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Abstract

We introduce Ellipsoid-ART (EA) and Ellipsoid-ARTMAP
(EAM) as a generalization of Hyper-sphere ART (HA) and
Hypersphere-ARTMAP (HAM) respectively. As was the
case with HA/HAM, these novel architectures are based on
ideas rooted in Fuzzy-ART (FA) and Fuzzy-ARTMAP
(FAM). While FA/FAM aggregate input data using hyper-
rectangles, EA/EAM utilize hyper-ellipsoids for the same
purpose. Due to their learning rules, EA and EAM share
virtually all properties and characteristics of their FA/FAM
counterparts. Preliminary experimentation implies that EA
and EAM are to be viewed as good alternatives to FA and
FAM for data clustering and classification tasks
respectively.

 1  Introduction

Fuzzy-ART (FA) [1] and Fuzzy-ARTMAP (FAM) [2] are
two neural network architectures based on the adaptive
resonance theory that addresses Grossberg's stability-
plasticity dilemma [3]. While FA can be used for clustering
of data, FAM is capable of forming associations between
clusters of two different spaces and, as a special case, can
be used as a classifier too. In this text, FAM will refer to the
FAM classifier network. An important feature of FA/FAM
is the ability to undergo both batch (off-line) and
incremental (on-line) learning. In off-line learning, a set of
training patterns is repeatedly presented until the
termination of the networks’ training phase. On the other
hand, during on-line learning, the networks’ structure is
being altered as necessary to explain the existence of new
patterns as they become available. Under fast learning ([1],
[2]), a particularly interesting property of these networks is

that they complete their learning in a finite number of steps,
meaning that all training patterns will have been perfectly
learned after a finite number of list presentations (epochs).
This is in contrast, for example, to feed-forward neural
networks, which use the Backprop algorithm for their
training and only asymptotically reach a stable state.

In order to perform their learning task (clustering for FA
and classification for the FAM classifier), both architectures
group their input data into clusters (FA categories or simply
categories). FA forms its categories from unlabeled input
patterns via an unsupervised learning scheme, while in
FAM categories are formed in a supervised manner and
consist of input patterns bearing the same class label. Note
that, in FAM many categories might describe a single class
of patterns and therefore share a common class label. FA
and FAM can be thought of as networks that during training
perform compression of their inputs by substituting single
patterns with clusters. The forming of clusters is achieved
via a self-organizing scheme; FA/FAM perform their tasks
without optimizing a specific objective function. Both of
them process real-valued, vector-valued data; both cannot
cope with data featuring missing attribute values. Also, FA
and FAM work especially well, when the data is binary-
valued. Furthermore, both of the networks require a
preprocessing stage, where either input pattern
normalization or complement coding is used to prevent
category proliferation. While input data normalization
causes a loss of vector-length information, complement
coding normalizes input vectors and preserves their
amplitude information. Another interesting aspect of the
two architectures is that due to the internal structure, it is
easy to explain the networks’ outputs, such as why a
particular pattern was selected by a category. This is not the
case, for example, with feed-forward neural architectures,
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where it is significantly difficult to explain why an input x
generates a certain output y. A key element in the learning
process of the two architectures is a atypical pattern
detection mechanism that is capable of identifying patterns,
whose presence is not explained by the already developed
(via learning) categories within the networks. Thus, during
training phase, a pattern that does not fit the characteristics
of already existing categories will initiate the creation of a
new category. Aside from FA/FAM’s advantages, criticism
[4] has been voiced on the lack of a smoothing operation
during learning that would ameliorate the effects of noise
present in the data. The architectures use hard-competitive
learning to form their categories; hence, over-fitting
becomes an issue. The interested reader might find
properties of learning for FA and FAM in [5] and [6]. We
assume that the reader already possesses a rudimentary
background in FA and FAM.

FA and FAM utilize hyper-rectangles for category
representation, which works especially well for patterns,
whose attributes take quantized values (for example,
patterns with binary valued-features).  Note, that if M is the
dimensionality of the input space, then each FA category
requires 2M memory units (floating point numbers, for
example). When it comes to clustering problems, depending
on the distribution of input space patterns, hyper-rectangles
are not always the ideal shape to represent clusters [7].
Furthermore, regarding classification tasks, due to the fact
that both algorithms utilize city-block (L1) distances, it can
be shown that decision boundaries created by FAM are
piece-wise linear.

