
Neural Networks 20 (2007) 245–259
www.elsevier.com/locate/neunet
Experiments with Safe µARTMAP: Effect of the network parameters on the
network performance

Mingyu Zhonga, Bryan Rosandera, Michael Georgiopoulosa,∗,1, Georgios C. Anagnostopoulosb,
Mansooreh Mollaghasemic, Samuel Richiea

a School of EECS, University of Central Florida, Orlando, FL 32816, United States
b Department of ECE, Florida Institute of Technology, Melbourne, FL 32901, United States

c Department of IEMS, University of Central Florida, Orlando, FL 32816, United States

Received 6 October 2005; received in revised form 14 November 2006; accepted 14 November 2006

Abstract

Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural network architectures in solving classification problems. One
of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the category proliferation problem. That is, Fuzzy
ARTMAP has the tendency of increasing its network size, as it is confronted with more and more data, especially if the data are of the noisy
and/or overlapping nature. To remedy this problem a number of researchers have designed modifications to the training phase of Fuzzy ARTMAP
that had the beneficial effect of reducing this category proliferation. One of these modified Fuzzy ARTMAP architectures was the one proposed
by Gomez-Sanchez, and his colleagues, referred to as Safe µARTMAP. In this paper we present reasonable analytical arguments that demonstrate
of how we should choose the range of some of the Safe µARTMAP network parameters. Through a combination of these analytical arguments
and experimentation we were able to identify good default parameter values for some of the Safe µARTMAP network parameters. This feat
would allow one to save computations when a good performing Safe µARTMAP network is needed to be identified for a new classification
problem. Furthermore, we performed an exhaustive experimentation to find the best Safe µARTMAP network for a variety of problems (simulated
and real problems), and we compared it with other best performing ART networks, including other ART networks that claim to resolve the
category proliferation problem in Fuzzy ARTMAP. These experimental results allow one to make appropriate statements regarding the pair-wise
comparison of a number of ART networks (including Safe µARTMAP).
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Machine learning; Classification; ARTMAP; Safe µARTMAP; Parameter settings; Entropy
1. Introduction

The Adaptive Resonance Theory (ART) was developed
by Grossberg (1976). One of the most celebrated ART
architectures is Fuzzy ARTMAP (Carpenter, Grossberg,
Markuzon, & Reynolds, 1992), which has been successfully
used in the literature for solving a variety of classification
∗ Corresponding author.
E-mail addresses: myzhong@ucf.edu (M. Zhong),

bdrosander@gmail.com (B. Rosander), michaelg@mail.ucf.edu
(M. Georgiopoulos), georgio@fit.edu (G.C. Anagnostopoulos),
mollagha@mail.ucf.edu (M. Mollaghasemi), richie@mail.ucf.edu (S. Richie).

1 Reprint requests to: Harris Center, Suite 345D, School of Electrical
Engineering and Computer Science, University of Central Florida, 4000 Central
Florida Blvd, Orlando, FL 32816, United States.

0893-6080/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2006.11.008
problems. Some of the advantages that Fuzzy ARTMAP
possesses is that it can solve arbitrarily complex classification
problems, it converges quickly to a solution (within a few
presentations of the list of the input/output patterns belonging
to the training set), it has the ability to recognize novelty in the
input patterns presented to it, it can operate in an online fashion
(new input/output patterns can be learned by the system without
retraining with the old input/output patterns), and it produces
answers that can be explained with relative ease.

Fuzzy ARTMAP has two limitations: (1) the order of
the training examples greatly affects the performance of the
network, and (2) the category proliferation problem is also
extensively reported in the literature. The former limitation is
alleviated by Safe µARTMAP (Gomez-Sanchez, Dimitriadis,
Cano-Izquierdo, & Lopez-Coronado, 2001), and will be

http://www.elsevier.com/locate/neunet
mailto:myzhong@ucf.edu
mailto:bdrosander@gmail.com
mailto:michaelg@mail.ucf.edu
mailto:georgio@fit.edu
mailto:mollagha@mail.ucf.edu
mailto:richie@mail.ucf.edu
http://dx.doi.org/10.1016/j.neunet.2006.11.008


246 M. Zhong et al. / Neural Networks 20 (2007) 245–259
discussed in Section 2. Quite often the category proliferation
problem, observed in Fuzzy ARTMAP architectures, is
connected with the issue of overtraining in Fuzzy ARTMAP.
Over-training happens when Fuzzy ARTMAP is trying to
learn the training data perfectly at the expense of degraded
generalization performance (i.e., classification accuracy on
unseen data) and also at the expense of creating many
categories to represent the training data (leading to the category
proliferation problem). A number of authors have tried to
address the category proliferation/overtraining problem in
Fuzzy ARTMAP. Amongst them we refer to the work by
Marriott and Harrison (1995), where the authors eliminate the
match tracking mechanism of Fuzzy ARTMAP when dealing
with noisy data, the work by Charalampidis, Kasparis, and
Georgiopoulos (2001), where the Fuzzy ARTMAP equations
are appropriately modified to compensate for noisy data,
the work by Anagnostopoulos, Bharadwaj, Georgiopoulos,
Verzi, and Heileman (2003), Anagnostopoulos, Georgiopoulos,
Verzi, and Heileman (2002), Gomez-Sanchez, Dimitriadis,
Cano-Izquierdo, and Lopez-Coronado (2002), Gomez-Sanchez
et al. (2001), Verzi, Georgiopoulos, Heileman, and Healy
(2001), where different ways are introduced of allowing the
Fuzzy ARTMAP categories to encode patterns that are not
necessarily mapped to the same label, the work by Koufakou,
Georgiopoulos, Anagnostopoulos, and Kasparis (2001), where
cross-validation is employed to avoid the overtraining/category
proliferation problem in Fuzzy ARTMAP, and the work by
Carpenter and Milenova (1998), Parrado-Hernandez, Gomez-
Sanchez, and Dimitriadis (2003) and Williamson (1997),
where the ART structure is changed from a winner-take-all
to a distributed version and simultaneously slow learning is
employed with the intent of creating fewer ART categories and
reducing the effects of noisy patterns.

In this paper we focus our attention on one of these Fuzzy
ARTMAP modifications, that is, Safe µARTMAP, introduce
by Gomez-Sanchez et al. (2001). As reported in the literature,
µARTMAP’s approach to reduce the category proliferation
problem is to allow categories in Fuzzy ARTMAP to encode
input patterns that belong to different labels, thus eliminating
the need of creating a new category every time an input pattern
appears in the vicinity of categories of different labelling
than the one that the input pattern possesses. Furthermore,
µARTMAP allows some of the mixed label categories to be
destroyed if they were too entropic (i.e. mixing of the labels
within a category was too excessive). The µARTMAP network
enforces the category destruction through a set of maximum
allowed entropic thresholds. After a category is destroyed
µARTMAP allows the creation of categories of smaller size,
than the category that is destroyed. The performance (size
of architecture created, and classification accuracy achieved
on unseen data) by µARTMAP depends on the choice of the
network parameters (i.e. entropic thresholds, ART baseline
vigilance parameter, ART choice parameter, and order of
training set pattern presentation to ART). The enhanced version
of µARTMAP, called Safe µARTMAP, does not allow a
category to expand too quickly, and avoids the creation of
highly overlapped categories.
In this paper we contribute to the existing µARTMAP
literature and in a bigger context to the ART literature by
presenting reasonable analytical arguments that demonstrate
how we could choose the range of the entropic thresholds
in Safe µARTMAP. Furthermore, we perform an exhaustive
experimentation to find the best Safe µARTMAP network
for a variety of problems (simulated data and real data).
The definition of “best” is dependent on the smallness of
the network created, as well as the accuracy of the created
network on a cross-validation accuracy (small networks of good
accuracy are preferred). Through this experimentation we were
able to define good default values for the Safe µARTMAP
network parameters, applicable to a variety of problems.
Finally, we identify the best performing Safe µARTMAP
network (from the set of network parameter values that we
have experimented with) and we compared it with other “best”
performing ART networks, such as Fuzzy ARTMAP (Carpenter
et al., 1992), Ellipsoidal ARTMAP (Anagnostopoulos &
Georgiopoulos, 2001; Anagnostopoulos, 2001), Gaussian
ARTMAP and Distributed Gaussian ARTMAP (Williamson,
1996), and their semi-supervised versions (Anagnostopoulos
et al., 2003, 2002).

The rest of the paper is organized as follows. Section 2
provides a detailed description of µARTMAP and Safe
µARTMAP. In Section 3 we discuss the Safe µARTMAP
parameters in detail, and attempt to explain the effect of some of
these parameter choices on the Safe µARTMAP performance.
In Section 4 we provide experimental results. Some of the
results in Section 4 pertain to the comparisons of Safe
µARTMAP and other ART networks. The rest of the results
in Section 4 pertain to the setting of default parameter values
for Safe µARTMAP experimentations. Finally, in Section 5, we
summarize our work and our conclusions from this work.

2. The µARTMAP architecture

In this section, we give a detailed description of µARTMAP.
Some of the information included here cannot be found in the
published µARTMAP references, and was obtained through
private communication with Eduardo Gomez-Sanchez, one of
the µARTMAP inventors.

