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Abstract

In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex,

possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural

networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems

involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by

providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization

reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning

algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted

independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis

complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the

changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line

learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values.

Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform

structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as

well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical

and theoretical results are presented to enhance the understanding of these architectures.

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

An important performance measure of a machine-learning

algorithm is its generalization capability; that is, for a

hypothesis output by the learning algorithm, how well does it

predict randomly chosen examples? The standard problem is as

follows: A learning algorithm is supplied with a pre-chosen set

of labeled training examples, SZ{(x1, y1),.,(xN, yN)}, that it

will use in order to output a hypothesis. The chosen hypothesis

should perform well on the training data or there would be no

reason for employing it. However, how well it can predict

previously unseen examples constitutes a measure of how well

the learning algorithm can generalize, from the training set, to

the underlying distribution of example data. The focus of
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learning in this paper is on a particularly difficult situation in

which the training data contains seemingly conflicting

information. The conflicting information may be due to

naturally overlapping pattern class distributions or to noise

injected during data acquisition. In these types of learning

problems, a learning algorithm must be flexible enough to deal

with the conflicting information when producing a hypothesis,

so that it can predict unseen examples with a high degree of

accuracy. These types of learning problems are characteristic

of many real-world learning situations.

The research in this paper will focus on adaptive resonance

theory (ART) neural networks, specifically, Fuzzy ARTMAP

(Carpenter et al., 1992). Fuzzy ARTMAP is an example of a

constructive neural network model in that it allows nodes to be

added as necessary during training. The growth potential of

Fuzzy ARTMAP is similar to that of other constructive

learning algorithms such as decision tree learners; they are all

allowed to grow as necessary to suite a particular set of training

data (Kearns and Mansour, 1995). The fact that Fuzzy
Neural Networks 19 (2006) 446–468
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Fig. 1. The Fuzzy ART architecture.

Fig. 2. Regions of attraction for two Fuzzy ART c
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ARTMAP is a constructive algorithm is certainly an advantage,

but in situations where there is noise or inherent overlap in the

training data it can produce networks that are larger than

necessary, resulting in a loss of generalization performance. In

these situations Fuzzy ARTMAP can over-fit the training data.

Two distinct sources inside Fuzzy ARTMAP that can

contribute to over-fitting will be discussed. In the Fuzzy ART

network of Fig. 1, a single adjustable parameter, called the

vigilance parameter r, is used to control the spatial extent of all

clusters simultaneously. In Fig. 2(a), the regions of attraction

(or spatial extents) of two Fuzzy ART clusters in R2 at a

vigilance value of 0.0 are shown. Each F2 node of a Fuzzy ART

neural network maps to a roughly hyper-rectangular region in

Rm. Thus, in Fig. 2(a), the white dashed lines indicate the

hyperbox region of each F2 node. These hyperboxes

correspond to training data points that have actually been

‘seen’ by the learner. In Fuzzy ART with complement coding,

training data points will always lie inside of these hyperboxes.

In Fig. 2(a), the points inside the unit square have been colored

(either black or gray) according to their membership in a

cluster or by their closest association to that particular cluster.

These colored regions correspond to prediction labels that

would be output from a trained Fuzzy ARTMAP neural

network, one color for each committed F2 node representing its

own cluster. In Fuzzy ART, the uncommitted node, yN in

Fig. 1, will attract all points that are too far away from any of

the committed clusters. The uncommitted region is shown as

white in Fig. 2(a). The actual region covered by a specific F2

node depends directly upon the current vigilance value. At a

higher vigilance value of 0.7, the spatial extents of the two

clusters change, rather drastically, as shown in Fig. 2(b). Note

that the uncommitted cluster node now covers more of the

space in Fig. 2(b). An important fact concerning Fuzzy ART

and its single vigilance parameter is that the two white dashed

hyperbox regions shown in Fig. 2(a) and (b) cannot be

precisely represented with only two F2 nodes at a single

vigilance value.
luster templates at (a) rZ0.0, and (b) rZ0.7.
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During learning in Fuzzy ARTMAP, the vigilance value of

the A-side Fuzzy ART module is allowed to change as

necessary to fit a particular set of training data, and it is this

feature that allows the match tracking, shown in Fig. 3, to work

correctly. This feature can also make it difficult to analyze

Fuzzy ARTMAP performance since the sizes of the clusters

will shrink and/or grow depending upon the current value of

the vigilance. The performance of Structural Boosted

ARTMAP, presented later in this paper, allows for much

more structured analysis. In fact, this particular neural network

is a proof of concept for the universal function approximation

capabilities of Fuzzy ART-based neural networks (Verzi, 2003;

Verzi et al., 2003)

The MAP field of Fuzzy ARTMAP, shown in Fig. 3, and

how it is used to connect the two Fuzzy ART sub-modules can

also contribute to over-fitting in training. The Fuzzy ARTMAP

MAP field has a user-supplied input parameter, rAB, which

might be used for controlling the crispness of association

between the A-side and B-side Fuzzy ART sub-modules,

except that the weighted links, wAB, are always either 0 or 1.

Crispness, here, refers to the degree of fuzzy association

between A-side and B-side F2 nodes. The MAP field weights of

Fuzzy ARTMAP are themselves always either one or zero

which sets up a totally crisp association between the Fuzzy

ART sub-modules. With such crisp weights, rAB (MAP field

vigilance) cannot be easily used to control the association

crispness. The MAP field vigilance parameter takes on values

between zero and one, and so it can only be used to allow or
Fig. 3. The Fuzzy ART
disallow associations that are themselves either zero or one.

Clearly the Fuzzy ARTMAP MAP field does not represent a

fuzzy or a probabilistic relationship between the data and

associated labels. There are existing modifications of Fuzzy

ARTMAP in the literature, including Gaussian ARTMAP

(Williamson, 1996), ART-EMAP (Carpenter and Ross, 1995),

PROBART (Marriott and Harrison, 1995) and Micro

ARTMAP (Gómez-Sánchez et al., 2002), that attempt to

address this issue by a using probabilistic approach, and these

will be discussed in more detail later in this paper.

Due to the lack of flexibility of the single Fuzzy ART

vigilance parameter and the crispness of the Fuzzy ARTMAP

MAP field, more clusters than necessary are constructed during

learning in some situations. When too many F2 nodes are

generated during learning, it can result in a solution that is less

general, causing a higher generalization error. The number of

F2 nodes used during training is a good measure of the

complexity of the Fuzzy ARTMAP neural network. During

learning in Fuzzy ARTMAP, it is appropriate to apply Occam’s

razor wherein ‘all things being equal, a solution with less

resources (complexity) is preferred over a more complex one

(Blumer et al., 1987)’.

This paper focuses on addressing these two weaknesses of

Fuzzy ARTMAP by proposing extensions to the Fuzzy ART

and Fuzzy ARTMAP neural network architectures that are

motivated by boosting theory. Iterative boosting can be

described in general by two processes. First, control

generalization error during each iteration so that more than
MAP architecture.
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half of the training samples are correctly classified. Second,

focus the current iteration of learning by using training

examples which are difficult to classify in previous iterations.

In Fuzzy ARTMAP operation, there is no notion of an

‘iteration’ due to its use of on-line learning. However, Fuzzy

ARTMAP does focus in on hard to classify training examples,

but it does not attempt to control generalization error in these

situations. Instead Fuzzy ARTMAP attempts to directly

eliminate generalization error by dealing with difficult training

data as soon as it is encountered during training, which is

appropriate for on-line learning.

The first modification proposed in this paper involves a

generalization of Fuzzy ART into Boosted ART where each F2

node (representing a data cluster) has its own vigilance parameter

for separately controlling its spatial extent. As in the Fuzzy ART

architecture shown in Fig. 1, the Boosted ART architecture

maintains an extra F2 node as an uncommitted node. In Boosted

ART, this node maintains the value of the baseline vigilance, r.

Newly constructed or committed cluster nodes in the Boosted

ARTneural network receive thebase-linevigilancevalue.During

Boosted ART learning, the vigilance values of committed F2

nodes are allowed to change as necessary. In Boosted ART, if

each of the F2 node vigilance values are set and maintained at the

same value as the base-line vigilance at all times, then Boosted

ART reduces precisely to Fuzzy ART.

The addition of separate vigilance parameters for each F2

node in Boosted ART generalizes Fuzzy ART by allowing

increased control over the spatial extents of each cluster

formed during learning. The Boosted ART F2 node is more

flexible than the Fuzzy ART F2 node. In fact, the two

hyperboxes from Fig. 2 can now be precisely represented by

two F2 nodes in Boosted ART with separate vigilance values,

as can be seen in Fig. 4(a). In general, Boosted ART can require

fewer F2 nodes to represent the same measurable space as

Fuzzy ART.

The second modification proposed in this paper involves a

generalization of the Fuzzy ARTMAP and PROBART MAP
Fig. 4. The spatial extents of (a) two Boosted ART cluster templates at r1Z
fields into the Boosted ARTMAP MAP field. The Fuzzy

ARTMAP MAP field is modified to create the Boosted

ARTMAP MAP field, similar to PROBART (Marriott and

Harrison, 1995). In PROBART, each weighted link between

A-side and B-side F2 nodes is allowed to increase from zero to

some value K, where K is the number of associations created

during learning. In the Boosted ARTMAP MAP field this

accumulated association information is used to directly

estimate the amount of error allowed in the associated links

of the MAP field. Given the law of large numbers, the estimate

of the error in association links becomes more accurate as more

training data is seen (Devroye et al., 1996; Vidyasagar, 1997).

The use of the Boosted ARTMAP MAP field is important

because it extends the usefulness of Fuzzy ARTMAP to cases

where it previously performed poorly.