Based on the aforementioned facts and FA/FAM’s
sensitivity to noise, Gaussian-ART (GA) and Gaussian-
ARTMAP (GAM) were introduced in [7]. Although
GA/GAM’s categories do not have a geometric
representation in the same fashion as FA/FAM categories
do, they still correspond to hyper-ellipsoidal regions
embedded in the input space, which signify the set of
patterns that constantly update the related category. These
regions can also be thought of summarizing the data they
include in some loose sense and they accomplish to form
non-linear (in general) decision boundaries. Note, that each
category in GA/GAM utilizes 2M memory units as
categories in FA/FAM do. Despite several similarities
between GA/GAM and FA/FAM, the former ones do not
feature an appealing property of the latter ones, which is to
complete the off-line training phase in a finite number of
list presentations under fast learning conditions (learning
rate γ equals 1). In other words, there is no fast learning law
for GA/GAM. Hypersphere-ART (HA) [8] and
Hypersphere-ARTMAP (HAM) [8] were the first neural
network architectures to employ shapes (hyper-spheres)
other than hyper-rectangles for category description, while
maintaining the major (if not all) properties of FA and
FAM. In HA/HAM, hyper-spheres require M+1 memory

units per category and are also capable of forming more
complex decision boundaries than FA/FAM.

2  Ellipsoid-ART & Ellipsoid-ARTMAP

In this paper we present EA and EAM, which are a
successful attempt of using hyper-ellipsoids as category
representations with 2M+1 memory units per category,
while simultaneously retaining virtually all of the properties
and characteristics of FA and FAM respectively. The new
architectures essentially extend the ideas first presented in
HA/HAM.

To guarantee the inheritance of FA/FAM
properties and to avoid over-parameterization of the
resulting architectures, during the training phase EA
categories are updated in such a manner so that they comply
to the following two constraints: i) the hyper-ellipsoids
maintain a constant ratio µ between the lengths of their
major axis and their remaining minor axes; minor axes are
of equal length. ii) The hyper-ellipsoids also maintain
constant the direction of their major axis once it is set.
Despite the above limitations, EA categories can have
arbitrary orientations in the input space in order to capture
the characteristics of the data. An EA category j
corresponds to each committed node in the EA module’s F2

layer and is described by its template vector wj=[mj dj Rj],
where mj is the center of the hyper-ellipsoid, dj is called the
category’s direction vector, which coincides with the
direction of the hyper-ellipsoid’s major axis, and Rj is called
the category’s radius, which equals half of the major axis’
length. Uncommitted nodes in the F2 layer do not
correspond to any category, since they represent the “blank
memory” of the system, and their template vector wj is
undefined. A category’s size s(wj) is defined as the full
length of the major axis and equals 2Rj. A comparison
between a 2-dimensional FA and EA category is given in
Figure 1.

u j

µ  R j

d j

Rj = s(w j)/2

m j

s(w j)

v j

Figure 1: 2-dimensional FA and EA categories with
template elements.

EA/EAM geometry revolves around the use of weighted
Euclidian distances, rather than the city-block (L1) distance
of FA/FAM. Distances of patterns from an EA category j
depend on the category’s shape matrix Cj defined as
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In the above expression, µ is the ratio of the hyper-
ellipsoid’s major axis length over the length of each other
minor axis. Also, all vectors are arranged in columns and
the T-exponent signifies the transpose of the quantity it is
applied upon. Note, that for EA categories that encode a
single pattern, dj is defined to be equal to the zero vector 0.
In general, the distance of an input pattern x from an EA
category j is given as
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The quantity displayed in Equation 3 is the Mahalanobis
distance of the pattern from the category’s center. Instead
of explicitly forming the shape matrix Cj, using Equation 1
we can calculate the distance of a pattern x from the center
mj of a category j with shape matrix Cj according to
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In Equation 4, ||⋅||2 denotes the usual Euclidian (L2) norm of
its vector argument. Based on Equation 2, we define the
representation region of an EA category j as the set of all
points of the input space satisfying
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In Figure 1 the shaded areas correspond to the
representation regions of the categories involved. The shape
of the representation regions in EA/EAM depends on the
order, according to which patterns are being presented
during training, and the EA/EAM network parameters.
Apart from the vigilance parameter ρ∈[0,1]  the choice
parameter a>0 and the learning rate γ∈(0,1], EA/EAM
feature 3 additional network parameters. The first one is
D>0 and assumes the role of M (input domain
dimensionality) used in FA/FAM. Another one is the ratio
of lengths µ∈(0,1] of a category’s minor axis with respect
to its major axis. The last one is ω≥1, which corresponds to
the parameter wu≥1 of FA/FAM. As a reminder, templates
of uncommitted nodes in FA/FAM are initialized to w=wu1,
where 1 is the all-ones vector. In the case of the EAM

classifier, all these parameters will refer to the ones of its
ARTa module, since the ones of ARTb are of no practical
interest. The ARTa module corresponds to the input domain
and ARTb to the output domain of EAM. When EAM is
used as a classifier the output domain coincides with the set
of class labels pertinent to the classification problem.