The block diagram of the µARTMAP architecture is shown
in Fig. 1. Note that the block diagram of Fig. 1 for µARTMAP
is different from that of the µARTMAP architecture shown in
the µARTMAP paper (see Gomez-Sanchez et al., 2002), and
in the Fuzzy ARTMAP paper (Carpenter et al., 1992), but
very similar to the block diagram shown in Kasuba (1993),
and Taghi, Bagmisheh, and Pavesic (2003). In Kasuba and
Taghi, a simplified version of the supervised ART architectures
was introduced that is equivalent to the more complicated
architecture depicted in Carpenter et al. (1992) and Gomez-
Sanchez et al. (2002), but much simpler to understand. The
equivalence stated in the previous statement is valid only for
classification problems.

The µARTMAP architecture of the block diagram of Fig. 1
has three major layers. The input layer (Fa

1 ) where the
input patterns (designated by I) are presented, the category
representation layer (Fa

2 ) where compressed representations of



M. Zhong et al. / Neural Networks 20 (2007) 245–259 247
Fig. 1. Block-diagram of µARTMAP architecture.

these input patterns (designated as wa
j and called templates) are

formed, and the output layer (Fb
2 ) that holds the labels of the

categories formed in the category representation layer. Another
layer shown in Fig. 1, and designated by Fa

0 , is a pre-processing
layer and its functionality is to pre-process the input patterns
before their presentation to µARTMAP. The pre-processing
operation, called complementary coding, takes an input pattern
a and expands it by appending to it the complement of a,
designated as ac. That is, the input pattern I to µARTMAP is
now equal to

I = (a, ac) (1)

where ac
= 1 − a. It is assumed here that every component

of the original vectors a is normalized into the interval [e, 1 −

e] (where e is a small positive number, as explained in
Section 3). The number of nodes in the input layer, the category
representation layer, and the output layer of µARTMAP is
designated by 2Ma (Ma is the dimensionality of the vector a),
Na , and Nb (number of classes), respectively. Note that Ma and
Nb are deterministic while Na is changing dynamically in the
training process.

There are a number of weights in the µARTMAP
architecture that are worth mentioning: (a) the vector of
weights (templates) emanating from every node in the category
representation layer and converging to all the nodes in the
input layer (same as in Fuzzy ARTMAP; the vector of weights
emanating from node j in the category representation layer and
converging to all the nodes in the input layer is designated by
wa

j = (wa
j1, . . . , w

a
ji , . . . , w

a
j 2Ma

)); (b) the vector of weights
emanating from every node in the category representation layer
and converging to all the nodes in the output layer. The vector of
weights emanating from node j in the category representation
layer and converging to all the nodes in the output layer
is designated by Wab

j = (W ab
j1 , . . . , W ab

jk , . . . , W ab
j Nb

), and
component W ab

jk of this weight vector represents the number
of times that node j has been chosen by an input pattern. Note
that the vector weights, designated by wa

j , have an interesting
geometrical interpretation. Its first Ma components define the
lower endpoint of a hyper-box, while its last Ma components
define the upper endpoint of the hyper-box. It is assumed
throughout this paper that the reader is familiar with the
geometrical (hyper-box) interpretation of the template weights
in ART.
µARTMAP operates in two phases: The training phase and

the performance phase. In the training phase of µARTMAP we
have a collection of input/associated labels pairs (called training
set), and we present it to µARTMAP, one input/associated label
pair {I, label(I)} at a time, in a manner that will be further
explained below. The performance phase of µARTMAP will be
explained after the training phase has been discussed.

The training phase of µARTMAP is succinctly described as
follows (Steps 1–2):

(1) (Learning Phase) Find the nearest category in the category
representation layer of µARTMAP that resonates with the
input patterns.
(a) If the label of the input pattern passes both the

resonance test and the entropy test (see the context)
update the weights of this category.

(b) Otherwise, reset the winner, and try the next winner.
Uncommitted nodes (categories) are chosen if and only
if we cannot find a winner node from the list of already
committed nodes.

(2) (Offline Evaluation Phase) After the learning phase is
finished (i.e. all input/associated label pairs of the training
set have chosen a committed node) we present all the
patterns again to check the total entropy of the created
categories, without changing any wa

j vector. One pass of
the learning phase and the offline evaluation phase is called
one epoch.
(a) If the total entropy is below a designated threshold, or if

the number of epochs reaches a preset maximum value,
training is completed.

(b) If not, the category that contributes the most to the total
entropy value is destroyed (e.g. in Fig. 2, the darkest
rectangle will be removed if the training continues),
the vigilance threshold in µARTMAP is increased to be
slightly higher than the vigilance level of the category
destroyed, and the next epoch will be started. In the
learning phase of the next epoch, however, we present
to µARTMAP only the training patterns that chose the
destroyed category in the learning phase (rather than
offline evaluation phase) of this epoch or the previous
epochs. In the offline evaluation of the next epoch, we
still present all the patterns.

The nearest category (mentioned in Step 1) to an input
pattern I presented to µARTMAP is determined by finding the
category that maximizes the function:

T a
j (I, wa

j , α) =
|I ∧ wa

j |

α + |wa
j |

(2)

where |x| is the size of the vector x and it is defined to be the
sum of its components.

The above function is called the bottom-up input (or choice
function) pertaining to the Fa

2 layer node j with category
representation (template) equal to the vector wa

j , due to the
presentation of input pattern I. This function obviously depends



248 M. Zhong et al. / Neural Networks 20 (2007) 245–259
Fig. 2. µARTMAP Training results after 20 epochs on the circle-in-square
database. In the database, 1000 points are uniformly distributed in the square.
The points inside the circle (the circle has the same center as the square, and
its area is half of the area of the square) are labelled as class 1 and the points
outside the circle are labelled as class 2. Each rectangle, including the outermost
rectangle whose width and height are both very close to one, represents a
category in the network. The face colour of the rectangle represents the category
entropy in the offline evaluation (hoff

j ) at the end of the 20th epochs (a darker
face colour implies a higher entropy value for the data inside the rectangle).

on the µARTMAP parameter α, called choice parameter, which
assumes values in the interval (0, ∞). In most simulations
of ART architectures the useful range of α is the interval
(0, 10). The resonance of a category (also mentioned in Step 1)
is determined by the resonance test, which examines if the
vigilance ratio, defined below

ρ(I, wa
j ) =

|I ∧ wa
j |

Ma
(3)

satisfies the following condition:

ρ(I, wa
j ) ≥ ρa (4)

where the fuzzy min operation applied on two vectors x and y,
designated by x ∧ y, is a vector whose components are equal to
the minimum of the corresponding components of x and y.

If the above equation is satisfied we say that resonance is
achieved. The parameter ρa appearing in the above inequality
is called the vigilance parameter and assumes values in the
interval [0, 1]. For Fuzzy ARTMAP, this parameter is globally
applied to all categories. In µARTMAP, however, each category
has its own ρa parameter, which is initialized as the global
vigilance level when the category is committed and will not be
changed afterwards; the global vigilance level is never used in
the vigilance test, and it will not affect the existing categories’
ρa parameters even when it is raised according to (10). At the
beginning of training this parameter is set equal to a baseline
vigilance level, designated by ρ̄a , which assumes values in the
interval [0, 1], and is set by the user. After training commences
the vigilance level is allowed to change and become larger
than the baseline vigilance level, as categories in µARTMAP
are destroyed for being too entropic (see Step 2(b) of the
algorithm). Increased values of the vigilance level produce
more nodes in the category representation layer of µARTMAP.
If a chosen category j in µARTMAP passes the resonance
test then this category is allowed to encode the presented
input/associated label pair in the following manner:

wa
j = wa

j ∧ I, W ab
jk = W ab

jk + 1 (5)

where k = label(I). The update of the templates, illustrated by
the above equation, has been called fast-learning in the ART
literature.

If the category j is chosen and it resonates but it fails the
entropy test, that is, the entropy of this category is higher
than the allowable entropic threshold of a category, then this
category is reset, the changes in (5) are undone, and the
algorithm goes back to examine the rest of the categories to
identify a new winner that resonates. Note that in this case the
vigilance level is not increased and this is one of the differences
between µARTMAP and the Fuzzy ARTMAP algorithms. The
entropy of a category is defined by the following equation:

h j =
|Wab

j |

|Wab
|
entropy( j)

= −
|Wab

j |

|Wab
|

Nb∑
k=1

Wab
jk

|Wab
j |

log2

(
W ab

jk

|Wab
j |

)
(6)

where

|Wab
j | =

Nb∑
k=1

W ab
jk , |Wab

| =

Na∑
j=1

Nb∑
k=1

W ab
jk . (7)

In the above equations entropy( j) measures the entropy
of node j , and h j is the value of this entropy weighted
by the relative frequency with which this node has encoded
input/associated label pairs before. The level of this weighted
entropy of the node that µARTMAP allows is a µARTMAP
parameter value, denoted as hmax, and it is a value that has to
be defined by the user. By using the entropy test, µARTMAP
allows ρ̄a to be set small and large categories to be created as
long as they are pure enough. This mechanism makes it possible
to produce a network with very few categories and sufficient
accuracy.