Boosted ARTMAP adds an additional input parameter for

the desired error tolerance allowed in the MAP field. This

parameter was designed to be used in place of Fuzzy

ARTMAP’s MAP field vigilance parameter. Boosted ART-

MAP can be made to function precisely as Fuzzy ARTMAP by

setting the MAP field error tolerance to 0.0, and it can be made

to operate precisely as PROBART, with maximum frequency

prediction, by setting the MAP field error tolerance to 1.0. It

can also be used in situations where Fuzzy ARTMAP would

perform poorly, and yet, Boosted ARTMAP will be shown to

perform much better in these situations. Determining an

appropriate value for the MAP field error tolerance is an

open issue, but a simple binary search between the values of 0

and 0.5 works fairly well on all learning problems we have

tested. If some information about the amount of overlap or

noise is known a priori, then a good error tolerance value can

be more easily determined. This issue will be discussed in more

detail in the empirical results section below. The Boosted

ARTMAP MAP field is used very effectively in learning

situations involving conflicting label information, which may

be due to data classification overlap or noise. In short, Boosted

ARTMAP can perform exactly as Fuzzy ARTMAP
0.9 and r2Z0.7 and (b) ten Fuzzy ART cluster templates at rZ0.9.



Fig. 5. Types of generalization error in machine learning.
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in situations where Fuzzy ARTMAP does well, but it can

outperform Fuzzy ARTMAP in situations involving conflicting

training data.

It is important to note that in the strict sense of the definition,

Boosted ARTMAP may not be performing boosting. That is, in

order to create an on-line learning algorithm that reduces to

Fuzzy ARTMAP in the zero noise case, a natural first step is an

approximation of what boosting attempts to achieve, leading to

Boosted ARTMAP. It is an open question as to whether a

learning algorithm that formally achieves boosting in this

setting is possible.

Another architecture presented in this paper is Structural

Boosted ARTMAP, which makes use of both Boosted ART

and the Boosted ARTMAP MAP field. Structural Boosted

ARTMAP employs structural risk minimization and off-line

learning while demonstrating some of the capabilities of both

Boosted ART and Boosted ARTMAP. All of the other Fuzzy

ARTMAP-based neural networks mentioned in this paper use

on-line learning with empirical risk minimization. The

empirical results in Section 6 will show that the use of

structural risk minimization by Structural Boosted ARTMAP

results in less complex neural network solutions on noisy or

overlapping class learning problems. The empirical results will

also show that Boosted ARTMAP results in less complex

neural network solutions on these same learning problems with

appropriate parameter selection without directly using struc-

tural risk minimization. Structural Boosted ARTMAP will

provide a good comparison case for what is achievable using

structural risk minimization and off-line learning in compari-

son with the Fuzzy ARTMAP-based on-line neural networks.

An overview of this paper is as follows. In Section 2,

structural risk minimization will be described as well as a

particular type of complexity penalty, called Rademacher

penalization which will be used to measure the network

complexity of all networks used in the empirical results

section. Section 3 contains a brief overview of the Fuzzy ART

and Fuzzy ARTMAP neural network architectures. Section 4

contains a complete description of both the Boosted ART and

Boosted ARTMAP modified neural network architectures, and

Section 5 describes Structural Boosted ARTMAP. Section 6

describes empirical results obtained in comparing the

architectures proposed in this paper to Fuzzy ARTMAP and

other popular modifications of Fuzzy ARTMAP. Finally,

Section 7 provides conclusions and directions for future

research.

2. Motivation—a machine learning framework

When dealing with learning problems containing classifi-

cation overlap or noise, it is important to allow and carefully

control the amount of training error present during learning.

Vapnik (1995, 1998) developed the structural risk minimiz-

ation machine learning paradigm to study and bound the

performance of existing learning algorithms, as well as to help

design better learning algorithms with this sensitivity to

training error in mind. Devroye et al. (1996); van der Vaart,

and Wellner (1996), and Vidyasagar (1997) and others have
continued to advance this learning theory to address areas of

interest. Among others, Koltchinskii (2001); Lazano, (2000)

have used this machine-learning framework to address neural

network learning. In this paper, the structural risk minimization

machine learning paradigm will be applied to Fuzzy ART-

based and Fuzzy ARTMAP-based neural network learning in

order to better understand these models’ performance in

overlapping and/or noisy environments.

In machine learning, two types of risk minimization

techniques have been successfully applied. A learner employ-

ing empirical risk minimization attempts to minimize training

error, even at the cost of hypothesis complexity. Empirical risk

minimization is appropriate for well-separated classification

tasks. A learner employing structural risk minimization

attempts to take advantage of the trade-off between represen-

tation complexity and approximation error in constructing a

hypothesis. Structural risk minimization is more general than

empirical risk minimization and appropriate for more complex

learning situations, such as those involving class overlap,

without significantly degrading performance in easier learning

situations.
2.1. Visualizing generalization error

The goal of the work described in this paper is to understand

the performance of Fuzzy ARTMAP in an attempt to improve

upon its generalization error. A useful way of visualizing

generalization error is to note that it comes from two sources,

depicted in Fig. 5, representation error and approximation error

(Hush, 1997). Representation error, also known as bias, is a

measure of the difference between the concept being learned, c

in Fig. 5, and the best possible hypothesis that a learner can

construct, h* in Fig. 5. Note that a learner’s representation

determines the composition of its output hypothesis. For

example, a learner whose hypothesis representation is made up

of unions of squares will not be able to output a circle, but it

could approximate the circle with enough squares of different

sizes. It is a known fact that Fuzzy ARTMAP will have non-

zero representation error when it is used to learn curved

boundaries such as a circle (Carpenter et al., 1992).

Representation error is reduced by using a representation

space which more closely matches the underlying structure of

the learning problem at hand. Alternately, representation error

can be reduced by using a constructive learning algorithm

which outputs an aggregate hypothesis composed of very



S.J. Verzi et al. / Neural Networks 19 (2006) 446–468 451
simple components (in terms of their representation) and then

allowing the number of components used to increase as

necessary. Most Fuzzy ARTMAP-based neural network

architectures perform this type of learning. It is also interesting

to note that this sort of accumulation of components can be

used to achieve boosting (Vapnik, 1998).

Approximation error is a measure of the difference between

the actual hypothesis that a learner generates, ĥ in Fig. 5, and

the best possible hypothesis given its representation, h* in

Fig. 5. Given the training data at hand, it may not be easy for a

learner to generate the (theoretical) best possible hypothesis.

Note that all Fuzzy ART-based neural network architectures

that employ on-line learning will suffer somewhat from

approximation error. An off-line learner is not sensitive to

the order of presentation of the training data, and thus, this type

of learner produces an hypothesis which approximates the

entire training set not just a particular permutation of the

training data presented in a specific order. Fuzzy ART-based

and Fuzzy ARTMAP-based neural networks are limited to

approximate the training data in the order that it is presented.

One way of detecting this type of error in empirical learning is

in the standard deviation across many different presentations of

the training data. The empirical results in Section 6 will show

that structural risk minimization operated using off-line

learning (in Structural Boosted ARTMAP for instance) will

not suffer as much from this type of error.

Approximation error is often reduced by limiting the

number of hypotheses available to the learning algorithm or

by increasing the amount of training data. Note that

approximation error is in direct competition with represen-

tation error in the case of constructive learning. More

hypotheses will give a greater representation capability, but it

will be harder in general to find the best of these in terms of

approximation error in a particular learning situation (van der

Vaart and Wellner, 1996; Vapnik, 1998; Vidyasagar, 1997).

Fig. 6(a) and (b) show situations typical of learning progress

where the hypothesis space complexity grows as learning

proceeds, representative of Fuzzy ART-based neural networks.

In Fig. 6(a) a very desirable progression of learning is shown,

where given a training set of size n at a complexity level of N, a
Fig. 6. A learning progression from H1 to HN that is (a) desirab
hypothesis ĥ
N
n is output, and this hypothesis is sufficiently close

to the target concept c. In Fig. 6(b) the learning has been

conducted in the presence of noise or classification overlap. In

this case the hypothesis space has become too large, and so the

learner has chosen a hypothesis which fits the data according to

its algorithm, but which is not close to the target concept.

Structural risk minimization provides a learning paradigm for

addressing the difficulties of constructive learning in overlap-

ping or noisy distributions.
2.2. Structural risk minimization

The goal of concept learning, shown in Fig. 6(a), is to find a

hypothesis, ĥ
N
, from a class of hypotheses, HN , with minimal

generalization error, i.e.

ĥ
N
Z arg min

h2HN
PrfhðxÞscðxÞg; (1)

where c is the unknown target concept. The well-known

estimate of the ‘optimal’ decision rule is determined by

minimizing the empirical risk (Devroye et al., 1996; Vapnik,

1998; van der Vaart and Wellner, 1996; Vidyasagar, 1997).

This is called empirical risk minimization learning

ĥN̂ Z arg minh2HN ;NR1LnðhÞ (2)

where the measure of empirical risk, Ln(h), is also called

training error. Given a particular training set, finding ĥ
N

precisely may be unfeasible, but it may be possible to find a

close approximation to ĥ
N
, called ĥ

N
n . If C4HN , then the

possibility exists for finding the desired concept. In this case,

zero training error can be achieved, and employing empirical

risk minimization is reasonable assuming efficiency is not

compromised. Note that Fuzzy ARTMAP and almost all Fuzzy

ARTMAP-based neural networks use empirical risk minimiz-

ation, and this accounts for their unbounded complexity during

training. With structural risk minimization, training error alone

is not minimized but rather a combination of training error plus

a measure of the learning solution complexity.
le, and (b) overly complex due to some factor such as noise.
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2.2.1. Complexity bounding with penalization

The differences between C and HN as well as noise in

labeling or overlapping distributions of labels for C can lead a

learner, employing empirical risk minimization, to a sub-

optimal solution. Consider that rote or table look-up learning

does not violate empirical risk minimization, but it is not a very

general solution. Rote learning is not considered general

because there is no mechanism for predicting the classification

of new samples, and there is no compaction of previously seen

training data. Structural risk minimization was introduced by

Vapnik (1995, 1998) and adds a penalty term to the hypothesis

risk minimization function of Eq. (2)
ĥN̂ Z arg minh2HN ;NR1fLnðhÞCpenðn;NÞg (3)
where pen(n; N) is the penalty computed at complexity N with

n training samples. The complexity variable N defines a

concentric sieve of levels of complexity including more and

more hypotheses as complexity is increased, as is shown in

Fig. 6(a) and (b).

