel

implementation of the algorithm. This is one of the

directions for our future research.
Acknowledgements

The authors would like to thank the Institute of Simulation

and Training and the Link Foundation Fellowship program

for partially funding this project. This work was also

supported in part by the National Science Foundation under

grant no. CRCD:0203446 and by the National Science

Foundation, under grant no. CCLI 0341601.
References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association

rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.),

Proceedings of the twentieth international conference on very large

databases, September 12–15 (pp. 487–499). Santiago, Chile: Morgan

Kaufmann.

Anagnostopoulos, G. C., Bharadwaj, M., Georgiopoulos, M., Verzi, S. J., &

Heileman, G. L. (2003). Exemplar-based pattern recognition via semi-

supervised learning. In International joint conference on neural

networks (pp. 2782–2787). Portland, Oregon: IEEE–INNS–ENNS.
Anagnostopoulos, G. C., & Georgiopoulos, M. (2001). Ellipsoid ART and

ARTMAP for incremental unsupervised and supervised learning.

Proceedings of the IEEE–INNS–ENNS, Vol. 2 (pp. 1221–1226).

Washington, DC: IEEE–INNS–ENNS.

Blackard, J. A. (1999). Comparison of neural networks and discriminant

analysis in predicting forest cover types. Unpublished doctoral

dissertation, Department of Forest Sciences, Colorado State University.

Burrascano, P. (1991). Learning vector quantization for the probabilistic

neural network. IEEE Transactions on Neural Networks, 2, 458–461.

Butz, A. R. (1971). Alternative algorithm for Hilbert’s space-filling curve.

IEEE Transactions on Computers, April, 424–426.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen,

D. B. (1992). Fuzzy ARTMAP: A neural network architecture for

incremental learning of analog multidimensional maps. IEEE Trans-

actions on Neural Networks, 3(5), 698–713.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). Fuzzy ART: An

adaptive resonance algorithm for rapid, stable classification of analog

patterns. In International joint conference on neural networks,

IJCNN’91 (Vol. II, pp. 411–416). Seattle, Washington: IEEE–INNS–

ENNS.

Carpenter, G. A., & Markuzon, N. (1998). ARTMAP-IC and medical

diagnosis: Instance counting and inconsistent cases. Neural Networks,

11, 793–813.

Carpenter, G. A., Milenova, B. L., & Noeske, B. W. N. (1998). Distributed

ARTMAP: A neural network for fast distributed supervised learning.

Neural Networks, 11(2), 323–336.

Carpenter, G. A., & Ross, W. D. (1995). ART-EMAP: A neural network

architecture for object recognition by evidence accumulation. IEEE

Transactions on Neural Networks, 6(5), 805–818.

Caudell, T. P., & Healy, M. J. (1999). Studies of generalization for the

LAPART-2 architecture. In International joint conference on neural

networks (Vol. 3, pp. 1979–1982). Washington, DC: IEEE–INNS–

ENNS.

Charalampidis, D., Kasparis, T., & Georgiopoulos, M. (2001). Classifi-

cation of noisy signals using Fuzzy ARTMAP neural networks. IEEE

Transactions on Neural Networks, 12(5), 1023–1036.

Gomez-Sanchez, E., Dimitriadis, Y. A., Cano-Izquierdo, J. M., & Lopez-

Coronado, J. (2002). ARTMAP: Use of mutual information for category

J. Castro et al. / Neural Networks 18 (2005) 967–984984
reduction in Fuzzy ARTMAP. IEEE Transcations on Neural Networks,

23(1), 58–69.

Heinke, D., & Hamker, F. H. (1995). Comparing neural networks: A

benchmark on growing neural gas, growing cell structures and Fuzzy

ARTMAP. IEEE Transactions on Neural Networks, 9(6), 1279–1291.

Joshi, A., Ramakrishman, N., Houstis, E. N., & Rice, J. R. (1997). On

neurobiological, neurofuzzy, machine learning, and statistical pattern

recognition techniques. IEEE Transactions on Neural Networks, 8(1),

18–31.

Kasuba, T. (1993). Simplified Fuzzy ARTMAP. AI Expert, November,

18–25.

Kerstetter, T. (1998). Recursively partitioning neural networks for radar

target recognition. In 1998 IEEE world congress on computational

intelligence (pp. 3208–3212). Anchorage, AL.

King, R., Feng, C., & Shutherland, A. (1995). STATLOG: Comparison of

classification algorithms on large real-world problems. Applied

Artificial Intelligence, 9(3), 259–287.

Kirkpatrick, S., & Stoll, E. (1981). A very fast shift-register sequence

random number generator. Journal of Computational Physics, 40,

517–526.