In Safe µARTMAP, the winner category must also pass a
distance test if it is already committed:

|wa
j | − |I ∧ wa

j |

Ma
≤ δ (8)

where δ is also specified by the user, taking value from (0, 1 −

ρ̄a]. This test requires that the size change of the winner
category should not be too large due to a single pattern update.
If the winner category fails this test, no other categories will be
picked to learn this pattern at this point. Instead, this pattern
remains “unlearned”. After all patterns are presented (which
is called a pass), the unlearned patterns are presented again
in the next pass. This time the previous winner categories
may learn these patterns. If no pattern is learned in a whole
pass, an unlearned pattern will be picked and a new category



M. Zhong et al. / Neural Networks 20 (2007) 245–259 249
will be committed to learn this pattern; then all the other
unlearned patterns are presented in the next pass. The above is
repeated until all patterns are learned. In this way, the learning
phase of a single epoch may consist of many passes. This is
the only difference between Safe µARTMAP and the original
µARTMAP.

After the 1st epoch of training is completed we examine the
total entropy of the categories created. To do so we feed all the
training input patterns to the trained µARTMAP architecture
and we keep the count of how many times category j has been
chosen by a pattern in the training set whose corresponding
label is label k. In this cycle (referred to as offline evaluation
phase) a pattern chooses the category that receives the highest
bottom-up input. At the end of this processing cycle we
calculate a matrix Vab

= [V ab
jk ], where V ab

jk is the number
of patterns in class k that selects category j in the offline
evaluation. Although Vab is defined similarly as Wab, they
usually have different values because in the offline evaluation,
the input patterns might choose a different category than in the
one chosen in the learning phase, since new categories have
been created. The total entropy of the categories in µARTMAP
is now defined as:

H =

Na∑
j=1

hoff
j =

Na∑
j=1

−
|Vab

j |

|Vab
|

Nb∑
k=1

V ab
jk

|Vab
j |

log2

(
V ab

jk

|Vab
j |

)
. (9)

If the total entropy H is larger than a pre-specified (by
the user) threshold, designated as Hmax, then the total entropy
is considered to be too high and the category j with the
largest hoff

j is chosen, and destroyed. Then, the patterns that
chose this category as their representative category in the
learning phase of one of the previous epochs are presented
again to µARTMAP. The global vigilance parameter level is
increased to a value slightly higher than the vigilance ratio of
the destroyed category:

ρa = min

(
1,

|wa
j |

Ma
+ 1ρ

)
(10)

where the parameter 1ρ is chosen to be a small positive
constant. As mentioned before, this new vigilance level will
affect only the categories created in the next epoch (so that
the destroyed category cannot be created again); the existing
categories will keep their ρa values.

In the performance phase of µARTMAP, a test input is
presented to the input layer of µARTMAP and the node in
the category representation layer that receives the maximum
bottom-up input is chosen (say node j). No resonance test or
entropy test is performed. Then the predicted label for this test
input is chosen to be the label that most often node j has
been mapped to in µARTMAP’s training process. That is the
predicted label of this input is chosen to be the label k that
maximizes W ab

jk .

3. Discussion of Safe µARTMAP parameters

As we have mentioned above, Safe µARTMAP introduces
four new network parameters (e, hmax, Hmax, δ) that are
different than the typical set of ART parameters used in
ART networks. In the sequel, we elaborate on each one
of these new Safe µARTMAP’s parameters in an effort to
understand their functionality better. Furthermore, this analysis
will help us define the range of the parameter values hmax, Hmax
that someone needs to experiment with in order to find
the best performing Safe µARTMAP network for a specific
classification problem. At the end of this section we also revisit
the typical ART parameters (i.e., α, ρ̄a , 1ρ) and we state
what values for these parameters we have used in our Safe
µARTMAP experiments.

3.1. Discussion of parameter e

The choice parameter α in µARTMAP affects the
competition of the nodes, according to (2). It is desired that:
(1) if a point (representing an input pattern) is inside two hyper-

boxes (whose boundaries are defined by the corresponding
categories in the network), it should choose the smaller
hyper-box;

(2) if a point (representing an input pattern) is inside one hyper-
box, no matter how large the hyper-box is, and outside
another hyper-box, no matter how small this hyper-box is,
it should choose the former one.

Condition (1) simply requires α > 0. Condition (2) cannot
be satisfied if |wa

j | can be arbitrarily small (or the box can
be arbitrarily large). For the databases with input elements
normalized to [0, 1], no positive α value allows a box to cover
the whole input space (which means |wa

j | = |I ∧ wa
j | = 0)

and satisfy Condition (2) at the same time. The authors of
µARTMAP (personal communication with Gomez-Sanchez)
accounted for that by choosing the elements of every input
pattern, presented to µARTMAP, to lie in the interval [e, 1 − e]
instead of [0, 1]. In particular, µARTMAP algorithm requires
that:
(1)

α � min |wa
j | = 2Mae (11)

so that when a point is inside a hyper-box (represented by
the weight vector wa

j ), the corresponding T j is close to one
even if the hyper-box covers the whole input space.

(2)

e � 1 (12)

or otherwise the vigilance test would always pass when the
vigilance parameter ρa is small, since
|I ∧ wa

j |

|I|
≥

2Mae
Ma

= 2e.

It is interesting to observe that the introduction of e is equivalent
to redefining the fuzzy sum operand. Assume I is a pattern in
the database whose attributes are normalized to [e, 1 − e], and
let Ī denote the same pattern in the database normalized to [0,
1]. It can be easily shown that:

I = (1 − 2e)Ī + [e, e, e, . . . , e]
|I| = (1 − 2e)|Ī| + 2Mae
|I1 ∧ I2| = (1 − 2e)|Ī1 ∧ Ī2| + 2Mae.



250 M. Zhong et al. / Neural Networks 20 (2007) 245–259
Therefore, if we redefine the size operand, as articulated in
the above equations, for calculations pertinent to the category
representation layer (such as calculation of bottom-up inputs,
calculation of vigilance ratios, update of the template values),
there is no need of renormalizing the attributes to [e, 1 − e] as
long as they are already normalized to [0, 1]. This redefinition
of the size operand does not apply though to the calculation
of the size of the inter-ART weights Wab

j , Vab
j (i.e., |Wab

j | or
|Vab

j |); the old definition of the size operand is applicable to
these weights.

In our Safe µARTMAP experiments, the choice parameter α

is set to 0.01 and 0.001. Furthermore, the minimum Ma value
is equal to 2. Due to the above constraints, it turns out that
1/400 � e � 1. Hence, we set e to 0.05 in our µARTMAP
experiments. Our experiments have also shown (not elaborated
in this paper) that the µARTMAP network performance is not
sensitive to the values of α or e, as long as the constraints (11)
and (12) are satisfied.

3.2. Discussion of parameter Hmax

The parameter Hmax controls the impurity of the entire
µARTMAP network. It terminates the training process to
prevent over-training (its primary function is to prevent over-
training). Hmax has a direct effect on the final accuracy of
the µARTMAP network. Setting Hmax = 0 means that the
µARTMAP must have 100% accuracy on the training set in
the offline evaluation, which is usually impractical, and it does
not necessarily improve µARTMAP’s performance on unseen
data. In most cases, setting Hmax = 0 not only keeps the
training algorithm running for a long time (introduces extra
computational cost in the training phase), but also overfits
the network to the training set, which results in category
proliferation and reduction of the network’s predictive accuracy
on unseen data (generalization). On the other hand, setting
Hmax to a very high value will terminate the training iteration
too soon and result in low accuracy of predicting the labels of
the training set as well as the labels of unseen data.

Apparently, the proper Hmax value is problem-dependent.
Nevertheless, in the sequel we discuss a number of ways of
producing estimates for Hmax.

First, let Nb denote the number of classes (namely the
number of nodes in the output layer), and Â represent the
expected accuracy given by the user and assumed to lie in
the interval (1/Nb, 1]. If the theoretical optimal accuracy of a
problem is known, then Â is equal to this optimal accuracy.
Of course, Â is, quite often, unknown. However, guessing Â
(e.g., by using the information of how well other classifiers
have performed on this problem) is easier than guessing Hmax.
When the accuracy of the network on the training set reaches
Â, the network tends to have the best accuracy on unseen
patterns, as long as the training parameters are set properly
(see Appendix A). In Appendix A we demonstrate how we can
produce lower and upper bounds for the Hmax value, given an
estimate Â of this theoretical optimal accuracy that a classifier
can attain. These lower and upper bounds of Hmax are shown in
the following equations.

HL ≤ H ≤ HU

HL = −log2 Â

HU = − Â log2 Â − (1 − Â) log2
1 − Â
Nb − 1

.

(13)

In practice, both HL and HU can be far away from a
good Hmax value. In Appendix A, we provide examples of
classification problems that justify two other estimates (in
addition to HL and HU ) of a good value for Hmax. These
estimates are provided below, and denoted as HE1, and HE2.