It is not hard to see that there is a trade-off between training

error and penalization whenever overall generalization error is

greater than zero. If Ln(h)Cpen(n; N)O0, and the training

error, Ln(h), is reduced to 0, then there is a non-zero complexity

penalty. It is here where empirical risk minimization can

perform poorly, and structural risk minimization can be

advantageous. The penalty term can be bounded by the

Vapnik–Chervonenkis (VC) dimension of the class of learnable

hypotheses (Devroye et al., 1996). The VC dimension of a class

of hypotheses is one measure of complexity for this set that

does not depend upon the underlying distribution of the data

(Vapnik and Chervonenkis, 1971).
2.2.2. The Rademacher penalty

The Rademacher penalty was introduced by Koltchinskii as

a data-dependent complexity penalty (Koltchinskii, 2001). The

Rademacher penalty is computed directly using training data,

and thus the inherent distribution of this data is captured as part

of the penalization process.

Lazano, (2000) proposes a cleverly simple algorithm for

computing the Rademacher penalty for a ‘0–1’-concept

learner. In this method, each training sample (xj, yj) is

randomly relabeled with probability 0.5. The Rademacher

random variables, sj, are computed as sjZK1 if yj is

relabeled, otherwise sjZ1 and yj is left alone. This new

training set is called s1. A second set of relabeled data is

immediately available by reversing all of the labels of s1, and it

is called s2. Next, the learner is trained using both s1 and s2,

separately, to produce two hypotheses, h1 and h2. The

Rademacher penalty is then estimated as
penðn; h1ÞZ
1

n

Xn

jZ1

sjcfyjsh1ðxjÞg
ðxjÞ

�����
�����; yj2s1;

penðn; h2ÞZ
1

n

Xn

jZ1

sjcfyjsh2ðxjÞg
ðxjÞ

�����
�����; yj2s2;

penðn;NÞZmaxðpenðn; h1Þ; penðn; h2ÞÞ:

(4)

The Rademacher penalty, as computed in Eq. (4), provides a

measure of complexity for a learner’s hypothesis space, by

determining how well it will satisfy, through learning, two very

dissimilar training sets. Note that a learner, which attempts to

achieve zero training error, on both h1 and h2 simultaneously,

will produce a large Rademacher penalty, since it will attempt

to satisfy two such dissimilar training sets exactly. In the

empirical results in Section 6, the Rademacher complexity

penalty will be computed for all participating neural networks

to determine how complex they can become with a noisy

learning problem.
2.3. Combining classifiers with boosting

Boosting can be thought of as a process for incremental

improvement of a learner’s hypothesis (Schapire, 1990). This

improvement can be achieved through construction of an

aggregate hypothesis. In fact, it has been shown that some

decision tree learning algorithms are indeed boosting algor-

ithms (Kearns and Mansour, 1995). With boosting, the goal is

to combine, possibly many, simple classifiers into an

agglomerated classifier, or improve the performance of an

existing adaptive classifier as it is exposed to different training

data (Lazano, 2000; Vapnik, 1995; Vapnik, 1998). It can be

shown that boosting will allow agglomerative learning

algorithms to achieve a desired error tolerance while structural

risk minimization can be employed to keep the combined

hypothesis from becoming too complex (Vapnik, 1998).

In relation to boosting, Fuzzy ART performs aggregate

accumulation of F2 nodes while Fuzzy ARTMAP controls how

these are formed in an effort to improve its performance on the

training data. Composition of the aggregate hypothesis in

Fuzzy ARTMAP can continue without bound, which allows its

complexity to grow without bound. What is needed is a

methodology for determining when the error in Fuzzy

ARTMAP is large enough to necessitate aggregate growth,

but not at the expense of hypothesis complexity in terms of

overall generalization error. The search for this new

methodology motivated the research presented in this paper.
3. Fuzzy ART and Fuzzy ARTMAP

In this section a brief review of Fuzzy ART and Fuzzy

ARTMAP is provided to make it easier to understand the

modifications proposed later in this paper. Fuzzy ARTMAP is a

neural network architecture designed to learn a mapping

between example instances and their associated labels

(Carpenter et al., 1992). Fuzzy ARTMAP is composed of
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two Fuzzy ART neural network modules connected through a

MAP field, as shown in Fig. 3. The mapping formed by Fuzzy

ARTMAP actually consists of two separate mappings in

composition. The first mapping occurs in the Fuzzy ART

modules where data is clustered into categories, and thus each

data sample, presented to the A-side Fuzzy ART module (see

Fig. 3), maps to a single cluster template. Then each A-side

Fuzzy ART cluster template is mapped to a single B-side Fuzzy

ART cluster template, representing a data label, through the

Fuzzy ARTMAP MAP field. The overall mapping learned by

Fuzzy ARTMAP is a composition of these two separate

mappings.

3.1. Fuzzy ART

Carpenter et al. (1991) provides a complete description of

Fuzzy ART. The research in this section will focus on

understanding and enhancing the vigilance criterion and how

it is used to determine clusters in the F2 node templates. The

best matching F2 node from the choice competition, J, must

satisfy the vigilance criterion

IowJj j

Ij j
Rr: (5)

The vigilance parameter, r in Eq. (5), is a user-supplied input in

the interval (0, 1). Note that at least one F2 node, the

uncommitted node, will always satisfy the vigilance criterion.

The maximum choice F2 template node satisfying the vigilance

criterion is allowed to learn the input vector, a condition called

resonance.

3.1.1. Fuzzy ART F2 node category template

When using fast learning, a committed Fuzzy ART F2 node j

has a weight vector defined as wjZx1ox2o.oxn, where F2

node j has learned all of the input data points inXZ{x1, x2,.,xn},

and o denotes the logical AND operation. Because of teh

complement codingused in this network,wj defines theminimum

hyperbox containing the data points in X. The vigilance criterion

ensures that

wj

�� ��ZX2m

iZ1

wji Z
X2m

iZ1

min
n

kZ1
xkiRr: (6)

Thus, wjZ(p, qc) where pkZmini2{1,2,.,n}xik and qkZ
maxi2{1,2,.,n}xik. The axis-parallel hyper-rectangle for wj has

a minimum point at p and a maximum point at q. The first m

points from wj are the ‘lower left’ corner, and the second m

points are the complement of the ‘upper right’ corner of the

hyperbox defined by the F2 node j. The vigilance parameter, r,

can be used to control the granularity of clusters covering the

problem space. A larger r value will force Fuzzy ART to create

smaller clusters, necessitating more clusters to cover a larger

problem space. A smaller r value will allow Fuzzy ART to

create larger clusters, meaning fewer clusters are needed to

cover a problem space.

The region of attraction of a Fuzzy ART F2 node j contains

all of the data points within the vigilance boundary of the
hyperbox defined by wj. In Fig. 7(a), the region of attraction is

shown for a two-dimensional Fuzzy ART F2 node with weights

wjZ(0.1, 0.6, 0.8, 0.3) where the vigilance is 0. As the value of

the vigilance parameter is increased, there is not much change

in the region of attraction for wj until rZ0.5 as shown in

Fig. 7(b). Further increasing the value of the vigilance

parameter, the region of attraction for wj shrinks and

approaches the size of the hyperbox defined by wj seen in

Fig. 7(c)–(e). At a vigilance value of 0.9 the region of attraction

of wj becomes precisely the hyperbox itself as seen in Fig. 7(e).

At vigilance values greater than 0.9, wj cannot attract any input

points at all, including the ones inside the hyperbox it defines

(jwjj!r implies jwjoIj for all IZ(xxc) when rO0.9).
3.2. Fuzzy ARTMAP

Carpenter et al. (1992) provide a complete description of

Fuzzy ARTMAP. The research described in this section

focuses on analyzing and enhancing the operation of the

Fuzzy ARTMAP MAP field. The Fuzzy ARTMAP MAP field,

shown in Fig. 3, links data cluster templates (A-side) with label

cluster templates (B-side). Supervised learning is performed in

Fuzzy ARTMAP by ensuring that each A-side template is

linked with only one B-side template. Thus, a many-to-one

association from data pattern templates to label templates is

formed in the Fuzzy ARTMAP MAP field.

The Fuzzy ARTMAP MAP field weights, wAB
jk , are used to

control associations between A-side F2 nodes and B-side F2

nodes. An uncommitted A-side F2 node, j, has the following

initial weight values

wAB
jk Z 1;ck; 0%k%NB; (7)

meaning that j is not currently associated with any B-side F2

node (there are NB B-side F2 nodes), and in fact it is available

for future learning (association through the MAP field). An

uncommitted A-side F2 node j becomes committed with B-side

F2 node K through the following weight assignments

wAB
jK Z 1 and wAB

jk Z 0; cksK; (8)

thus A-side F2 node, j, is exclusively and permanently linked

with B-side F2 node, K.

The Fuzzy ARTMAP architecture ensures the many-to-one

mapping through the use of a match tracking lateral reset, as

shown in Fig. 3.
3.3. Modifications to fuzzy ARTMAP

Many modifications to Fuzzy ARTMAP have been

proposed in the literature. In this section, these architectures

will be described in terms of how they address the weaknesses

described above. To avoid the problem of over-fitting, a Fuzzy

ARTMAP-based neural network must deal with conflicting

training data without the need for maintaining strictly perfect

training performance. One way of relaxing the training

requirements of Fuzzy ARTMAP is to use a statistical

approach. Several of the following techniques employ a



Fig. 7. Region of attraction of a single Fuzzy ART cluster template at (a) rZ0.0, (b) rZ0.5, (c) rZ0.8, (d) rZ0.85, and (e) rZ0.9.
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statistical learning approach. These modifications to Fuzzy

ARTMAP either directly or indirectly reduce the represen-

tation error, the approximation error or a combination of both.

For instance, Gaussian ARTMAP uses F2 nodes which have

Gaussian spatial extents, differing from Fuzzy ARTMAP’s

hyperboxes in their representation (Williamson, 1996). As one

would expect, Gaussian ARTMAP performs very well on

learning problems composed of Gaussian distributions, and this

will be seen in the empirical results later in this paper.

However, Gaussian ARTMAP might not perform as well as

Fuzzy ARTMAP on learning problems involving linear

boundaries, and this will also be seen in the empirical results.

Gaussian ARTMAP also relaxes the restriction of zero training

error by virtue of its representation (the hyper-Gaussians have

infinite extent) and by adding a maximum limit to the number

of training epochs allowed as opposed to training until a stable

solution is obtained. Without allowing the network to reach a

steady state on its own, zero training error cannot be

guaranteed in Gaussian ARTMAP.