Koufakou, A., Georgiopoulos, M., Anagnostopoulos, G., & Kasparis, T.

(2001). Cross-validation in Fuzzy ARTMAP for large databases.

Neural Networks, 14, 1279–1291.

Lawder, J. K. (2000). Calculation of mappings between one and n-

dimensional values using the Hilbert space-filling curve (Tech. Rep.).

London, UK: School of CS and Information Systems, Brickwell

University.

Lawder, J. K., & King, P. J. H. (2000). Using space-filling curves for multi-

dimensional indexing. Lecture notes in computer science 1832 .

Marriott, S., & Harrison, R. F. (1995). A modified Fuzzy ARTMAP

architecture for the approximation of noisy mappings. Neural Networks,

8(4), 619–641.

Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable

classifier for data mining. In Extending database technology

(pp. 18–32). Avignon, France: Springer.

Micikevicius, P. (2003). Scerola parallel cluster (http://www.cs.ucf.edu/

courses/cda5110/scerola/guidescerola.html).

Mokbel, M. F., & Aref, W. G. (2001). Irregularity in multi-dimensional

space-filling curves with applications in multimedia databases.

In International conference on information and knowledge manage-

ment, November. Atlanta, GA: ACM.
Moody, J., & Darken, C. (1989). Fast learning in networks of locally-tuned

processing units. Neural Computation, 1, 281–294.

Moon, B., Jagadish, H., Faloutsos, C., & Saltz, J. H. (2001). Analysis of the

clustering properties of the Hilbert space-filling curve. IEEE Trans-

actions on Knowledge and Data Engineering, 13(1).

Parrado-Hernandez, E., Gomez-Sanchez, E., & Dimitriadis, Y. A. (2003).

Study of distributed learning as a solution to category proliferation

in Fuzzy ARTMAP based neural systems. Neural Networks, 16,

1039–1057.

Petridis, V., Kaburlasos, V. G., Fragkou, V. G., & Kehagais, A. (2001).

Text classification using the s-FLNMAP neural network. In Proceed-

ings of the international joint conference on neural networks (Vol. 2,

pp. 1362–1367). Washington, DC: IEEE–INNS–ENNS.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo,

California: Morgan Kaufmann.

Shafer, J. C., Agrawal, R., & Mehta, M. (1996). SPRINT: A scalable

parallel classifier for data mining. In T. M. Vijayaraman, A. P.

Buchmann, C. Mohan, & N. L. Sarda (Eds.), Proceedings of 22nd

international conference on very large databases, VLDB (pp. 544–555).

Bombay, India: Morgan Kaufmann.

Simpson, P. K. (1992). Fuzzy Min–Max neural networks—Part 1:

Classification. IEEE Transactions on Neural Networks, 3(5), 776–786.

Skopal, T., Krátký, M., & Snášel, V. (2002). Properties of space filling

curves and usage with UB-trees. High Fatra, Slovakia.

Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3,

109–118.

Taghi, M., Baghmisheh, V., & Pavesic, N. (2003). A fast simplified Fuzzy

ARTMAP network. Neural Processing Letters, 17, 273–316.

Traven, H. G. C. (1991). A neural network approach to statistical pattern

classification by semiparametric estimation of probability density

functions. IEEE Transactions on Neural Networks, 2, 366–377.

University of California, Irvine (2003). UCI repository of machine learning

databases (http://www.icf.uci.edu/mlearn/MLRepository.html).

Verzi, S. J., Heileman, G. L., Georgiopoulos, M., & Healy, M. H. (2001).

Rademacher penalization applied to Fuzzy ARTMAP and Boosted

ARTMAP. In Proceedings of the IEEE–INNS–ENNS international joint

conference on neural networks (IJCNN01) (Vol. 2, pp. 1191–1196).

Washington, DC.

Williamson, J. R. (1997). A constructive, incremental-learning network

for mixture modeling and classification. Neural Computation, 9,

1517–1543.

http://www.cs.ucf.edu/courses/cda5110/scerola/guidescerola.html
http://www.cs.ucf.edu/courses/cda5110/scerola/guidescerola.html
http://www.icf.uci.edu/mlearn/MLRepository.html

	Data-partitioning using the Hilbert space filling curves: Effect on the speed of convergence of Fuzzy ARTMAP for large database problems
	Introduction
	The FS-FAM architecture
	A FS-FAM pseudocode
	On-line FS-FAM complexity analysis
	Partitioned FS-FAM versus non-partitioned FS-FAM

	Space-filling curves
	The Hilbert space-filling curve
	The Hilbert space-filling curve index calculation
	The Hilbert space-filling curve for data-partitioning in FS-FAM

	Design of experiments
	Experimental results
	Conclusions
	Acknowledgements
	References