HE1 =
(1 − Â)Nb log2 Nb

Nb − 1

HE2 = −
Nb(1 − Â) − (Nb − 1)p

1 − p
log2 p − log2 Â

(14)

where p ∈ [0, 1) is the solution to the equation 1−p
1−pNb

= Â.
In Section 4 we use these aforementioned entropy calculations
to produce specific parameter settings for Hmax used in our
experimentations with µARTMAP.

3.3. Discussion of parameter hmax

Parameter hmax controls the impurity of each node in the
µARTMAP network. Setting hmax = 0 means that all the
nodes must be completely pure when created or expanded
which suffers from the same shortcomings as choosing Hmax =

0 that have been discussed above. Setting hmax = ∞

means the entropy test always passes, which implies that
µARTMAP creates clusters of patterns without any regard for
their respective label.

Parameter hmax affects the training process mostly in the
first epoch. Beyond the first epoch, only the patterns learned
by the category that is removed in the previous epoch will
be presented. If these patterns are learned in exactly the same
order as in the last time, then the entropy test will always pass
no matter whether or not they go to a new category. This is
because when each one of these patterns is learned again, the
total number of learned patterns |Wab

| is no less than what it
was the last time the pattern was learned; also |Wab

j |entropy( j)
will never increase when a pattern is removed from category j ,
due to the concavity of the entropy function. However, if the
learning order is changed, due to the increased vigilance level,
the entropy test may fail, as shown in the next paragraph.

According to (6), it is difficult to estimate a good hmax value,
since |Wab

j |, the number of patterns learned by category j , is
not easy to predict. Moreover, h j is much more sensitive to the
order in which the patterns are presented than the total entropy
is during the offline evaluation phase. For example, suppose
there is only one category in the network, and the first four
patterns that µARTMAP learned have the class labels 1, 1, 1,
2, respectively (as in the order of the list presentation). The h j
values would be 0, 0, 0, 0.8113, after category j learns these
patterns. If we swap the second and the fourth patterns, then the
h j values would be 0, 1, 0.9183, 0.8113, after category j learns



M. Zhong et al. / Neural Networks 20 (2007) 245–259 251
these patterns. If we set hmax = 0.9, then category j would
learn all the four patterns in the first case (before swapping),
but it would not learn the pattern with class label 2 in the second
case (after swapping).

In our experiments, we take the proper value of hmax to be
proportional to the proper value of Hmax (if we assume that all
nodes have the same number of patterns, and that the patterns
always select the same node during the offline evaluation as
they do during the learning phase, then we can set hmax to be
equal to Hmax/Na). Since the optimal hmax/Hmax ratio might
be problem-dependent, it is very difficult to estimate this ratio
as we do for Hmax. In our experiments, we vary the ratio
hmax/Hmax in order to identify the best such ratio.

3.4. Discussion of parameter δ

Parameter δ controls the size change per pattern of each
category, according to (8). This parameter alleviates the
overlapping problem in µARTMAP and reduces the effect
of the network’s dependence on the order of training pattern
presentation. Small δ values mean that every time there is a
category size change in Safe µARTMAP this size change must
be small. Quite frequently, a small δ value will cause longer
training time because in each epoch, many patterns will be
placed back into the unlearned set for a number of consecutive
epochs. If δ = 0, then no category can increase its size, which
is equivalent to setting ρ̄a = 1. If δ ≥ 1− ρ̄a , then (8) is always
satisfied, and Safe µARTMAP reduces to µARTMAP. The
optimal δ value is also dependent on the distribution of patterns.
Although δ makes the algorithm less sensitive to the pattern list
order, the optimal value of δ depends on the distribution of the
data points more than the other network parameters do. The
parameter δ also depends on the number of training patterns
(i.e. if we increase the number of instances in the training set,
some categories can grow to larger size with the same δ value,
since now the training points are closer to each other).

3.5. Discussion of the other ART parameters (α, ρ̄a, 1ρ)

We have already talked about the choice parameter α, when
we elaborated on the µARTMAP parameter e. There we said
that in our experiments we chose two values for the choice
parameter, an α value of 0.01 and an α value of 0.001.

The baseline vigilance threshold ρ̄a can be initialized within
[0, 1]. Only in the first epoch does ρa explicitly depends on
ρ̄a . From the second epoch, ρa is determined by the size of the
most entropic node and 1ρ, according to (10). However, ρ̄a is
still important for µARTMAP since ρa ≥ ρ̄a in all epochs. If
we set ρ̄a = 0 µARTMAP allows an arbitrarily large hyper-box
to be created in the first epoch of training. On the other hand, if
we set ρ̄a = 1 µARTMAP allows only zero-sized hyper-boxes,
which means that every category in µARTMAP will represent
a single pattern. In our experiments, we varied ρ̄a within the set
{0, 0.2, 0.4, 0.6, 0.8}.

1ρ is introduced only to make sure that the most
entropic category cannot be created again after it is removed.
Apparently, 1ρ should not be set too large to avoid increasing
ρa too quickly. If 1ρ is too small, however, a category may be
created with entropy close to that of the removed category for
many consecutive epochs, which means that the total entropy
may be reduced in a slow manner resulting in increased training
times for µARTMAP. 1ρ is also difficult to estimate since
the size of the most entropic category in a certain epoch
is obviously dependent on the distribution of the patterns.
Fortunately, our experiments show that the performance of
µARTMAP is not sensitive to the value of 1ρ. Thus we fix 1ρ

as 0.02 (also the choice in the original µARTMAP paper).

4. Experiments

We have performed a number of experiments with Safe
µARTMAP. The purpose of these experiments was two-
fold: First to compare Safe µARTMAP performance with the
performance of other ART classifiers in the literature, including
ART classifiers that claimed that they have addressed the
category proliferation problem in Fuzzy ARTMAP. Secondly,
to identify “optimal” settings of the network parameters in
Safe µARTMAP, independently of the dataset, so that we can
avoid the extensive experimentation required to identify a good
set of parameters when Safe µARTMAP is confronted with a
classification problem.

For the first part of our experiments, we have compared Safe
µARTMAP with Fuzzy ARTMAP (FAM) (Carpenter et al.,
1992) and Ellipsoidal ARTMAP (EAM) (Anagnostopoulos &
Georgiopoulos, 2001; Anagnostopoulos, 2001). EAM is similar
with FAM, except of the fact that EAM covers the input space
with ellipsoids instead of hyper-boxes. Furthermore, we have
compared Safe µARTMAP with the semi-supervised versions
of FAM and EAM denoted ssFAM and ssEAM, respectively.
The idea of semi-supervision is discussed in Anagnostopoulos
et al. (2003, 2002), and in Verzi et al. (2001) (without referring
to it as semi-supervision). Semi-supervision is a term referring
to the fact that in the respective ART architectures categories
are allowed to encode patterns that belong to different labels,
provided that a certain threshold of mixture of labels is not
exceeded. Finally, we have compared Safe µARTMAP with
Gaussian ARTMAP (GAM), distributed Gaussian ARTMAP
(dGAM), and their semi-supervised versions, called ssGAM
and ssdGAM. Note that distributed Gaussian ARTMAP
corresponds to the ART network that is referred to as Gaussian
ARTMAP, by its originator Williamson (1996); the word
distributed refers to the fact in the performance phase more than
one node in the category representation layer of the Gaussian
ARTMAP is activated to predict the label of the presented input
pattern. We kept the name Gaussian ARTMAP for a Gaussian
ARTMAP network which activates only the winning node in its
performance phase.

In the sequel, we report results from both of these sets of
experiments.

4.1. Databases

We experimented with both artificial and real databases. The
specifics of these databases are given in Table 1.



252 M. Zhong et al. / Neural Networks 20 (2007) 245–259
Table 1
Databases used in the ARTMAP experiments

Database
name

# Training
instances

# Validation
instances

# Test
instances

# Numerical
attributes

# Classes
(Nb)

Major class proportion
(A0)

Expected accuracy ( Â)

1 G2c-05 500 5000 5000 2 2 1/2 0.95
2 G2c-15 500 5000 5000 2 2 1/2 0.85
3 G2c-25 500 5000 5000 2 2 1/2 0.75
4 G2c-40 500 5000 5000 2 2 1/2 0.6
5 G4c-05 500 5000 5000 2 4 1/4 0.95
6 G4c-15 500 5000 5000 2 4 1/4 0.85
7 G4c-25 500 5000 5000 2 4 1/4 0.75
8 G4c-40 500 5000 5000 2 4 1/4 0.6
9 G6c-05 504 5004 5004 2 6 1/6 0.95

10 G6c-15 504 5004 5004 2 6 1/6 0.85
11 G6c-25 504 5004 5004 2 6 1/6 0.75
12 G6c-40 504 5004 5004 2 6 1/6 0.6
13 MOD-

IRIS
500 4800 4800 2 2 1/2 0.95

14 ABALONE 501 1838 1838 7 3 1/3 0.6
15 PAGE 500 2486 2487 10 5 0.832 0.95
(a) Gaussian Databases (G#c-##)
These are artificial databases, where we created 2-

dimensional data, Gaussianly distributed, belonging to
2-class, 4-class, and 6-class problems. In each one of
these databases we varied the amount of overlap of data
belonging to different classes. In particular, we considered
5%, 15%, 25%, and 40% overlap. Note that 5% overlap
means the optimal Bayesian Classifier would have 5%
misclassification rate on the Gaussianly distributed data.
There are a total of 3 × 4 = 12 Gaussian databases. We
name the databases as “G#c-##” where the first number is
the number of classes and the second number is the class
overlap. For example, G2c-05 means the Gaussian database
is a 2-class and 5% overlap database.