ART-EMAP uses a previously trained Fuzzy ARTMAP

network but combines information from multiple F2 nodes

during the non-learning phase to reduce errors from noisy

training data (Carpenter and Ross, 1995). In the empirical

results later in this paper, it will be seen that ART-EMAP

does indeed improve performance where certain kinds of

noise are involved, but it does not affect the learning

performed or the complexity of hypotheses generated, and

so it has the same effective hypothesis complexity measure
as Fuzzy ARTMAP. ARTMAP-IC adds instance counting to

Fuzzy ARTMAP which gives a relative weighting to each

F2 node (Carpenter and Markuzon, 1998). Those F2 nodes

which resonate with many examples will have a high

instance count, and those resonating with few samples will

have a low instance count. It is unclear if instance counting,

by itself, will have any effect in situations of learning

overlap. Distributed ARTMAP improves upon ARTMAP-IC

by allowing multiple (distributed) activation of F2 nodes

during learning (Carpenter et al., 1998). Specifically,

Distributed ARTMAP allows more than one of the available

F2 nodes to be active during resonance learning, and

information from this ensemble of F2 nodes is combined in

the predictive phase. Because of its distributed activation of

cluster nodes, it is expected that distributed ARTMAP will,

in general, require fewer nodes to reach a solution, which

could result in better performance. In the empirical results

presented later in this paper it will be shown that distributed

ARTMAP can require fewer resources than Fuzzy

ARTMAP in learning, but this can result in less stable

solutions and thus slightly worse overall performance.

The MAP field of Fuzzy ARTMAP was changed in

PROBART to accumulate association information between

A-side and B-side F2 nodes during learning. One way

classification is achieved using PROBART is by selecting the

maximum associated MAP field link during prediction. This

type of prediction will be used for PROBART in the empirical

results section below.
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In Micro ARTMAP, the MAP field of PROBART is used to

accumulate A-side to B-side associations and this information

is used to estimate the entropy of each F2 node, which is then

reduced during learning (Gómez-Sánchez et al., 2002). In

particular, Micro ARTMAP relaxes the zero training error

performance of Fuzzy ARTMAP and instead calculates

entropy for each F2 node and overall network entropy, which

is then reduced during learning. It is expected that Micro

ARTMAP will result in improved performance in situations of

learning overlap due to its minimization of cluster node

entropy and overall entropy during learning.

In Section 4, a modification to Fuzzy ARTMAP is proposed

for allowing an increased margin of training error, which

thereby decreases the number of F2 layer nodes used for the

purpose of increasing the overall generalization error perform-

ance, specifically on learning problems involving overlapping

class distributions. The empirical results in Section 6 will

provide comparison of the modifications proposed in this paper

with the architectures mentioned above.
Fig. 8. The Boosted ART architecture.
4. Boosted ART and boosted ARTMAP

The research described in this paper focuses on improving

the generalization error performance of Fuzzy ARTMAP, and

Fuzzy ART-based architectures, particularly in situations

where there is significant overlap between classes due to

noise or other causes. The focus of this section involves a

modification to Fuzzy ART as well as a modification to Fuzzy

ARTMAP. The modification to Fuzzy ART is called Boosted

ART wherein the vigilance criterion is now applied indepen-

dently to each F2 node. The modification to Fuzzy ARTMAP is

called Boosted ARTMAP and consists of allowing multiple

simultaneous associations in the MAP field similar to

PROBART, with the addition of an error tolerance parameter

to allow controlled error in the MAP field. It is important to

note that Boosted ART is a generalization of Fuzzy ART and

Boosted ARTMAP is a generalization of both Fuzzy ARTMAP

and PROBART.
4.1. Boosted ART

The Boosted ART neural network architecture is shown in

Fig. 8. In this modified architecture, each F2 layer node now

has its own vigilance parameter. The behavior of a specific F2

node can be controlled independently using its associated

vigilance parameter. Note that there is still a baseline vigilance

parameter, r, for the entire Boosted ART module, and it is used

when a node is first committed (i.e. when F2 node yj is first

committed, rjZr). The uncommitted node always has its

vigilance set to the baseline value. The vigilance criterion for

F2 node j becomes

jIowjj

jIj
Rrj: (9)

Eq. (9) differs from the Fuzzy ART vigilance test, shown in Eq.

(5), in that each F2 node now has its own associated spatial
extent parameter, rj. The choice function for the Boosted ART

module becomes

J Z arg max
0%j%N

TjðIÞ; (10)

where

TjðIÞZ

jIowjj

aC jwjj
; if

jIowjj

jIj
Rrj

0; otherwise;

8><
>: (11)

which is only slightly different from Fuzzy ART’s choice

function. The behavior of the Boosted ART module is similar

to the Fuzzy ART module, except for the new vigilance

criterion in Eq. (9). Note that the behavior of Boosted ART will

reduce exactly to that of Fuzzy ART when all F2 node

vigilance values are maintained at the same value as the

baseline vigilance at all times, and thus Eqs. (9) and (10)

reduce to their associated Fuzzy ART counterparts.

In order to better understand the representation capabilities

of Boosted ART, consider the spatial extents of two F2 nodes

in the Fuzzy ART architecture versus the Boosted ART
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architecture. In Fig. 2(b), the spatial extents of two F2 nodes in

Fuzzy ART at a vigilance of rZ0.7 are shown. Because, Fuzzy

ART has only the single vigilance parameter, these two F2

nodes cannot be used to exactly represent the two hyperboxes,

shown as white-dashed lines in Fig. 2(b). In Boosted ART,

however, these two F2 nodes can each have their own vigilance

values, and thus, the network is capable of representing the

hyperboxes precisely, as shown in Fig. 4(a). It should be noted,

however, that Fuzzy ART can represent these two spatial

regions as well, but at the cost of more F2 nodes. Specifically,

Fig. 4(b) shows that ten Fuzzy ART F2 nodes can precisely

represent the two square regions at a vigilance value of rZ0.9.

In general, Fuzzy ART can require exponentially more F2

nodes to represent the same domain space as Boosted ART,

where the exponent is the dimension of the domain (i.e. the

number of features).
4.2. Boosted ARTMAP and the boosted ARTMAP MAP field

Similar to Fuzzy ARTMAP, Boosted ARTMAP is

composed of two ART modules, except that in this case they

are connected by the Boosted ARTMAP MAP field. The

Boosted ARTMAP MAP field is an extension of PROBART

(Marriott and Harrison, 1995), which is itself a modification of

Fuzzy ARTMAP. In PROBART, the information gathered in

the MAP field is not used for error reduction directly during
Fig. 9. The Boosted ARTMAP
learning. In Boosted ARTMAP, the information gathered in the

MAP field is used to estimate the error in association between

A-side and B-side F2 nodes, and this error is regulated during

learning.

In Boosted ARTMAP shown in Fig. 9, each A-side ART

template can be associated with many, even all, B-side

ART templates. The label predicted for a specific A-side

ART template is the B-side ART template with the greatest

MAP field frequency association value. Given a random

example, (x, y), the estimate of error in a Boosted ARTMAP F2

node will be defined as the product of the estimate of the

probability that x chooses A-side ART F2 template j times the

estimate of the probability that y is not the predicted label

associated with A-side ART template j through the MAP field.

The error is estimated using the frequency information

maintained in the MAP field weights, wAB, and the total

number of samples seen so far, denoted S*. Thus, given a

trained Boosted ARTMAP architecture, the estimate of the

total error in the MAP field is computed as

eTotal Z
XNAK1

jZ1

pjej Z

PNAK1
jZ1 wAB

j

�� ��Kmaxk wAB
jk

� �� �
S*

: (12)

where

pj Z Pr x chooses nA
j

� �
Z

wAB
j

�� ��
S*

(13)
(BARTMAP) architecture.
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and

ej Z Pr y is not predicted by nA
j

� �
Z 1K

maxk wAB
jk

� �
wAB

j

��� ��� (14)

with kZ1,.,NBK1 and nA
j is a A-side Fuzzy ART template.

Note that S* can be easily computed from the MAP field

weights, S*Z wAB
j

�� ��. The error estimate of a particular A-side

Fuzzy ART template, j, is pj$ej.
4.2.1. Boosted ARTMAP learning

This section will provide a description of how learning is

accomplished in Boosted ARTMAP. Boosted ARTMAP

allows F2 nodes from the A-side ART module to simul-

taneously associate with all F2 nodes in the B-side. The

association frequencies between A-side and B-side nodes are

maintained in the MAP field. An uncommitted A-side F2 node j

has the following initial weight values

wAB
jk Z 0; 1%k%NC; (15)

where NC is the number of classes. Note that for the results

in this paper, NC will also be the number of nodes in the

B-side Fuzzy ART module. During learning, when j is the

maximum choice A-side F2 node and k is the maximum

choice B-side F2 node, the specific weight between j and k is

updated as follows

wAB
jk ZwAB

jk C1: (16)

Thus association frequencies are computed in Boosted

ARTMAP, and this information is used to bind the training

error for each A-side F2 node.

The estimate for the performance error of a committed node,

j, in Boosted ARTMAP is shown in Eq. (14). In order to bind

the training error during learning, the frequency information

gathered in the MAP field is used in conjunction with the

lateral reset match tracking mechanism of Fuzzy ARTMAP.