As was the case with HA/HAM [8], the definition of the
category match function (CMF) ρ(wj|x) and the category
choice function (CCF) T(wj|x) (also known as bottom-up
input or activation function) for a committed node j is based
on the homologous expressions valid for FA categories:
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Uncommitted nodes in EA/EAM feature a constant CMF
and CCF value for all patterns of the input space as shown
below

1)|( =jwxρ (8)
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As a reminder, the CMF value of a category is used for its
comparison to the vigilance parameter, when performing
the vigilance test (VT). Also, CCF values are utilized to
determine a winning (committed or uncommitted) node
during node competition in the F2 layer for an input pattern.
To guarantee that the CMF and the CCF values are non-
negative for all categories and for all possible input
patterns, D should be selected at least equal to the
maximum possible Euclidian distance between patterns of
the input space (input space Euclidian diameter) in
consideration divided by the ratio parameter in use, that is,

2,
max

1
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D xx −≥
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From Equations 6 through 9 it can be shown that using a
value of D=D1>0 and a value of a=a1>0 during the training
phase of EA/EAM is equivalent to using D=D2>0,
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a=a2=a1D2/D1 and to scaling (multiplying) all input data by
a factor of D2/D1.

EA/EAM training and phases are identical to the ones of
FA/FAM. Upon presentation of a new pattern all nodes in
the F2 layer compete in terms of CCF values. The node of
maximum CCF value is declared winner and its CMF value
is compared to the value of ρ (VT is being performed). The
pattern chooses this node, if the VT is passed. Otherwise,
the winning node is being reset and is excluded from future
node competitions until the next input pattern is presented;
after the reset, the node competition will be repeated.
During training, if the winning node that passes the VT is
uncommitted, the node becomes committed through
appropriate initialization. Otherwise, if the node is already
committed, then it might get appropriately updated; if the
pattern falls inside the node’s representation region, no
node update takes place. Moreover, in the case of EAM, if
the chosen node corresponds to a different class label than
the just-presented pattern, match tracking (MT) [2] goes
into effect.

EA categories encode training patterns by updating their
templates. During training, EA categories can only grow in
size and therefore can never be destroyed. The learning
rules of EA/EAM resemble the ones of HA/HAM and are
depicted below. The special case of γ=1 corresponds to fast
learning. Also, x(2) denotes the second pattern to be
encoded in category j.
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Equation 11 and 12 imply that, when a training pattern is
already located inside the representation region of category
j, no updates will take place for this category. Figure 2
provides a 2-dimensional illustration of a comparison
between FA and EA category updates. Assuming that a
category already encodes a minimum of 2 patterns, due to
the learning rules in Equations 11 through 13, the
category’s new representation region after an update can be
shown to be the minimum hyper-volume hyper-ellipsoid
that simultaneously contains both the old representation
region and the new pattern to be encoded. Notice, that once
the EA category’s direction vector dj has been set, it

remains constant during future updates. Notice, also that the
boundaries of the two ellipsoids Eold and Enew touch only at
one point, t(x,wj

old).
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Figure 2: Category update assuming fast learning in
FA/FAM and EA/EAM in 2 dimensions.

A typical lifecycle of an EA category under fast learning
assumptions is depicted in Figure 3. When category j is first
created upon presentation of pattern x1, its center mj

coincides with x1, its direction vector is dj=0 and its radius
is Rj=0. Assuming that category j is eligible to encode
pattern x2, the category’s representation region expands into
an ellipse with its center mj amidst x1 and x2, Rj equal to the
Euclidian distance between x1 and x2 and, finally, dj is set
equal to the unit Euclidian-length vector along the direction
of x2-x1. Assuming that category j is also eligible to encode
a third pattern x3, the representation region expands enough
to include the previous representation region and the new
pattern, while maintaining constant its relative shape
(constant ratio µ of minor axis length over major axis
length) and constant direction (constant direction vector dj).

m j=x 1

x
2

m j

x 3 x 3

x
1

x 2

x 1

x 2

m j

d j
d j

x 3

Figure 3:  Lifecycle of an EA category in 2 dimensions
under fast learning.

The performance phases of EA/EAM are also identical to
the ones of FA/FAM. To force EAM to classify a test
pattern to one of the existing classes, the vigilance ρ has to
be set equal to 0 and ω→∞, so that uncommitted nodes are
excluded from node competition. An interesting fact
regarding EAM is that, if it is trained using ρ=1 and then is
being used as a classifier with ρ=0 and ω→∞ during
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performance, EAM becomes equivalent to the L2-norm
(Euclidian) 1-Nearest Neighbor classifier [9]. Furthermore,
if µ=1 EA/EAM become equivalent to HA/HAM, which
justifies our statement, that EA/EAM are generalizations of
HA/HAM.