(b) Modified Iris Database (MOD-IRIS)
In this database we started from the IRIS dataset

(Hettich, Blake, & Merz, 1998) of the 150-point 3-class
problem. We eliminated the data corresponding to the class
that is linearly separable from the others. Thus we ended up
with 100 data-points. From the four input attributes of this
IRIS dataset we focused on only two attributes (attribute
3 and 4) because they seem to have enough discriminatory
power to separate the 2-class data. Finally, in order to create
a reasonable size of dataset from these 100 points (so we
can reliably perform cross-validation to identify the optimal
Safe µARTMAP parameters) we created noisy data around
each one of these 100 data-points (the noise was Gaussian
of zero mean and small variance) to end up with additional
10,000 points. We named this database Modified Iris.

(c) Modified Abalone Database (ABALONE)
This database is originally used for prediction of the

age of an abalone (Hettich et al., 1998). It contains
4177 instances, each with seven numerical attributes, one
categorical attribute, and one numerical target output (age).
We discarded the categorical attribute in our experiments,
and grouped the target output values into three classes: eight
and lower (class 1), 9–10 (class 2), 11 and greater (class 3).
This grouping of output values has been reported in the
literature before.
(d) Page Blocks Database (PAGE)
This database represents the problem of classifying the

blocks of the page layout in a document (Hettich et al.,
1998). One of the noteworthy points about this database
is that its major class has a high probability of occurring
(above 80%).

The data in each one of the above databases were split into
a training set, a validation set and a test set. The percentage of
classes in each one of these subsets resembled the percentage
of classes in the original dataset. The summarized specifics of
each one of these databases are depicted in Table 1. The training
set was used to train the ART networks, the validation test was
used to assess the performance of the ART networks for various
settings of their parameter values, and the test set was used to
report the performance of the “best performing” networks.

4.2. Parameter settings

For each database, we simulated Safe µARTMAP with the
following settings for parameter Hmax:

Hmax = {H1, H2, H3, H4, H5}

H1 =
1
2
(HL + H2)

H2 = min{HE1, HE2}

H3 =
1
2
(HE1 + HE2)

H4 = max{HE1, HE2}

H5 =

{
HU , HU > H4
2HU − H3, HU = H4.

The selection of the candidate values of Hmax is actually
difficult, because given the expected accuracy, we can only
find out the possible range of H , and the actual entropy can
be any value in that range, depending on the distribution of
the data. Therefore, we have decided to experiment with some
typical values for Hmax: we know that HL , the lower bound
of H , always causes over-training, and thus we set H1, as the



M. Zhong et al. / Neural Networks 20 (2007) 245–259 253
smallest candidate value for Hmax, to be equal to (HL + H2)/2.
The typical estimates, HE1, HE2, do not have a deterministic
relative order (which means that one can be greater or less than
the other). So, we introduced three candidate values H2, H3, H4
dependent on HE1, HE2, and shown above. Finally, knowing
that H4 can be equal to HU , the upper bound of Hmax, we
define the last candidate value for Hmax as always greater than
H4 to avoid experimentation with the same parameter values.
Note that HU is defined as the analytical upper bound given
that the training accuracy equals the expected one. If we allow
the training accuracy to fall below the expected one, H can be
larger than HU . We know that even when the training accuracy
is below 80%, the test accuracy could be greater than 80% (see
Fig. 3).

The settings for the rest of the Safe µARTMAP parameters
(hmax, ρ̄a, 1ρ, α, δ, and e) are provided below. The reasoning
for these settings was provided in Section 3.

hmax =

{
0,

1
4

Hmax,
1
2

Hmax, Hmax, 2Hmax, ∞

}
ρ̄a =

{
0,

1
5
,

2
5
,

3
5
,

4
5

}
1ρ = 0.02
α = {0.001, 0.01}

δ =

{
1
25

(1 − ρ̄a),
1
5
(1 − ρ̄a), (1 − ρ̄a)

}
e = 0.05
Max number of epochs = 100.

We experimented with all the combinations of the above
parameters, which amounted to 5 × 6 × 5 × 2 × 3 = 900
combinations.

For the other ARTMAP architectures (see Chalasani (2005)),
similar grid tests were performed, where the parameters were
chosen from the combinations of the following values:

ρ̄a = {0, 0.1, 0.2, . . . , 0.9}

α = {0.001, 0.01}

µ = {0, 0.1, 0.2, . . . , 1}

D =

√
Ma/µ (for EAM and ssEAM)

ε = {0, 0.1, 0.2, . . . , 1}

(for semi-supervised ARTMAPs)
γ = {0.1, 0.2, . . . , 1}

(for GAM ssGAM, dGAM, and ssdGAM)
Max number of epochs = 100.

4.3. Experimental procedure — experimental results

As we have emphasized above, our experiments were
divided into two parts.

In the first part, we compared Safe µARTMAP with other
ARTMAP classifiers — Fuzzy ARTMAP (Carpenter et al.,
1992), Ellipsoidal ARTMAP (Anagnostopoulos & Georgiopou-
los, 2001; Anagnostopoulos, 2001), Gaussian ARTMAP and
distributed Gaussian ARTMAP (Williamson, 1996), and their
semi-supervised versions (Anagnostopoulos et al., 2003, 2002).
The results of the other ARTMAP classifiers are obtained from
Chalasani (2005).

For each database, we evaluated all the possible parameter
combinations of Safe µARTMAP for a 100 different orders
of the pattern list presentation (the performance of Safe
µARTMAP depends on the order according to which patterns
are presented in the training set). The 100 orders were fixed
in all experiments and are exactly the same as those used to
test the other ART algorithms (Fuzzy ARTMAP, Ellipsoidal
ARTMAP, etc.) Therefore, for each database, we trained 900
× 100 = 90,000 Safe µARTMAP networks; we picked the
network maximizing the following score:

score =
A − A0

Â − A0
0.9(Na/5Nb)2

(15)

where A is the accuracy of the trained ART network on the
validation set, Na is the number of categories formed in the
training phase of Safe µARTMAP, and A0, Â, and Nb are given
in Table 1.

As can be seen, the score function is chosen so that its value
does not change significantly for small values of the network
size, Na (when Na is small, ∂score/∂ Na ≈ 0, which means
that when the size of the network is small enough, its effect on
the score is not significant). Furthermore, the score is chosen
such that as Na increases its value decreases (thus penalizing
networks of large size). On the other hand, the relationship
between score and network accuracy is linear.

The comparisons of Safe µARTMAP and the rest of the ART
networks are depicted in Table 2. In Table 2, the first column
is the index of the database that we are experimenting with.
The second column is the actual databases name, as reported
in earlier sections. Columns 3–11 of Table 2 contain the
performance of the designated ART networks. The performance
reported includes the accuracy on the test set and the number of
categories created of the designated ART network that attained
the highest value of score (this value was computed based on
the accuracy of the network on the cross-validation set (the A
value), and on the size of the network created (the Navalue)).
According to Table 2 we can make some general statements.
For one, Safe µARTMAP tends to yield a small network with
high accuracy. Second, the size Safe µARTMAP compares very
favorably (is smaller in most instances) than the size of every
other ART network that we compared it to, especially with
respect to the FAM, EAM, and dGAM. Third, the accuracy
of Safe µARTMAP compares favorably with the accuracy of
all the other ART networks that it is compared to; only some
of the Gaussian networks seem to have an advantage over
Safe µARTMAP for the database problems where the data are
Gaussianly distributed, and for these type of problems Gaussian
networks seem to be having an advantage over all the other ART
networks. Finally, the two other ART networks that seem to be
producing as good results as Safe µARTMAP are ssEAM and
ssdGAM.