The input error tolerance parameter, 32½0; 1:0�, is used along

with rAB to control the lateral reset. The Boosted ARTMAP

MAP field lateral reset test is

ð1Ke0JÞjy
Bow0

Jj! ð1K3ÞrABjyBj0 lateral reset;

ð1Ke0JÞjy
Bow0

JjR ð1K3ÞrABjyBj0 resonance;
(17)

where e0J is the interim estimated error, and w 0J is the interim

template pattern weight vector, should F2 node J be allowed to

learn the current training sample. The interim set of weights, w0
J

is determined as

w0
jk Z

1; if k Z argmax1%k%NC
wAB

jk

d 0C3e; otherwise:

(
(18)

Notice that for 3O0, w0
jkZ1ck. The values for w0

jk, here,

allow each A-side F2 node to associate with any or all

B-side F2 nodes given that the estimated node error for J is

below 3. The interim estimated F2 node error value is

determined as
e0j Z 1K
max1%k%NC

w00
jkPNC

kZ1 w00
jk

: (19)

where

w00
JK ZwAB

JK C1 w00
Jk ZwAB

Jk ; cksK (20)

For an uncommitted A-side F2 node j, the MAP field

weights are

wAB
jk Z 00w0

jk Z 1; ck; (21)

with e0jZ0, and thus no lateral reset will occur since

ð1Ke0jÞjy
Bow0

jjZ jyBjZ 1R ð1K3ÞZ ð1K3ÞrABjyBj: (22)

In the situation where a committed A-side F2 node is

chosen, consider training sample (x, y) presented to the

Boosted ARTMAP architecture, where J is the chosen

A-side F2 node, and K is the chosen B-side F2 node. If

increasing wAB
JK by one would increase J’s estimated error

performance, Eq. (19) from Eq. (14), to a value greater than

3, a lateral reset occurs since

ð1Ke0jÞjy
Bow0

jjZ ð1Ke0jÞjy
BjZ ð1Ke0jÞ! ð1K3Þ

Z ð1K3ÞrABjyBj:

Note that ð1Ke0jÞ! ð1K3Þ03!e0j, or in other words, the

interim estimated error of A-side F2 node j is greater than 3.

In Boosted ARTMAP, the application of the lateral reset is

precisely as in Fuzzy ARTMAP. In fact, the performance of

Boosted ARTMAP is exactly the same as Fuzzy ARTMAP,

except for the use of frequency estimation during lateral reset

of the MAP field.
4.2.2. Reduction of boosted ARTMAP to fuzzy ARTMAP

A major advantage behind the design of Boosted ARTMAP

is that it reduces in functionality to Fuzzy ARTMAP when the

desired error tolerance is set to zero. Consider the following

theorem.

Theorem 4.1. Given rABO0.5 and 3Z0, Boosted ARTMAP’s

MAP field reduces to Fuzzy ARTMAP’s MAP field.

Proof. This statement will be proved by induction. First,

establish a base case for both an uncommitted A-side F2 node

and a committed A-side F2 node which has learned a single

pattern.

For the case of the uncommitted node with input sample

(x, y), J is the maximum choice A-side F2 node, K is the

maximum choice B-side F2 node, and J is an uncommitted

node. Now wAB
Jk Z0 ck, eJZ0, w0

JkZ1 ck, and e0JZ0.

Therefore the Boosted ARTMAP MAP field lateral reset test,

Eq. (17), reduces to

jyBow0
Jj!r

ABjyBj0 lateral reset

jyBow0
JjRrABjyBj0 resonance:

(23)

Note that this is precisely the same as used in Fuzzy ARTMAP

since w0
J has the same value as wAB

J in Fuzzy ARTMAP.
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For the case where J is a committed node that has learned a

single sample, assume that it has already been associated with

B-side F2 node K 0, then wAB
JK 0Z1 and wAB

Jk Z0 cksK 0, eJZ0,

and w0
JK 0Z1 and w0

JkZ0 cksK. For a new sample (x, y), J

is the maximum choice A-side F2 node and K is the maximum

choice B-side F2 node. If KZK 0, then e0J would be zero, but if

KsK 0, then e0J would be 0.5. Given that rABO0.5, J can only

resonate with K if KZK 0, otherwise a lateral reset is produced.

Again, this is precisely how the Fuzzy ARTMAP MAP field

operates.

For the inductive step, assume, without loss of generality,

that A-side F2 node J has learned (nK1) examples all

associated with the same B-side F2 node K 0. For a new sample

(x, y), J is the maximum choice A-side F2 node, and K is the

maximum choice B-side F2 node. Also, wAB
JK 0Z ðnK1Þ,

wAB
Jk Z0 cksK 0, eJZ0, w0

JK 0Z1 and w0
JkZ0 cksK 0. In

this case the lateral reset test will be

jyBow0
Jj!rABjyBj0 lateral reset

jyBow0
JjRrABjyBj0 resonance:

(24)

Note that, again, this test is precisely the same as the Fuzzy

ARTMAP MAP field, since w0
J attains the same values as wAB

J

does for Fuzzy ARTMAP. ,

It is interesting to note that Boosted ARTMAP not only

reduces to Fuzzy ARTMAP, as shown in the previous proof,

but it also reduces to PROBART when 3Z1:0. For this value

of the error tolerance parameter, Boosted ARTMAP operates

precisely as PROBART, with maximum frequency prediction.

PROBART can be operated with other prediction mechanisms,

but Boosted ARTMAP is designed to use a maximum

frequency prediction.

The Boosted ARTMAP neural network architecture has a

couple of distinct advantages. First, the training error of a

Boosted ARTMAP network is explicitly bounded by the

desired error tolerance parameter, 3. Each F2 node in the A-side

Fuzzy ART module of a Boosted ARTMAP network is forced

to have a training error no greater than 3, which maintains an

overall training error below 3. If 3 is set to zero, then Boosted

ARTMAP reduces exactly to Fuzzy ARTMAP in training and

testing performance. Boosted ARTMAP uses on-line learning

similar to Fuzzy ARTMAP. Finding the best value for 3 on a

particular learning problem is not easy, however, a good value

for 3 can be achieved by performing a simple binary search

between 0.0 and 0.5. This method for determining 3 works best

when the error surface is fairly smooth, but a general idea of the

effect 3 on many learning problems can be found by checking

32f0:0; 0:1; 0:2; 0:3; 0:4; 0:5g.

As an example of learning in Boosted ARTMAP, consider

the behavior of Boosted ARTMAP on a simple learning

problem

fx1;x2;x3;x4;x5;x6;x7;x8g

Zfð0:0;0Þ;ð0:75;1Þ;ð0:1;0Þ;ð0:2;0Þ;ð0:3;0Þ;ð0:7;1Þ;ð0:8;1Þ;ð1:0;0Þg

(25)
from Dagher (1997). Training Boosted ARTMAP with 3!0:5

using the first seven samples is identical to Fuzzy ARTMAP,

wA
1Z ð0:00; 0:70Þ, wA

2Z ð0:70; 0:20Þ, wB
1Z ð0Þ and wB

2Z ð1Þ.

Here, there are two B-side F2 nodes, one for each label. There

are also two A-side F2 nodes, the first chosen by samples one

and three through five, and the second chosen by samples two,

six and seven. The Boosted ARTMAP MAP field has the

following values wAB
1 Z ð4; 0Þ and wAB

2 Z ð0; 3Þ. These MAP

field weight values indicate that each A-side F2 node is

currently only linked with a single B-side F2 node, and each has

zero performance error estimate.

Finally, training with the last sample is dependent upon the

desired error tolerance. If 3!0:25 then Boosted ARTMAP will

produce the same network as Fuzzy ARTMAP. However, if

3R0:25, then Boosted ARTMAP will choose wA
2 for x8. Since

the anticipated performance error estimate of wA
2 will be

e2Z1K3
4
Z0:25%3, then wA

2 will be allowed to learn x8
giving wA

1Z ð0:00; 0:70, wA
2Z ð0:70; 0:00Þ, wB

1Z ð0Þ and

wB
2Z ð1Þ. The MAP field weights will be wAB

1 Z ð4; 0Þ and

wAB
2 Z ð1; 3Þ. Note that these weights allow a many-to-many

association between A-side and B-side F2 nodes. Also, the total

estimated performance error for the entire network is 0.125. If

sample x8 is an outlier or its label is noisy, then Boosted

ARTMAP has the capacity to deal with it without needing any

new F2 nodes, where Fuzzy ARTMAP must allocate a new F2

node to maintain its zero training error tolerance.

5. Structural boosted ARTMAP

An idealized fuzzy ARTMAP-based learning algorithm

would use structural risk minimization with on-line learning.

The Rademacher complexity penalty is computed using all

of the samples seen so far, and it is more accurate when

‘enough’ samples have been seen. With on-line learning it is

difficult to decide when enough samples have been seen,

whereas with off-line learning all samples can be considered at

once. In this section, a neural network architecture which

employs structural risk minimization and Rademacher penali-

zation using Boosted ART and Boosted ARTMAP is presented

as a first step toward incorporating structural risk minimization

into Fuzzy ARTMAP-based neural networks.

The new architecture, called Structural Boosted ARTMAP

(BARTMAP-SRM), is a very simple modification of Boosted

ARTMAP. The BARTMAP-SRM architecture is composed of

a Boosted ART module on the A-side which accepts data input

and a Fuzzy ART module on the B-side to accept associated

labels. This structure is similar to Fuzzy ARTMAP and

Boosted ARTMAP, shown in Figs. 3 and 9, respectively. The

MAP field of BARTMAP-SRM will be the same as Boosted

ARTMAP, described in Section 4.2. Instead of having an

uncommitted node in the A-side Boosted ART module,

BARTMAP-SRM will have one F2 node, wA
0 , that covers the

entire (complement-coded) domain, i.e. wA
0Z ð0m; 0mÞ for an

m-dimensional domain. Note that the operation of wA
0 , will be

similar to the uncommitted node of Fuzzy ART in that it acts as

a catch-all for any data points that do not resonate with any of

the other (committed) F2 nodes. All F2 nodes, including wA
0 , are
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maintained such that their estimated training error is no greater

than the user specified error tolerance, 3, similar to Boosted

ARTMAP.

BARTMAP-SRM can be operated with on-line or off-line

learning, but it will employ full structural risk minimization

only with off-line learning. Rademacher penalization is

computed and used only when BARTMAP-SRM is trained

with off-line learning. When using on-line learning, BART-

MAP-SRM will continue to add new F2 nodes as necessary

without bounds, similar to Fuzzy ARTMAP and Boosted

ARTMAP. In order to achieve zero error tolerance, it might be

necessary for on-line BARTMAP-SRM to assign each training

sample to its own F2 node. Note that the error tolerance is only

used with on-line learning. In this mode of operation,

BARTMAP-SRM demonstrates a proof of concept for the

universal function approximation capabilities of Fuzzy ART-

based and Fuzzy ARTMAP-based neural networks (Verzi,

2003; Verzi et al., 2003). Learning in BARTMAP-SRM is

motivated by the properties of hyperboxes in U described next.
5.1. Axis parallel hyper-squares and open sets in Rm.

