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Abstract 

In our research we are interested in bounding the performance 
of Fuzzy ARTMAP and other ART-based neural network ar- 
chitectures, such as Boosted ARTMAP, according to the theory 
of Structural Risk Minimization. Structural risk minimization 
research indicates a trade-off between training error and hy- 
pothesis complexity. This tmde-off directly motivated Boosted 
ARTMAP. In this paper, we present empirical evidence for 
Boosted ARTMAP as a viable leaming technique, in general, 
in comparison to Fuzzy ARTMAP and other ART-based neu- 
ral network architectures. W e  also show direct empirical evi- 
dence for decreased hypothesis complexity in conjunction with 
improved empirical performance for Boosted ARTMAP as com- 
pared with Fuzzy ARTMAP.  Application of the Rademacher 
penalty to Boosted A R T M A P  on a specific leaming problem 
further indicates i ts  utility as compared with Fuzzy ARTMAP. 

I. INTRODUCTION 
An important performance measure of a machine 

learning algorithm is its generalization capability. Gen- 
eralization is characterized by the number of unseen 
examples correctly predicted by a learning algorithm 
given sample training data from which to learn. In 
this paper we focus on the particularly difficult situa- 
tions in which the training data is drawn from pattern 
class distributions that are naturally overlapping or 
where noise in labeling is involved. For these types of 
problems, a learning algorithm must potentially deal 
with conflicting information in order to generalize to 
the underlying distributions. 

Fuzzy ARTMAP is a neural network architecture 
for conducting supervised learning in a multidimen- 
sional setting [l], [2]. When Fuzzy ARTMAP is used 
on a learning problem, it is trained to the point that 
it correctly classifies all training data. This feature 
causes Fuzzy ARTMAP to “over-fit” some data sets, 
especially where the underlying pattern distributions 
have overlap. To avoid the problem of “over-fitting”, 
we must allow for error during the training process. 
One solution for allowing error during training is to 
use a statistical approach. Such a method, proposed 
in this paper, is called Boosted ARTMAP. 

In our research we are interested in bounding the 
performance of Fuzzy ARTMAP and other ART-based 
neural network architectures, such as Boosted ARTMAP, 
according to the theory of Structural Risk Minimiza- 
tion. Structural Risk Minimization research indicates 
a trade-off between training error and hypothesis com- 
plexity. This trade-off directly motivated our exten- 
sion of Fuzzy ARTMAP into Boosted ARTMAP. In 
this paper, we present empirical evidence for Boosted 
ARTMAP as a viable learning technique, in general, 
in comparison to Fuzzy ARTMAP and other ART- 
based neural network architectures. We also show di- 
rect empirical evidence for decreased hypothesis com- 
plexity in conjunction with improved empirical perfor- 
mance for Boosted ARTMAP as compared with Fuzzy 
ARTMAP. 

11. STRUCTURAL RISK MINIMIZATION 
The goal of learning is to find a hypothesis, k, from 

a class of hypotheses, X, with minimal generalization 
error 

k = argminP{h(z) # I ~ ( z ) } ,  (1) h€‘H 

where C is the unknown target concept, Ic(z)  is the 
indicator function for C with arbitrary data sample 2, 
and P is the probability mass function.. 

Structural risk minimization finds its roots in empir- 
ical risk minimization [3], [4], [5], [6] ,  [7]. According to 
empirical risk minimization, a learner is given a set of 
labeled examples, S = { ( 2 1 ,  yl), ..., (zm,  gm)}, where 

E Rd and yi E {0,1}. The learner then finds a 
hypothesis, k, from 3c with minimum empirical risk 

The measure of empirical risk, L,(h) is also called 
training error. 

In some cases, however, minimizing training error 
is not sufficient in finding a hypothesis with mini- 
mum generalization error. It is possible to find a 
hypothesis with minimum, even zero, training error 
that never-the-less has very poor generalization per- 
formance. Structural risk minimization was introduced 
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by Vapnik [3], [7] to address the problems of empirical 
risk minimization by adding a penalty term 

hfi = arg min {Lm(h)  +pen(m;  N ) } .  
h€NN,N>oo  

(3) 

The penalty term was included to  bound the difference 
between the generalization error and training error by 
a function of the complexity of the hypothesis class, 
N ,  

P{h(z)  # I c ( ~ ) }  5 L(h )  + IL(h) - Lm(h)I, 
l ~ ( h N )  - Lm(hnr)l L pen(m;N) .  (4) 

L is the training error and p e n ( m ; N )  is a function 
of the complexity of the class of output hypotheses. 
Thus, there is a trade-off between training error and 
penalization where overall generalization error is greater 
than zero. 