In the second part of our experiments, we elaborated on the
search of the optimal parameter settings for Safe µARTMAP.
We examined the parameters of the best networks using only



254 M. Zhong et al. / Neural Networks 20 (2007) 245–259
Table 2
Best performance of all ART algorithms

Database
name

Safe µAM FAM ssFAM EAM ssEAM GAM ssGAM dGAM ssdGAM

1 G2c-05 95.22 2 90.80 14 94.90 2 91.72 26 94.94 2 94.06 4 94.48 4 95.22 4 95.22 2
2 G2c-15 85.00 2 77.68 47 84.80 3 77.88 79 85.20 2 84.86 6 85.04 2 84.76 8 85.02 2
3 G2c-25 74.98 2 64.36 75 74.60 2 65.06 123 74.50 2 74.88 6 75.10 2 74.90 7 75.10 2
4 G2c-40 61.40 3 53.84 110 61.34 3 53.58 177 60.98 2 59.64 12 61.30 3 60.30 9 61.32 3
5 G4c-05 95.04 4 92.84 21 94.10 7 92.96 24 94.14 4 94.84 10 94.80 4 94.84 10 94.80 4
6 G4c-15 83.28 4 77.52 55 81.40 11 78.12 76 83.20 4 84.00 18 84.24 9 84.00 18 84.20 9
7 G4c-25 74.50 4 67.06 101 70.80 9 66.58 110 72.72 4 73.74 49 72.32 21 74.60 46 74.96 35
8 G4c-40 59.76 5 48.52 127 58.48 14 49.58 161 55.62 13 58.08 36 59.10 14 58.92 36 59.40 14
9 G6c-05 93.57 9 91.85 26 91.42 11 92.30 23 93.80 7 94.49 12 94.40 8 94.68 13 94.84 6

10 G6c-15 80.92 6 76.23 58 81.11 7 76.09 85 81.80 6 84.67 19 84.35 13 85.03 19 83.87 11
11 G6c-25 70.74 13 66.66 87 69.62 15 63.74 124 71.10 7 73.24 30 72.86 20 73.65 32 73.22 20
12 G6c-40 58.03 11 51.40 196 56.35 17 50.69 193 54.21 17 58.51 70 55.65 13 59.03 70 55.50 13
13 MOD-IRIS 94.92 2 91.93 23 93.41 8 93.37 28 94.54 2 94.50 4 94.54 2 94.52 4 94.54 2
14 ABALONE 57.18 4 46.40 29 59.52 6 46.24 86 56.80 7 45.87 12 55.10 3 46.13 12 55.10 3
15 PAGE 88.82 6 83.27 10 90.63 3 76.71 34 89.54 3 85.52 9 89.34 5 85.52 9 89.34 5

µAM: Safe µARTMAP; FAM: Fuzzy ARTMAP; EAM: Ellipsoidal ARTMAP; GAM: Gaussian ARTMAP; dGAM: Distributed Gaussian ARTMAP; ss∗: semi-
supervised version.
the Gaussian databases (for which we know the exact value
of Â). For each parameter combination and each Gaussian
database, we set the score of the parameter combination as
the maximum score of the 100 networks trained with that
parameter combination (these 100 networks correspond to
the 100 different orders of the training patterns during Safe
µARTMAP’s training). We use the maximum score instead of
the average score because the orders also affect the network
performance; there is no parameter setting that is good for all
orders. Then, for every parameter combination we have 12 of
these maximum scores (one maximum score for each of the
12 Gaussian datasets). We sum up these 12 maximum score
numbers for every parameter combination, and then we rank
these sums from highest to lowest. The five highest of these
sums of maximum scores point us to the five default Safe
µARTMAP parameter settings that can be used to experiment
with any database of interest. To verify our claim, that the
thus chosen 5 sets of default parameter values are good sets
of parameters to experiment with, we are showing (in Table 3)
Safe µARTMAP’s performance (number of categories and
accuracy on the test set) for the best Safe µARTMAP parameter
values (set of columns designated as “Best in CV” in the
table; note that “best in cross-validation” might not be “best
on test set” although they are very close to each other) and
for the five default parameter values that were identified from
our experimentation of the Gaussian datasets, and explained
above. The results reported in Table 3, and referred to as “Best
in CV” correspond to the µARTMAP parameter settings and
order of pattern presentation that attained the highest value of
score for this database only. The results reported in Table 3
for the default parameter settings correspond to the order of
pattern that attained the highest score. Each performance cell
in Table 3 is made up of three numbers: the accuracy on the test
set in percentage, the number of categories, and the number of
epochs spent on training. An obvious observation from Table 3
is that the default parameters produce good results, compared
to the best parameter setting. Second, the number of categories
corresponding to the 5 default parameter settings, although not
coinciding with the Best number of categories, have values that
are close to the latter.

It is important to state, once more, that the identification
of good, default parameter values for Safe µARTMAP is
experimenting with Hmax, hmax, ρ̄a, α, δ, and the order of
training pattern presentation and this someone were to choose
5, 6, 5, 2, 3, and 100 distinct values for these parameters
one would end up with the formidable task of training Safe
µARTMAP 90,000 times for each problem (as we did in this
paper). Instead by using default values for Hmax, hmax, ρ̄a, α we
would require to train Safe µARTMAP 3 (for δ) times 100 (for
order of pattern presentations) times, or equivalently 300 times,
which is a significant reduction in computational complexity to
come up with a good performing Safe µARTMAP network.

Relying on the results reported in Table 3, we identified the
following values as good default values to experiment with Safe
µARTMAP for any classification problem. It is worth noting
that these values are valid only if one allows Safe µARTMAP to
train for reasonably large number of epochs (in our experiments
we allowed Safe µARTMAP to train for up to 100 number of
epochs).

Hmax = H4, hmax = ∞, ρ̄a = 0, α = 0.001. (16)

We do not report a good default value for δ because its value
depends on the size of the training set (and the relationship
is not clear yet). Nevertheless the value of δ is constrained
in the interval [0, 1 − ρ̄a]. Furthermore, from experimental
observations we can state that as the size of the training set
increases good default values for δ decrease. We are confident
for the value of Hmax since all the five default parameter
combinations have this value (in fact, the best 65 combinations
have this value). This result is not surprising, since H4 is a good
estimate of the entropy without over-training. The parameter
settings ρ̄a = 0 and α = 0.001 imply that we should allow
a category to be very large in the first epoch, which is one



M. Zhong et al. / Neural Networks 20 (2007) 245–259 255
Table 3
Best parameter combinations

Rank Best in CV 1 2 3 4 5

Hmax – H4 H4 H4 H4 H4
hmax/Hmax – ∞ ∞ 1 ∞ ∞

ρ̄a – 0.4 0 0.2 0 0.2
α – 0.001 0.01 0.001 0.001 0.001
δ/(1 − ρ̄a) – 0.2 0.2 0.2 1 1

G2c-05 95.22 2 1 95.16 2 14 95.14 2 4 95.20 2 1 95.20 3 10 95.20 3 10
G2c-15 85.00 2 1 85.06 2 4 84.98 3 15 85.06 2 1 85.24 2 27 85.24 2 27
G2c-25 74.98 2 1 74.96 2 16 74.96 3 18 74.18 2 1 75.02 3 8 75.02 3 8
G2c-40 61.40 3 1 61.54 4 8 61.34 4 18 61.44 3 10 61.32 4 32 61.32 4 32
G4c-05 95.04 4 22 94.82 4 25 94.36 6 50 94.64 4 1 94.46 6 48 94.46 6 48
G4c-15 83.28 4 20 81.74 6 44 84.18 7 65 83.58 9 82 83.64 9 61 83.64 9 61
G4c-25 74.50 4 44 74.78 5 37 75.06 6 52 75.06 4 48 75.02 6 49 75.02 6 49
G4c-40 59.76 5 39 59.26 4 52 59.76 5 39 58.84 5 41 59.72 7 37 59.72 7 37
G6c-05 93.57 9 9 93.09 10 85 91.87 9 74 93.23 10 58 93.53 13 93 93.53 13 93
G6c-15 80.92 6 1 81.18 12 100 81.87 13 100 81.16 14 76 82.27 12 100 82.27 12 100
G6c-25 70.74 13 88 71.18 13 83 69.54 14 85 69.76 11 100 69.16 13 90 69.16 13 90
G6c-40 58.03 11 100 56.77 16 100 56.45 13 81 56.41 13 100 56.30 14 77 56.30 14 77
MOD-IRIS 94.92 2 2 94.92 4 10 95.15 4 19 94.92 4 16 94.63 3 10 94.63 3 12
ABALONE 57.18 4 4 55.06 2 2 54.08 2 4 54.52 3 2 53.59 2 6 53.59 2 6
PAGE 88.82 6 17 88.34 5 10 92.32 5 24 89.14 8 35 89.75 4 11 89.75 4 11
of the beneficial features of Safe µARTMAP as mentioned in
Section 2.

Although the optimal value of hmax seems unexpected, it
can be explained as follows. This value allows a category to
be very impure and tends to result in many more epochs of
training because many impure categories must be removed in
the future. In the first epoch, large categories will be created
due to the small ρ̄a value. In only a few epochs, the size of the
categories will be almost entirely controlled by ρa . The number
of categories will be very small at the beginning of training
and it will grow slowly afterwards, until the total entropy is no
smaller than Hmax. Therefore, through this training process, the
minimum number of categories may be achieved. Of course,
sufficient epochs of training must be allowed, or otherwise
the training process would be terminated prematurely and the
network performance would be even worse than when hmax =

0. In contrast, setting hmax = 0 will cause a large number of
categories to be created in the first epoch, including many trivial
categories. In this case, the training process may be completed
in only one epoch, resulting in a Safe µARTMAP network that
may still be over-trained, exhibiting poor generalization.

5. Conclusions

Safe µARTMAP is one of the recently introduced ARTMAP
architectures, which can produce small size classifiers with high
accuracy. Safe µARTMAP effectively addresses the category
proliferation problem in Fuzzy ARTMAP. One of the important
issues in using Safe µARTMAP is the correct selection of its
many parameters.