An interesting property of open sets in Rm is that each such

nonempty open set is composed of a countable union of disjoint

boxes belonging to U, defined as

UZU1gU2gU3g.; (26)

where

Un Z f½p; qÞ : p;q2Pn and qiKpi Z 2Kng; (27)

and

Pn Z fz=2n : zi2Zg: (28)

Un is the collection of all half-open boxes with sides of length

2Kn and corners at Pn (Rudin, 1974). This property means that

open sets inRm can be covered by a collection of sets fromU. It
may take an infinite number of these boxes to cover a specific

set, but these will be countably infinite. It is also interesting to

note that the measurable sets in Rm can be approximated by

unions of sets from U using a fine Vitali or Vitali-like covering

(DiBenedetto, 2001). In Fig. 10(a), a collection of boxes from

U1, U2, and U3 in R
2 is shown. Another interesting property of

sets u1, u22U is that they are either disjoint from one-another

or one is a proper subset of the other, as can be seen in Fig. 10.

BARTMAP-SRM uses complement coding, and thus only

those boxes from U that lie inside the unit hyperbox will be of
Fig. 10. Some boxes belonging to U for R2.
interest. Therefore, U*Z{u2U: uI(0, 1)} will be used from

here on in this paper.

5.2. Description of structural boosted ARTMAP

With on-line learning, BARTMAP-SRM looks very much

like a hierarchical or tree-like Boosted ARTMAP. Initially

BARTMAP-SRM contains only a single A-side F2 node that

covers the entire unit hyper-square. BARTMAP-SRM differs

from Boosted ARTMAP when the error estimate, Eq. (19),

would exceed 3. When this happens during learning, instead of

a lateral reset, as would occur in Boosted ARTMAP, in

BARTMAP-SRM this A-side F2 node is split along each

dimension into smaller squares at the next level in size, which

are proper subsets of the F2 node being split, as can be seen in

Fig. 10. These new squares are then added to the A-side

Boosted ART module. The on-line algorithm for BARTMAP-

SRM is shown in Fig. 11. Resonance occurs when an A-side F2

node is found that satisfies 3 in its error estimate. As with

Boosted ARTMAP, a newly added A-side F2 node will always

have an error estimate of zero. Noise in learning can be handled

by increasing 3 to a point where it is greater than the noise seen

in the data, similar to the operation of Boosted ARTMAP. Note

that in this mode of operation (on-line learning), BARTMAP-

SRM does not use structural risk minimization since it uses

empirical risk minimization, as do all other Fuzzy ARTMAP-

based architectures mentioned in this paper.

With off-line learning, BARTMAP-SRM can perform full

structural risk minimization. In this mode of operation, a series

of BARTMAP-SRM networks of increasing complexity, in

terms of the number of A-side F2 nodes, will be used. The off-

line BARTMAP-SRM algorithm is shown in Fig. 12. Each

network at a particular level of complexity, n, is trained without

growing on the entire training set. During training, the

networks are not allowed to grow since the algorithm is

collecting statistics about learning potential using a fixed

network size. Note that the number of nodes used at a particular

level of complexity is exponential in n, but this value will not

be more than m½logmðNÞ� which is bounded by the least factor of

m greater than N. The Rademacher penalty is computed as in

Eq. (4) using BARTMAP-SRM at complexity n. The network

with the minimum overall combination of training error plus

Rademacher penalty will be output from this version of

BARTMAP-SRM.

Even though, BARTMAP-SRM has the two modes of

operation, only the second mode is used in the empirical results

since it uses structural risk minimization with the Rademacher

penalty. These results will allow a direct comparison on-line

versus off-line learning and empirical risk minimization versus

structural risk minimization on the learning problems.

6. Empirical results

In this section, empirical learning results are presented to

demonstrate how Boosted ARTMAP (BARTMAP) can be

used to take advantage of the trade-off between training

error and hypothesis complexity by adjusting the error



Fig. 11. On-line structural boosted ARTMAP algorithm.
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tolerance parameter. All architectures in these experiments

use empirical risk minimization and on-line learning except

for Structural Boosted ARTMAP (BARTMAP-SRM), which

uses structural risk minimization and off-line learning. Thus,

the empirical results will also offer a comparison of the

differences between these types of learning. In general, it is

expected that structural risk minimization, and BARTMAP-

SRM with the off-line learning advantage, will provide

better performance, especially in situations where there is

noise or overlap. However, it will be interesting to see how

well the Fuzzy ARTMAP-based networks with on-line

learning and empirical risk minimization compare with

BARTMAP-SRM. Resource usage, in terms of the number

of F2 nodes used in training, is another issue of interest

here. BARTMAP-SRM is not necessarily efficient in its

usage of F2 nodes for all learning problems, but this

issue is important to the learning in BARTMAP as well as
Fig. 12. Off-line structural boo
Gaussian ARTMAP (Williamson, 1996), Distributed ART-

MAP (Carpenter et al., 1998) and also in Micro ARTMAP

(Gómez-Sánchez et al., 2000; Gómez-Sánchez et al., 2002).

The first set of results presented demonstrate the utility of

BARTMAP and BARTMAP-SRM on several learning pro-

blems where noise and/or class overlap occur. A classic

learning problem from Fuzzy ARTMAP will also be presented

in these empirical results to show that the proposed new

architectures do not significantly degrade in performance

where there is no noise or overlap. Following these results, the

learning performance of BARTMAP and the effect of its error

tolerance parameter on generalization error and network

complexity will be considered in more detail. Next, the

Rademacher complexity penalty will be computed on a noisy

learning problem for all Fuzzy ARTMAP-based architectures

used in this section. Finally, the performance of BARTMAP-

SRM will be considered in more detail.
sted ARTMAP algorithm.
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Fig. 13. Three variations on the circle-in-the-square problem, where (a) there is no overlap between the pattern classes, (b) the pattern classes overlap, and (c) the

pattern classes overlap and uniform random noise has been injected.

Table 1

Learning results for the circle-in-the-square problem

Architecture Epochs F2 nodes % Correct Std Dev

FuzARTMAP 7.0 24.7 95.9 0.6

ART-EMAP 7.0 24.7 88.7 4.7

ARTMAP-IC 7.0 24.7 95.9 0.6

dARTMAP 1.0 13.7 90.9 2.4

GARTMAP

(lZ0.1)

5.0 11.4 85.6 16.5

PROBART

(rZ0.85)

2.0 67.4 89.6 1.2

mARTMAP 49.6 17.0 93.3 3.4
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6.1. Learning results

In this section, the generalization performance of BART-

MAP and BARTMAP-SRM are compared with Fuzzy

ARTMAP (FuzARTMAP) (Carpenter et al., 1992), ART-

EMAP (Carpenter and Ross, 1995), ARTMAP-IC (Carpenter

and Markuzon, 1998), Distributed ARTMAP (dARTMAP)

(Carpenter et al., 1998), Gaussian ARTMAP (GARTMAP)

(Williamson, 1996), PROBART (Marriott and Harrison, 1995),

and Micro ARTMAP (mARTMAP) (Gómez-Sánchez et al.,

2000; Gómez-Sánchez et al., 2002) on some statistical learning

problems.

In each of the learning problems, one class was labeled 0

and the other 1. All data were normalized to fit within the unit

square so that complement coding could be used. Other than

the diabetes-learning problem, each class contributed equally

to both the training and test data sets. For the two-dimensional

generated data in these experiments, each network was trained

on 1000 training samples and tested with either 1000 (in the

bimodal Gaussian learning problem) or 10,000 (in the other

two-dimensional generated learning problems) test samples.

For each of the learning problems, 100 such training/testing

scenarios were conducted to arrive at a statistical sampling of

each architecture’s performance. The mean and standard

deviation values reported in the tables below reflect this

statistical sampling.

An A-side Fuzzy ART baseline vigilance of 0.0 and B-side

Fuzzy ART baseline vigilance of 1.0 was used for Fuzzy

ARTMAP, and the MAP field vigilance was set to 1.0. In

GARTMAP, g values ranging from 0.01 to 0.1 were used, and

GARTMAP was trained for five epochs for each learning

problem. The baseline vigilance for PROBART will be

specified for each problem separately. BARTMAP was trained

using the same parameter values as Fuzzy ARTMAP, except

the desired error tolerance values which is problem specific.
(hZ0.15)

BARTMAP

ð3Z0Þ

7.0 24.7 95.9 0.6

BARTMAP-SRM 20.0 61.0 94.0 0.6
6.1.1. Circle-in-the-square problem (Carpenter et al., 1992)

In this problem, shown in Fig. 13(a), the circumference

of the circle represents the optimal decision boundary. The
diameter of the circular class is equal in size to the diagonal

distance across a square half the size of the big square (i.e. the

smaller square is circumscribed in the circle), and both are

centered about the same point. The Circle-in-the-Square

represents a well-separated learning problem, and it helps to

demonstrate how aggregating learners, such as Fuzzy

ARTMAP and Fuzzy ARTMAP-based architectures, can

represent a more complex space with simple components,

even when the components differ structurally than the target

space. Here the goal is to learn a circle with a collection of

hyperboxes. Table 1 shows the results for this learning

problem. The second column shows the average number of

passes through the training data, called epochs needed to reach

a solution. The third column gives the average number of F2

nodes used in training the networks. The fourth column shows

the percentage of correctly classified test instances, and the last

column is the standard deviation of the error percentage over

the experiments conducted. Both PROBART and BARTMAP-

SRM require more F2 nodes than the other architectures. In

PROBART this is due to the fact that training error is not

directly controlled as it is in BARTMAP. BARTMAP-SRM

needs more F2 nodes due to the fact that this problem contains

well-separated classes, which conforms better to empirical risk



Table 2

Learning results from the noisy circle-in-the-square problem

Architecture Epochs F2 nodes % Correct Std Dev

FuzARTMAP 7.5 202.6 73.0 2.0

ART-EMAP 7.5 202.6 78.4 7.1

ARTMAP-IC 7.5 202.6 72.9 1.4

dARTMAP 1.0 57.8 68.0 4.8

GARTMAP

(lZ0.2)

5.0 17.1 84.2 6.4

PROBART

(rZ0.85)

2.0 67.4 87.7 1.6

mARTMAP

(hZ0.25)

112.9 30.8 65.6 7.8

BARTMAP

ð3Z0:25Þ

13.3 63.8 85.3 2.1

BARTMAP-SRM 13.0 40.0 90.0 1.1
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Fig. 14. The overlapping squares problem.
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minimization. Note that BARTMAP reduces exactly to Fuzzy

ARTMAP when 3Z0. With no noise or overlap, BARTMAP

performs best using an error tolerance of 0, as shown in

Table 1. It is important to note that BARTMAP has the distinct

advantage over the Fuzzy ARTMAP-based architectures in that

it does generalize upon Fuzzy ARTMAP and can reduce to

Fuzzy ARTMAP with zero error tolerance.
6.1.2. Noisy circle-in-the-square problem.