3  Preliminary experimental results

In general, an objective comparison of clustering algorithms
is difficult to be achieved, thus, we will not attempt to
directly compare EA with FA. However, we can show the
potential of the EA/EAM family by comparing EAM with
FAM on the basis of classification performance. We chose
a simple, artificial classification example for our purposes,
namely the Circle-in-a-Square problem. It has been used in
the past as a benchmark problem in the DARPA artificial
neural network technology (ANNT) program [10]. A circle

of radius π2/1=R  is inscribed in the unit square, so that
its interior covers exactly half of the unit square’s surface.
The classifiers have to learn how to distinguish points
inside the circle (class label 1) from points outside it (class
label 0). Figures 4 and 5 display typical decision regions of
FAM and EAM for the problem at hand. Black areas
correspond to points that the classifier labels as class 0,
white ones correspond to class 1 and finally gray ones to
points that the classifiers were unable to label. These
figures also illustrate training patterns as stars and
categories created via training. For our experiments, ten
training sets were created by drawing samples from each
class with equal probability. Each set contained a multiple
of 10 worth of training patterns: the first set contains 10, the
second 20, etc. Also, a test set was created with 10,000
equally spaced labeled patterns that formed a grid of points
inside the unit square.

Figure 4: An example of decision regions of FAM for the
Circle-in-a-Square problem.

Figure 5: An example of decision regions of EAM for the
Circle-in-a-Square problem.

Along with FAM and EAM another 11 classifiers were
considered: L1-norm, L2-norm, L∞-norm k-Nearest Neighbor
(KNN) [10], a variant of the Restricted Coulomb Energy
(RCE) classifier [11] using L1-norm, L2-norm and L∞-norm,
Parzen classifiers [12] with Gaussian, sinc-squared,
Laplacian and Cauchy kernels and, finally, GAM. All
classifiers were exposed to the same order of training
patterns and were trained on a variety of parameter settings;
except the KNN and Parzen classifier, the rest of them were
trained with approximately 1,000 distinct parameter
settings. Moreover, FAM, EAM and RCE classifiers were
trained until completion of training (FAM and EAM used
fast learning). Finally, GAM’s training phase was
terminated every time, when, after two consecutive epochs,
no new categories were created.

Table 1: Classification results showing best and second
best classifier along with their percent misclassification

(PCM) on the test set and the number of exemplars
(categories) used to achieve this performance.

Training
set size

Best Classifier
(PMC% - categories)

Second Best Classifier
(PMC% - categories)

10 FAM (25.00% - 7) GAM (25.87% - 5)
20 EAM (16.93% - 15) RCE2(19.88% - 8)
30 EAM (11.77% - 27) RCE1(12.43% – 22)
40 EAM (6.28% - 5) RCE∞(7.52% - 25)
50 FAM (7.76% - 54) EAM (7.84% - 44)
60 EAM (8.25% - 10) FAM (9.47% - 8)
70 EAM (7.43% - 56) Parzenc (7.93% - 70)
80 RCE2 (6.17% - 33) GAM (6.81% – 37)
90 EAM (7.42% - 41) FAM (7.99% - 30)
100 EAM (5.48% - 6) RCE1 (5.67% - 42)
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The classification performance results are illustrated in
Table 1. We notice that for 7 out of 10 training sets the best
network was an EAM classifier. However, with training
sets of 70 patterns and above the differences in percent
misclassification are very small between the best and
second best classifier. Notice that, depending on the number
and distribution of training patterns, ellipsoids might be
more efficient for category descriptions than other shapes
and EAM achieves good classification performance, while
utilizing only a few categories (see cases with 40 and 100
training patterns). KNN and Parzen classifiers did not
perform that well in our experiments because of the small
sizes of training sets; these classifiers typically exhibit
improved misclassification rates, when there is an
abundance of reference (training) patterns. If you find the
ideas behind EA/EAM interesting and would like to further
study these architectures, you may contact the primary
author for MATLAB binaries implementing the EAM
classifier.

4  Conclusions

We have introduced Ellipsoid ART and Ellipsoid
ARTMAP for clustering and classification tasks
respectively. While Fuzzy ART and Fuzzy ARTMAP
represent categories with hyper-rectangles embedded in the
input domain and make use of the L1-norm for size and
distance calculations, their Ellipsoid counterparts utilize
hyper-ellipsoids and weighted L2-norm for the same
purposes. Due to Ellipsoid ART’s and ARTMAP’s category
and learning law definition, both families of networks,
Fuzzy- and Ellipsoid-, share virtually all properties of
learning. While in some learning problems hyper-rectangles
are ideal for data summarization, in other ones hyper-
ellipsoids seem to be more appropriate. Preliminary
experimental results shown in this paper indicate that, on
occasion, Ellipsoid ART and ARTMAP may be regarded as
good alternatives to Fuzzy ART and ARTMAP for
clustering and classification problems.
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