The penalty term can be bounded by the Vapnik- 

Fig. 1. The Fuzzy ARTMAP Architecture. 

learning, two very dis-similar training sets. Note that 

will produce a large Rademacher penalty, since it will 
attempt to  satisfy two such dis-similar training sets 

Chervonenkis (VC) dimension of the class of concepts [4] a learner which attempts to  achieve 0 training error 

pen(m; N )  5 K/-, m ( 5 )  exactly. 

for some constant K .  The VC dimension of a class of 
concepts is one measure of complexity for this set [8]. 

A. The Rademacher Penalty 
Most penalty terms proposed for structural risk min- 

imization rely heavily upon bounds that are abstracted 
away from the distribution of the problem data at 
hand. The Rademacher penalty was introduced by 
Koltchinskii [9] as a data-dependent penalty. The 
Rademacher penalty is computed directly using train- 
ing data, and thus the inherent distribution of this 
data is captured as part of the penalization process. 

Lozano [lo] proposes a cleverly simple algorithm for. 
computing the Rademacher penalty for a 0,l-concept 
learner. In Lozano's method each sample (zj, yj) of a 
set of training data is randomly re-labeled with proba- 
bility uj = 0.5 (i.e. with probability 0.5, yj is flipped, 
either from 1 to 0 or visa versa), call it training set SI. 
A second set of re-labeled data is immediately avail- 
able by flipping all of the labels for sl, call it training 
set s2. Next, the learner is trained using both sl  and 
s2, separately, to produce two hypotheses, h l  and h2. 
The Rademacher penalty is then estimated as 

111. FUZZY ARTMAP 
Fuzzy ARTMAP is a neural network architecture 

designed to learn a mapping between example instances 
and their associated labels. Fuzzy ARTMAP is com- 
posed of two Fuzzy ART neural network modules con- 
nected through a MAP field [2]. During training, the 
pair (a,b) is presented to  the neural network, where 
a E [0,lld and b E {0,1, ..., C - 1). In most cases, 
there will only be two classes, or labels, thus, C = 2 
and b E { O , l } .  The instance, a,  is presented to the 
A-side f izzy  ART module (ARTA) and b is presented 
to  the B-side Fuzzy ART module (ARTB) in figure 1. 

A. Fuzzy ART 
The Fuzzy ART neural network architecture was de- 

signed to cluster real-valued data into categories [ll]. 
Fuzzy ART is structured into three layers of interact- 
ing nodes, labeled Fo, F1 and F2, where the output 
of Fo is connected to Fl ,  and F1 and F2 are mutu- 
ally connected. At Fo, a d-length input vector from 
the environment is complement coded and passed on 
to  F1. The process of complement coding a pattern 
vector, a,  produces a new vector I A  = (a ,aC) ,  where 
ac is the complement of a. There are 2d nodes in layer 
F1, and N 2 1 nodes in layer F2. The activation at 
node j of the F2 layer, called T j ( I ) ,  is computed as 
a weighted sum of I A  and the weights wj, see Eq. 7 
below. Note that these weights connect the F1 layer 
t o  the F2 of the Fuzzy ART module. The F2 layer al- 
ways has at least one node available which has not yet 
been trained, called the uncommitted node. The other 
N - 1 nodes in the F2 layer have already been com- 
mitted, having learned at least one training instance 
each. The F2 layer is allowed to grow as necessary. 

1 
pen(h2) = - ~ ~ j I { y ~ ~ h ~ ( z ~ ) } ( z j ) , Y j  E s27 

j=1  

pen(m, N )  = max(pen(hi) ,pen(h~)).  ( 6 )  

The Rademacher penalty, computed as above, allows 
us measure the complexity of a learner's hypothesis 
space, by determining how well it will satisfy, through 
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The Fl and F2 layers interact to choose an F2 tem- 
plate that best matches the complement coded input 
vector according to: 

The parameter a,  called the choice parameter, is usu- 
ally a small positive quantity, A is the element-wise 
vector min operator, and I . I is the L1-norm of a vec- 
tor. The choice J is confirmed if the vigilance criterion 
is not violated, 

The vigilance parameter, p in Eq. (8 ) ,  is a user input 
between 0 and 1, where a value closer to 1 indicates 
desired tighter coupling within clustered patterns, and 
a value closer to 0 allows less coupling within clustered 
patterns, in a category. Note that at least one F2 
node, the uncommitted node, will always satisfy the 
vigilance criterion. The maximum F2 template node 
satisfying the vigilance criterion is allowed to learn the 
input vector, a condition called resonance. 

There are two stages in ART cluster formation. A 
winner-take-all strategy is employed in choosing the 
best matching cluster template in the F2 layer accord- 
ing to Eq. (7). Next, a vigilance check is performed to 
ensure that learning the input pattern in the chosen 
cluster will not degrade the template below the vigi- 
lance as in Eq. (8). Initially all template weights are 
set to 1, and learning proceeds as follows 

J 

where p is the learning parameter. In this paper we 
will set p = 1 which is a special case called fast learn- 
ing. Note that learning only occurs at the winning F2 
node, J ,  during resonance. 