In this problem, 20% uniform noise was added to the labels

from the previous learning problem, as shown in Fig. 13(c).

Thus with probability 1⁄5 each sample label is flipped. This label

noise is significant, but it will demonstrate the performance of

the learning algorithms in the presence of noise. In Table 2,

mARTMAP does not handle noisy data very well as can be seen

by the fact that it takes so many epochs to reach a solution.

ART-EMAP does better than Fuzzy ARTMAP on this problem

by combining multiple F2 nodes for prediction. However,

ART-EMAP only differs from Fuzzy ARTMAP after learning

is completed, and thus both architectures have the same

complexity. ART-EMAP could probably perform even better

with reduced network sizes. This is precisely what BARTMAP

attempts to achieve. GARTMAP shows good performance here

and throughout most of the experiments in this paper, but it

does have a very high standard deviation across the training
Table 3

Learning results for the overlapping circle-in-the-square problem

Architecture Epochs F2 nodes % Correct Std Dev

FuzARTMAP 7.8 176.5 69.0 0.6

ART-EMAP 7.8 176.5 68.4 2.0

ARTMAP-IC 7.8 176.5 69.0 0.6

dARTMAP 1.0 47.6 66.6 1.9

GARTMAP

(lZ0.175)

5.0 10.3 65.9 9.3

PROBART

(rZ0.85)

2.2 66.2 72.6 2.3

mARTMAP

(hZ0.55)

39.7 49.0 72.7 3.0

BARTMAP

ð3Z0:3Þ

17.6 53.3 73.6 0.9

BARTMAP-SRM 16.0 49.0 74.0 0.7
sets implying it is not as stable as some of the other algorithms.

PROBART does very well on this problem and approaches

what can be achieved by BARTMAP-SRM. This problem

shows how F2 node proliferation can occur in Fuzzy ARTMAP

in situations of noise. Here, Fuzzy ARTMAP creates many

more F2 nodes than are necessary to solve this problem. Given

the label noise in this problem, BARTMAP performs best using

an error tolerance of slightly larger than 0.20 so that it can

create clusters which can handle at least 20% training error.

The BARTMAP error tolerance used for the results in Table 2

is 0.25.
6.1.3. Overlapping circle-in-the-square problem.

This experiment, shown in Fig. 13(b) involves a uniformly

distributed circle overlapping a uniformly distributed square.

This problem is similar to the first experiment except that both

data classes have samples inside the circle. Both circle and

square are centered on the same point. This problem represents

a case of one-sided error, where outside the circle no
Table 4

Learning results for the overlapping square problem

Architecture Epochs F2 nodes %Correct SD

FuzARTMAP 7.7 127.6 77.9 0.7

ART-EMAP 7.7 127.6 73.4 2.4

ARTMAP-IC 7.7 127.6 77.9 0.7

dARTMAP 1.0 35.9 75.9 2.0

GARTMAP

(lZ0.1)

5.0 10.8 81.9 1.7

PROBART

(rZ0.85)

2.1 62.5 79.7 1.2

mARTMAP

(hZ0.4)

24.4 52.7 81.2 1.9

BARTMAP

(3Z0:25)

9.3 20.8 83.3 2.1

BARTMAP-SRM 5.0 16.0 87.5 0.3
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Fig. 15. The overlapping bimodal Gaussians problem.

Table 6

Learning results for the Pima Indian diabetes diagnosis problem

Architecture Epochs F2 nodes % Correct SD

FuzARTMAP 8.7 49.4 65.8 3.6

ART-EMAP 8.7 49.4 65.0 9.9

ARTMAP-IC 8.7 49.4 65.8 3.6

dARTMAP 1.0 15.6 61.6 4.7

GARTMAP

(lZ0.135)

5.0 24.0 68.5 13.9

PROBART

(rZ0.3)

2.0 3.0 64.7 2.2

mARTMAP

(hZ0.3)

279.6 19.5 66.1 3.9

BARTMAP

(3Z0:265)

9.9 15.3 68.2 3.3

BARTMAP-SRM 3.9 35.0 67.8 2.7
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misclassification will occur. As with the first problem, the

optimal solution is the circle itself, but that sort of boundary is

difficult for any of the Fuzzy ARTMAP-based architectures

(except for those that use curve hyper-regions in the

representation of their F2 nodes such as Gaussian ARTMAP

and Ellipsoid ARTMAP) to approximate precisely with a small

number of F2 nodes, especially given the overlap inside the

circle. This particular problem is difficult for all of the

architectures. It is interesting to see that ART-EMAP does not

improve upon Fuzzy ARTMAP with this kind of one-sided

error. It is not clear why GARTMAP has such difficulty with

this kind of problem. With no noise but close to 30% overlap

(of the circle onto the larger square), BARTMAP performs best

with an error tolerance of 0.3, shown in the results in Table 3.
6.1.4. Overlapping squares problem.

This experiment, an example of which is shown in Fig. 14,

involves a uniformly distributed square overlapping a uniformly
Table 5

Learning results for the overlapping bimodal Gaussians problem

Architecture Epochs F2 nodes % correct SD

FuzARTMAP 8.4 163.4 72.2 1.7

ART-EMAP 8.4 163.4 56.5 7.0

ARTMAP-IC 8.4 163.4 72.2 1.7

dARTMAP 1.0 44.6 69.2 2.9

GARTMAP

(lZ0.01)

5.0 12.5 75.5 12.2

PROBART

(rZ0.9)

2.1 35.6 77.2 1.8

mARTMAP

(hZ0.25)

12.0 10.6 77.9 2.3

BARTMAP

(3Z0:242)

16.0 50.1 78.7 1.6

BARTMAP-SRM 19.3 56.0 80.5 1.5
distributed square, where the smaller square has half the area of

the larger square. Both squares are centered on the same point.

This problem should be easy to solve with just a small number of

hyperboxes. In fact, Table 4 shows that BARTMAP-SRM

achieves a nearly optimal solution with exactly 16 hyperboxes.

This problem shows another case of one-sided error where the

smaller square represents the optimal boundary. It is interesting

that none of the architectures solves this problem with the

minimum number of hyperboxes. This problem can be solved

with two hyperboxes, one for the x’s and one for the o’s. It is

surprising to see that ART-EMAP does not perform better than

Fuzzy ARTMAP on this problem. Once again ART-EMAP has

difficulties with one-sided error. GARTMAP does verywell with

this problem as opposed to the previous experiment, which is a

surprise. This particular problem demonstrates the distinct

advantage of off-line versus on-line learning where BART-

MAP-SRM is not affected by the order of presentation of training

samples, and it performs very well with a very small standard of

deviation as compared with all the other architectures. The

smaller square overlaps precisely 25% of the larger square, and

BARTMAPperforms bestwith an error tolerance of exactly 0.25,

as shown in Table 4.
6.1.5. Overlapping bimodal Gaussians problem (Baras and

Dey, 1999).

The next experiment is a difficult problem where one

bimodal 2D Gaussian sits on top of the other one, as shown in

Fig. 15. The Guassian with the higher peak and lower deviation

(‘C’) is concentrated more toward the center of the image.

This problem does not have a zero training error solution. This

represents a problem, which has a very different data space

than Fuzzy ARTMAP-based hyperboxes. However, judicious

use of the hyperboxes can cover the domain properly. The

results of this experiment are shown in Table 5. This particular

problem shows a case where ART-EMAP’s noise reduction

through multiple F2 node activation does not succeed. As

expected GARTMAP performs well on this problem, but there

is a high standard of deviation in its performance. mARTMAP

does very well on this problem generating very small sized

networks with good performance. In this problem, it is difficult
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Fig. 16. Structural risk metrics for Boosted ARTMAP on the (a) circle-in-the-square, (b) noisy circle-in-the-square and (c) overlapping circle-in-the-square

problems.
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to characterize the amount of overlap, but after using a binary

search between 0 and 0.5, a value of 0.242 was found for

BARTMAP’s best performance, as shown in Table 5.
6.1.6. Diabetes diagnosis problem

The next learning problem in this section comes from the

Pima Indian Diabetes database in the UCI machine learning

problem repository (Blake and Merz, 1998). This database

consists of 768 samples (500 negative and 268 positive). These

samples were split into 2/3 training data and 1/3 test data using

a randomized selection without replacement for each of the 100

experiments. This example shows how all of these techniques

perform on a real-world learning problem. The results of this

experiment are shown in Table 6. This is a very difficult

problem where none of the architectures perform very well.

There is only a small amount of total samples present, and so

even structural risk minimization does not do well here. In fact,

both GARTMAP and BARTMAP outperform BARTMAP-

SRM. This might be an indication that as a statistical off-line

learning algorithm, BARTMAP-SRM requires more data to
work properly, and this is expected from computational

learning theory (Devroye et al., 1996; Vapnik, 1998;

Vidyasagar, 1997; van der Vaart and Wellner, 1996). As in

the previous learning problem, it is difficult to characterize the

overlap inherent in this learning problem. Thus, a binary search

between 0 and 0.5 was employed resulting in 0.265 as the best

error tolerance value for BARTMAP performance, as shown in

Table 6.