In this paper, we have studied the effect of these Safe
µARTMAP parameters, both theoretically and experimentally.
Furthermore, we have identified a procedure that allowed us
to define good default Safe µARTMAP parameter values,
independently of the database used, despite the obvious fact
that the best Safe µARTMAP parameter values are database
dependent. Even in case our default values are not good
enough, they can serve as a starting point for further or finer
search. In any case, this is a significant simplification for
anyone experimenting with Safe µARTMAP on new datasets,
especially when the datasets are large and training a single
Safe µARTMAP network is costly. Furthermore, it is also very
beneficial in cases when the dataset is small and expensive
cross-validation procedures (e.g. one-hold-out cross-validation)
are used to identify good network parameter settings.

In this paper, we have also compared the performance
of Safe µARTMAP with a number of other ART classifiers,
including the ones that have been reported in the literature and
claim that they also address the category proliferation problem
in Fuzzy ARTMAP. The result from this experimentation is
that Safe µARTMAP outperforms Fuzzy ARTMAP (FAM),
Ellipsoidal ARTMAP (EAM), and Gaussian ARTMAP (GAM),
and it exhibits comparable performance with semi-supervised
EAM and distributed GAM.

Finally, it is worth pointing out that our performance
comparison of various ART algorithms and the identification
of good, default parameter values for Safe µARTMAP relied
on a performance measure (score) that takes into consideration
both the accuracy of the network on a cross-validation set and
the size of the network that training creates. Despite its obvious
benefits this is an approach that has not been quantified in the
ART literature.

Acknowledgments

This work was supported in part by a National Science Foun-
dation (NSF) grant CRCD: 0203446, and the National Founda-
tion grant DUE 05254209. Georgios C. Anagnostopoulos and
Michael Georgiopoulos acknowledge the partial support from



256 M. Zhong et al. / Neural Networks 20 (2007) 245–259
the NSF grant CCLI 0341601. We would also like to acknowl-
edge the help from Dr. Eduardo Gomez-Sanchez who provided
us information about some of the subtle details pertaining to
Safe µARTMAP.

Appendix A. Estimates of Hmax

A.1. Preliminaries

Assume the expected accuracy Â is given and 1/Nb < Â ≤

1. Before we study the relationship between Hmax and Â, we
have to define four accuracies: the accuracy on the training set
produced by using the entries of the Wab matrix (designated by
ATrain

W ), the accuracy on the training set produced by using the
entries of the Vab matrix (designated by ATrain

V ), the accuracy
on the validation set produced by using the entries of the Wab

matrix (designated by AVal
W ), and the accuracy on the test set

produced by using the entries of the Wab matrix (designated by
ATest

W ). After training, only the Wab matrix is used to produce
the classification results. For this reason, we do not examine
the accuracy on the validation/test set using the entries of the
Vab matrix; we examine ATrain

V because the total entropy H is
computed based on the entries of the Vab matrix instead of the
entries of the Wab matrix.

It is a well-known result that when the accuracy on the
training set is increased too much, the accuracy on the test set
will drop since the network is over-trained. Here we do not
consider the case where the database is so small that the training
set might not be representative. In Figs. 3 and 4 we show the
relationships between these accuracies for the 2-class Gaussian
dataset problems (similar plots are valid for the other Gaussian
problems). In particular, Fig. 3 shows the relationship between
ATrain

V and ATest
W . Furthermore, Fig. 4 shows the relationship

between AVal
W and ATest

W . Some of the observations that can be
extracted from these two figures are provided below.

(1) When ATrain
V < Â, max ATest

W (the ATest
W value of the network

with the best parameter settings) increases with ATrain
V and

ATrain
V < max ATest

W < Â; when ATrain
V = Â, max ATest

W ≈

Â; when ATrain
V > Â, max ATest

W decreases with ATrain
V and

max ATest
W < Â.

(2) ATest
W ≈ AVal

W . This is reasonable since both the test set
and the validation set are unseen by the network, and they
represent the same problem.

It is clear that the training algorithm should be terminated when
ATrain

V reaches Â.

A.2. Theoretical upper bound

Next, we try to estimate H given that ATrain
V = Â. In the

following part, we find the maximum and the minimum of H .

Let p j =
|Vab

j |

|Vab
|

and p jk =
Vab

jk

|Vab
j |

. The accuracy of node j on the

training set produced by using the entries of matrix Vab can be
Fig. 3. Accuracy on test set versus accuracy on training set.

Fig. 4. Accuracy on test set versus accuracy on validation set.

expressed as A j = maxk p jk . The maximum problem can be
described as:

Maximize H = −

Na∑
j=1

(
p j

Nb∑
k=1

p jk log2 p jk

)
.

Subject to
Na∑
j=1

p j = 1

Nb∑
k=1

p jk = 1 for j = 1, 2, . . . Na

Na∑
j=1

(p j max
k

p jk) = Â

0 ≤ p j ≤ 1 for j = 1, 2, . . . Na
0 ≤ p jk ≤ 1 for all j and all k.

To simplify the problem, we can first maximize the entropy
of each node given A j by adjusting p jk , and then maximize
H by adjusting p j and A j (and Na , if necessary). Without
loss of generality, we can assume p j1 = maxk p jk = A j
for all j . Since the function f (x) = −x log2 x is strictly

concave in the interval (0, +∞),
∑Nb

k=2 f (p jk )

Nb−1 ≤ f (

∑Nb
k=2 p jk
Nb−1 ),

i.e., −
∑Nb

k=1 p jk log2 p jk ≤ −(1−A j ) log2
1−A j
Nb−1 . The equality



M. Zhong et al. / Neural Networks 20 (2007) 245–259 257
holds if and only if p j2 = p j3 = · · · = p jk =
1−A j
Nb−1 . In this

case, we can simplify H as:

H = −

Na∑
j=1

p j

[
A j log2 A j + (1 − A j ) log2

1 − A j

Nb − 1

]

= −

Na∑
j=1

p j [A j log2 A j + (1 − A j ) log2(1 − A j )]

+

Na∑
j=1

p j (1 − A j ) log2(Nb − 1)

= −

Na∑
j=1

p j [A j log2 A j + (1 − A j ) log2(1 − A j )]

+ (1 − Â) log2(Nb − 1)

Therefore, the problem reduces to:

Maximize H = −

Na∑
j=1

p j [A j log2 A j + (1 − A j )

× log2(1 − A j )] + (1 − Â) log2(Nb − 1).

Subject to
Na∑
j=1

p j = 1

Na∑
j=1

p j A j = Â

0 ≤ p j ≤ 1 for j = 1, 2, . . . Na
1

Nb
≤ A j ≤ 1 for j = 1, 2, . . . Na .

Using again the concavity of f (x) = −x log2 x , we have:

Na∑
j=1

p j f (A j ) ≤ f

(
Na∑
j=1

p j A j

)
,

Na∑
j=1

p j f (1 − A j ) ≤ f

(
Na∑
j=1

p j (1 − A j )

)
which means

H ≤ − Â log2 Â − (1 − Â) log2(1 − Â) + (1 − Â)

× log2(Nb − 1).

The equality holds if and only if A j = Â for all j . Thus, we
get the following theoretical upper bound for H :

HU = − Â log2 Â − (1 − Â) log2
1 − Â
Nb − 1

.

A.3. Theoretical lower bound

Following the same approach used to derive the theoretical
upper bound for H , we can extract the theoretical lower bound
for H . We first minimize −

∑Nb
k=1 p jk log2 p jk subject to A j =

p j1 ≥ p j2 ≥ p j3 = · · · = p jk ≥ 0 and
∑Nb

k=1 p jk = 1. Based
on the concavity of the function f (x) = −x log2 x , we know
that −

∑Nb
k=1 p jk log2 p jk is minimized when p j1 = p j2 · · · =
p jn = A j and p jn+1 = 1 − n A j , where n = b1/A jc. If two
p jk1 and p jk2 are less than A j , we can construct an example
with p′

jk1 = min(A j , p jk1 + p jk2) and p′

jk2 = p jk1 + p jk2 −

p′

jk1 which leads to lower entropy. Therefore, the minimum of

−
∑Nb

k=1 p jk log2 p jk is −n A j log2 A j − (1 − n A j ) log2(1 −

n A j ). The floor function in the expression of n, however, makes
our analysis somehow difficult since it is not continuous. Note
that −n A j log2 A j − (1 − n A j ) log2(1 − n A j ) ≥ −log2 A j
(the equality holds if and only if 1/A j is an integer). We use
−log2 A j as the lower bound for convenience. The problem
becomes:

Minimize H = −

Na∑
j=1

p j log2 A j .

Subject to
Na∑
j=1

p j = 1

Na∑
j=1

p j A j = Â

0 ≤ p j ≤ 1 for j = 1, 2, . . . Na
1

Nb
≤ A j ≤ 1 for j = 1, 2, . . . Na .

The function g(x) = −log2 x is strictly convex in the
interval (0, +∞). Hence,

H =

Na∑
j=1

p j g(A j ) ≥ g

(
Na∑
j=1

p j A j

)
= g( Â) = −log2 Â,

where the equality holds if and only if A j = Â for all j . We,
therefore, obtain the theoretical lower bound of H :

HL = −log2 Â.