It is clear from the results that BARTMAP and Boosted

ARTMAP-based neural network architectures, such as

Structural Boosted ARTMAP offer distinct advantages in

certain learning situations. BARTMAP has the added feature of

reducing to Fuzzy ARTMAP for learning problems where error

in training is not advantageous, by setting the error tolerance

parameter to zero. Because, BARTMAP-SRM is an off-line

learner, it offers a unique comparison to the other architectures,

in terms of on-line versus off-line learning as well as empirical

risk minimization versus structural risk minimization. Cer-

tainly in situations where there is not much training data

available or where the classes being learned are well separated,



Table 7

Rademacher penalty for all architectures on the noisy circle-in-the-square

problem

Architecture Training error Rademacher penalty

FuzARTMAP 0.0 51.3

ART-EMAP 11.3 3.7

ARTMAP-IC 0.0 51.4

dARTMAP 7.0 53.0

GARTMAP (lZ0.2) 13.4 57.0

PROBART (rZ0.85) 9.4 10.7

mARTMAP (hZ0.25) 30.9 39.2

BARTMAP ð3Z0:25Þ 11.6 34.5

BARTMAP-SRM 9.3 8.4
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BARTMAP-SRM can be out-performed. Even in cases where

there is noise or overlap, Fuzzy ARTMAP-based architectures

can come very close to the performance capabilities of

BARTMAP-SRM.

6.2. Minimizing risk and boosted ARTMAP

In this section, the structural risk characteristics of Boosted

ARTMAP are described for several of the learning problems

previously used. The structural risk is computed using training

error juxtaposed with Rademacher penalty calculated using

Lazano, 2000 algorithm. The structural risk metric for the

circle-in-the-square problem is shown in Fig. 16 (a). It is easy

to see in Fig. 16 (a) that in trying to approximate the circle with

unions of hyperboxes, a steady increase in the number of F2

nodes produces a steady increase in generalization perform-

ance. This can be seen by traversing from right to left along the

x-axis of Fig. 16(a), where as the error tolerance value is

decreased, BARTMAP is forced to create more F2 nodes to

compensate, resulting in steadily greater generalization

performance. Note that the training error steadily decreases

while the Rademacher penalty steadily increases along this

same path (from right to left) in Fig. 16(a). Also, the low point

in the sum of training error and Rademacher penality (the

cross-over in Fig. 16(a)) is far away from the best

generalization performance. This information also demon-

strates that this particular learning problem is not a good

candidate for structural risk minimization, as was shown in the

previous section.

Fig. 16 (b) and (c) show that by adjusting the Boosted

ARTMAP error tolerance value from 3Z0:0 to 3Z0:5, the

performance of learning is significantly affected in both the

training error achieved as well as the network complexity, as

seen through the Rademacher penalty, on learning problems

with noise and/or classification overlap. In these cases, the best

network performance is achieved very near the point where the

sum of training error and Rademacher penalty is minimized,

however, because formal structural risk minimization is not

used in BARTMAP, this characterization is not completely

precise.

On the issue of selecting the error tolerance value for

BARTMAP, Fig. 16(a)–(c) clearly show that a simple binary

search on the values between 0 and 0.5 can quickly result in an
error tolerance value with very good generalization perform-

ance. These particular problems have smooth generalization

error surfaces, and so selection of the error tolerance parameter

for BARTMAP is straightforward, but in cases where the error

surface is not smooth, it might be difficult to find the optimal

value. However, a simple check can be made by using a binary

search across the values in {0, 0.1, 0.2, 0.3, 0.4, 0.5} or in {0,

0.05, 0.10.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}. Also, because

BARTMAP can reduce to Fuzzy ARTMAP, an error tolerance

value of 0 will always show what Fuzzy ARTMAP can do. This

can be seen at the far left in Fig. 16(a)–(c).

6.3. Rademacher penalty for noisy circle-in-the-square

In this section, the average Rademacher penalty is computed

for each architecture on the noisy circle-in-the-square learning

problem. Table 7 shows that most of the architectures have a

Rademacher penalty near or greater than 0.5, which indicates a

tendency for ‘over-fitting’ the training data. ART-EMAP was

specifically designed to reduce the effect of noisy data, which it

does very well, as indicated by the very low Rademacher

penalty value and good performance on this learning problem

in Table 2. However, this noise reduction is not available

during training. ART-EMAP training is identical to Fuzzy

ARTMAP, thus, even though it seems to have a low penalty

value, its effective complexity penalty is the same as Fuzzy

ARTMAP’s.

PROBART also has a very good Rademacher penalty value

with this learning problem, and its generalization performance

is also seen to be very good in Table 2. The complexity of

PROBART is controlled by tuning the vigilance value of its

A-side Fuzzy ART sub-network. A larger value for this

parameter can cause PROBART to create many F2 nodes

similar to the operation of Fuzzy ART with a high vigilance

value. This value must be determined for each situation

similar to the error tolerance in BARTMAP. Note that the

Rademacher penalty value for mARTMAP and BARTMAP

can be adjusted by adjusting their input parameters. In fact,

BARTMAP will achieve a Rademacher penalty of zero by

setting the error tolerance to 0.5, as shown in Fig. 16, but the

training error, in general, will be too large using this error

tolerance.

The Rademacher value in Table 7 for BARTMAP-SRM is

the complexity penalty seen where its solution is achieved, that

is at a complexity of 40 F2 nodes. The complete Rademacher

penalty for BARTMAP-SRM on this problem is the steadily

increasing dotted line shown in Fig. 17(b).

6.4. Structural risk minimization and structural boosted

ARTMAP

Fig. 17 shows the space of networks Structural Boosted

ARTMAP (BARTMAP-SRM) used to produce its answer on

four of the statistical learning problems used previously. Each

point in Fig. 17(a)–(d) shows the performance and structural

risk characteristics of a single network at a particular complex-

ity value. The horizontal axis charts the number of F2 nodes
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Fig. 17. The performance of Structural Boosted ARTMAP on the (a) circle-in-the-square, (b) noisy circle-in-the-square (c) overlapping circle-in-the-square and (d)

overlapping squares problems.
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used by a particular network. The vertical axis represents a

percentage value for each network at a particular complexity.

The solid line represents the test performance. The dash–dash

line represents the computed value of training error plus

Rademacher penalty. The dash–dot line represents the training

error by itself, and the dot–dot line represents the Rademacher

penalty by itself. Each of these networks is considered during

BARTMAP-SRM learning, as can be seen in Fig. 12.

The actual solution output by BARTMAP-SRM is that

network with the minimum combination of training error and

Rademacher penalty. BARTMAP-SRM does not get to see the

test performance, but rather that is shown here to compare the

actual behavior of all of the networks that BARTMAP-SRM

considers during learning. For this first experiment, BART-

MAP-SRM’s output network occurs at a complexity of 61 F2

nodes, even though there are many networks with more F2

nodes that have a higher test performance. This particular

problem is an example where structural risk minimization is

just not needed, although BARTMAP-SRM does output a good
network. Empirical risk minimization a la Fuzzy ARTMAP

does just fine. In addition, this result shows that BARTMAP-

SRM will need an arbitrarily large number of these hyperboxes

to approximate the circle precisely, as expected.

Fig. 17(b) is an example where structural risk minimization

provides an advantage over empirical risk minimization. This

plot shows that as the network complexity increases beyond a

certain value, test performance decreases steadily. Over-fitting

the data with too many F2 nodes decreases generalization

performance. Fig. 17(c) shows another example where

structural risk minimization can be used to keep the network

from becoming unnecessarily large. In Fig. 17(d), there is a

steady and dramatic drop off in performance when the network

complexity increases beyond 16. The reason for this is that

BARTMAP-SRM only needs 16 hyperboxes to solve this

problem exactly, and any extra F2 nodes will only decrease its

generalization performance. In each of these examples, the

network output by BARTMAP-SRM, as determined by the

crossover point of training error and Rademacher penalization,
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has a test performance, which is very close to the optimal

network test performance. In these situations, structural risk

minimization benefits generalization performance.
7. Conclusions and future work

The experimental results in Section 6 demonstrate that

Boosted ARTMAP offers an improvement over Fuzzy

ARTMAP in learning situations where there is overlap between

classes. Another benefit of Boosted ARTMAP is a reduction in

the number of F2 nodes needed during learning, at the expense

of more epochs on the training data. This reduced hypothesis

complexity results in improved generalization performance

consistent with the theory of structural risk minimization for

cases of classification overlap. In situations where there is no

class overlap, Boosted ARTMAP reduces to Fuzzy ARTMAP

with an error tolerance of zero. Anagnostopoulos and

Georgiopoulos, 2002 has shown that the Boosted ARTMAP

MAP field can be used with non-hyperbox extensions of Fuzzy

ARTMAP, such as Ellipsoid ARTMAP. In fact, it is possible

that the Boosted ARTMAP MAP field might be used in

conjunction with Gaussian ARTMAP so that it can be allowed

to reach a stable solution as opposed to stopping it after a set

number of epochs. At present, the authors are continuing to

research ways of bounding Boosted ARTMAP’s generalization

performance as well as Fuzzy ARTMAP’s according to the

data-driven analysis used by Koltchinskii (2001); Lazano,

(2000).

The research presented in this paper was designed

specifically to address learning in situations where the best

possible generalization error is greater than zero. In these

situations simply employing empirical risk minimization will

result in a solution, which is not as good as can be obtained

with structural risk minimization. The Rademacher penalty

provides direct empirical evidence that Boosted ARTMAP’s

error tolerance parameter can be used to directly affect its

structural complexity and thus indirectly affect its generaliz-

ation performance.

Boosted ARTMAP stands on its own as a learning algorithm

in noisy or overlapping data situations. Although Boosted

ARTMAP does not perform formal boosting, it is a very

reasonable first order approximation toward conducting

boosting in a Fuzzy ARTMAP-based neural network. Fuzzy

ARTMAP does not perform boosting because it always tries to

learn each new sample precisely and it does not attempt to

evaluate its learning in terms of generalization error or

structural complexity. Boosted ARTMAP improves upon

Fuzzy ARTMAP by not attempting to learn each sample

precisely. Boosted ARTMAP also uses on-line learning, and

thus it also does not evaluate its learning performance in terms

of generalization error or structural complexity; however, the

generalization performance and structural complexity can be

adjusted using the Boosted ARTMAP error tolerance par-

ameter. It remains an open problem as to whether or not formal

boosting can be achieved using on-line learning with in a Fuzzy

ARTMAP-based neural network.
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