A.4. Typical case 1

In most cases, both the theoretical upper bound and lower
bound are far from the actual value of H , since they require
that many constraints must be met, as shown above. Here we
just consider two typical cases to estimate H .

In the first case, the accuracies of all the categories are either
1 or 1

Nb
. Thus,

H = −

K∑
j=1

p j log2 Nb

Na∑
j=1

p j = 1

K∑
j=1

p j
1

Nb
+

Nb∑
j=K+1

p j = Â.

It is not difficult to solve the above equations and find the
corresponding H value. We denote the resulting H value by
HE1 and we are providing it below.

HE1 =
Nb(1 − Â)

Nb − 1
log2 Nb.



258 M. Zhong et al. / Neural Networks 20 (2007) 245–259
A.5. Typical case 2

In the second case, A j = Â for all j , and p jk = pk−1 Â,
where p is a constant in the interval [0, 1) (it cannot be one
because Â > 1

Nb
) and satisfies

∑Na
k=1 p jk = 1, i.e., 1−p

1−pNb
= Â.

This means all the class fractions make a geometric progress.
Solving for p is not difficult: when 2 ≤ Nb ≤ 5, we can
solve this equation analytically; when Nb > 5 and Â ≥ 0.5,
p ≈ 1 − Â; when Nb > 5 and Â < 0.5, we can solve the
equation numerically, which is not difficult since

∑Nb
k=1 pk−1 is

monotonically increasing in p.
In this case, the resulting H value, designated by HE2, can

be computed as follows:

HE2 = −

Nb∑
k=1

pk−1 Â log2(pk−1 Â)

= −

Nb−1∑
i=0

pi Â log2(pi Â)

= −

Nb−1∑
i=0

pi Â(i log2 p + log2 Â)

= − Â(log2 p)

Nb−1∑
i=0

i pi
− Â(log2 Â)

Nb−1∑
i=0

pi

= − Â(log2 p)
p − Nb pNb + (Nb − 1)pNb+1

(1 − p)2

− Â(log2 Â)
1 − pNb

1 − p
.

Since 1−p
1−pNb

= Â, pNb = 1 −
1−p

Â
, it is not difficult to

simplify the above expression to obtain:

HE2 = −
Nb(1 − Â) − (Nb − 1)p

1 − p
log2 p − log2 Â.

A.6. Relationship among the estimates

Based on our aforementioned arguments we obtained four
estimates for H , repeated below:

HU = − Â log2 Â − (1 − Â) log2
1 − Â
Nb − 1

HE1 =
Nb(1 − Â)

Nb − 1
log2 Nb

HE2 = − Â(log2 p)

Nb−1∑
i=0

i pi
− log2 Â

= −
Nb(1 − Â) − (Nb − 1)p

1 − p
log2 p − log2 Â

HL = −log2 Â.

It is not difficult to prove the following:

(1) HU , HE1, HE2, HL are all decreasing functions of Â. When
Â =

1
Nb

or Â = 1, HU = HE1 = HE2 = HL ; when
Nb = 2, HE2 = HU . In all other cases, HU > HE1 > HL
and HU > HE2 > HL .
Fig. 5. Four typical H values with Nb = 4.

Fig. 6. Four typical H values with Â = 0.75.

(2) HE2 is an increasing function of Nb. When Nb = 2,
HE2 = H0, where H0 = − Â log2 Â − (1 − Â) log2(1 − Â).
limNb→∞ HE2 =

1
Â

H0.
(3) HE1 is an increasing function of Nb. When Nb = 2,

HE1 ≤ H0 (the equality holds iff Â = 0.5 or Â = 1);
limNb→∞ HE1 is unbounded.

(4) HU is an increasing function of Nb. When Nb = 2, HU =

H0; when Nb = 2H0 + 1, HU =
1
Â

H0; limNb→∞ HU is
unbounded.

The aforementioned H values (i.e., HL , HU , HE1, HE2) are
plotted with respect to Nb and Â in Figs. 5 and 6, as Â varies
and Nb is fixed (Fig. 5), and as Nb varies and Â is kept fixed
(Fig. 6).

References

Anagnostopoulos, G. C., Bharadwaj, M., Georgiopoulos, M., Verzi, S. J., &
Heileman, G. L. (2003). Exemplar-based pattern recognition via semi-
supervised learning. In Proc. of the international joint conference on neural
networks: Vol. 4 (pp. 2782–2787).

Anagnostopoulos, G. C., & Georgiopoulos, M. (2001). Ellipsoid ART
and ARTMAP for incremental clustering and classification. In Proc.
of the IEEE-INNS international joint conference on neural networks
(pp. 1221–1226).



M. Zhong et al. / Neural Networks 20 (2007) 245–259 259
Anagnostopoulos, G. C., Georgiopoulos, M., Verzi, S. J., & Heileman,
G. L. (2002). Reducing generalization error and category proliferation in
ellipsoid ARTMAP via tunable misclassification error tolerance: Boosted
Ellipsoid ARTMAP. In Proc. of the international joint conference on neural
networks: Vol. 3 (pp. 2650–2655).

Anagnostopoulos, G. C. (2001). Novel approaches in adaptive resonance theory
for machine learning. Doctoral thesis. Orlando, Florida: University of
Central Florida.

Carpenter, G. A., Grossberg, S., Markuzon, N., & Reynolds, J. H. (1992).
Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multi-dimensional maps. IEEE Transactions on Neural
Networks, 3(5), 698–713.

Carpenter, G. A., & Milenova, B. (1998). Distributed ARTMAP: A neural
network for fast distributed supervised learning. Neural Networks, 11(2),
323–336.

Chalasani, R. (2005). Optimization of network parameters and semi-
supervision in Gaussian ART architectures. M.S. thesis. Orlando, Florida:
University of Central Florida.

Charalampidis, D., Kasparis, T., & Georgiopoulos, M. (2001). Classification of
noisy signals using Fuzzy ARTMAP neural networks. IEEE Transactions
on Neural Networks, 12(5), 1023–1036.

Gomez-Sanchez, E., Dimitriadis, Y. A., Cano-Izquierdo, J. M., & Lopez-
Coronado, J. (2002). µARTMAP: Use of mutual information for category
reduction in Fuzzy ARTMAP. IEEE Transactions on Neural Networks,
13(1), 58–69.

Gomez-Sanchez, E., Dimitriadis, Y. A., Cano-Izquierdo, J. M., & Lopez-
Coronado, J. (2001). Safe-µARTMAP: A new solution for reducing
category proliferation in Fuzzy ARTMAP. In Proc. of the IEEE
international joint conference on neural networks: Vol. 2 (pp. 1197–1202).
Grossberg, S. (1976). Adaptive pattern recognition and universal recoding II:

Feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23,
187–202.

Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI Reposi-
tory of machine learning databases. Irvine, CA: University of
California, Department of Information and Computer Science.
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

Kasuba, T. (1993). Simplified Fuzzy ARTMAP. AI Expert, 18–25.
Koufakou, A., Georgiopoulos, M., Anagnostopoulos, G. C., & Kasparis, T.

(2001). Cross-validation in Fuzzy ARTMAP for large databases. Neural
Networks, 14, 1279–1291.

Marriott, S., & Harrison, R. F. (1995). A modified Fuzzy ARTMAP architecture
for the approximation of noisy mappings. Neural Networks, 8(4), 619–641.

Parrado-Hernandez, E., Gomez-Sanchez, E., & Dimitriadis, Y. A. (2003).
Study of distributed learning as a solution to category proliferation in Fuzzy
ARTMAP-based neural systems. Neural Networks, (16), 1039–1057.

Taghi, M., Bagmisheh, V., & Pavesic, N. (2003). A fast simplified Fuzzy
ARTMAP network. Neural Processing Letters, 17(3), 273–316.

Verzi, S. J., Georgiopoulos, M., Heileman, G. L., & Healy, M. (2001).
Rademacher penalization applied to Fuzzy ARTMAP and Boosted
ARTMAP. In Proc. of the IEEE-INNS international joint conference on
neural network (pp. 1191–1196).

Williamson, J. R. (1997). A constructive, incremental-learning network for
mixture modeling and classification. Neural Computation, 9, 1517–1543.

Williamson, J. R. (1996). Gaussian ARTMAP: A neural network for fast
incremental learning of noisy multi-dimensional maps. Neural Networks,
9(5), 881–897.

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Experiments with Safe mu ARTMAP: Effect of the network parameters on the network performance
	Introduction
	The mu ARTMAP architecture
	Discussion of Safe mu ARTMAP parameters
	Discussion of parameter  e 
	Discussion of parameter  Hmax 
	Discussion of parameter  hmax 
	Discussion of parameter  delta
	Discussion of the other ART parameters  (alpha, rho a, Delta rho) 

	Experiments
	Databases
	Parameter settings
	Experimental procedure --- experimental results

	Conclusions
	Acknowledgments
	Estimates of  Hmax 
	Preliminaries
	Theoretical upper bound
	Theoretical lower bound
	Typical case 1
	Typical case 2
	Relationship among the estimates

	References