An important feature of Fuzzy ART is that the F2 
layer is allowed to grow as needed for a particular 
problem. A pool of uncommitted template nodes is 
maintained. A single uncommitted template node is 
always allowed to compete with existing committed 
templates nodes according to Eq. (7). 

B. The Fuzzy ARTMAP MAP field 

The Fuzzy ARTMAP architecture in figure 1 con- 
sists of two Fuzzy ART modules connected through a 
MAP field. The .4RT” module is given pattern data 
and the ARTB module is given label data for a given 
supervised learning task. The MAP field links pat- 
tern clusters with label clusters. Supervised learning 
is performed in Fuzzy ARTMAP by ensuring that each 
ART” template is linked with only one ARTB tem- 
plate. For the classification tasks in this paper, the 
4RTB module will have one F2 node for each label. 
Thus, a many-to-one association from patterns to la- 
bels is formed in the Fuzzy ARTMAP MAP field. 

The Fuzzy ARTMAP architecture ensures the many- 
to-one mapping through the use of a match tracking 
lateral reset, see figure 1. During training for a spe- 
cific pattern and label pair, (x, y), let J A  be the best 
choice F2 node from the A-side ART module satisfy- 
ing the vigilance criterion for p“, and let K B  be the 
best choice F2 node from the B-side ART module sat- 
isfying the vigilance criterion for p B .  If J A  is uncom- 
mitted, then no lateral reset can occur, and J” will 
be associated with K B  in the MAP field during learn- 
ing. If J A  is committed, then it is already associated 
with an ARTB F2 node, call it K’. A lateral reset 
occurs when K’ # K B .  During a lateral reset, the 
A-side vigilance parameter is temporarily increased 
to T J A ( U G ( w J A ’ )  + E ,  where E is some small constant 
greater than 0. After the network has resonated with 
x, the A-side vigilance is returned to its baseline value. 
The lateral reset is used in Fuzzy ARTMAP to ensure 
that each training pattern resonates with an A-side 
F2 node associated with a B-side F2 node that has 
learned the pattern’s label. A complete presentation 
of all training patterns is called an epoch. After a 
bounded number of epochs, Fuzzy ARTMAP is guar- 
anteed to reach 0 training error [12]. Note that during 
testing it is possible for a test pattern to choose the 
uncommitted node. In this case no B-side label pre- 
diction is possible. 

The Fuzzy ARTMAP MAP field weights, WJk ,  are 
used to control associations between A-side F2 nodes 
and B-side F2 nodes. For an uncommitted node, j ,  
Wjk = 1,Vk,  meaning that j is not currently associated 
with any B-side node, and in fact it is available for 
future learning. For a committed node, j ,  W ~ K  = 1 
and W j k  = 0, V k  # K ,  where j has already been linked 
with B-side F2 node K.  

Notice that Fuzzy ARTMAP performs empirical risk 
minimization, but this is done at the expense of hy- 
pothesis complexity. In ART-based architectures, hy- 
pothesis complexity is measured by the number of F2 
nodes needed during training. The hidden layer nodes 
of Fuzzy ARTMAP (in the F2 layer) compute axis- 
parallel hyper- rectangles, but the process of training a 
Fuzzy ARTMAP network allows for 0 margin of train- 
ing error. This fact implies that under certain situa- 
tions F’uzzy ARTMAP can be made to require an arbi- 
trarily large number of hidden layer (F2)  nodes. Con- 
sider the case where we are interested in learning to 
distinguish between two overlapping, but continuous 
distributions. In the area of overlap are an arbitrar- 
ily large number of training examples, each of which 
can require its own hidden layer node for ARTMAP 
to train with 0 margin of training error. In this case 
the complexity of Fuzzy ARTMAP, i.e. the number of 
hidden layer nodes, grows as the number of training 
samples. Thus, Fuzzy ARTMAP will “over-fit” the 
training data, reducing its overall generalization error 
performance, in these cases. 
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We propose a modification to  Fuzzy ARTMAP al- 
lowing for increased margin of training error decreas- 
ing the number of hidden layer nodes used for the pur- 
pose of increasing the overall generalization error per- 
formance, specifically on learning problems involving 
overlapping class distributions. 

IV. BOOSTED ARTMAP 

In our research, we are interested in increasing the 
generalization error performance of Fuzzy ARTMAP, 
and Fuzzy ART architectures, especially in situations 
where there is significant overlap between classes due 
to noise or other causes. The focus of our research in 
this paper involves a simplification of a modification to  
Fuzzy ARTMAP also called Boosted ARTMAP [13], 
(141. In the current version of the Boosted ARTMAP 
neural network architecture, we connect two ART mod- 
ules from figure 1 using the MAP field from the origi- 
nal Boosted ARTMAP [13], redescribed here for clar- 
ity. 

A. Modification to Fuzzy A R T M A P  M A P  field 
In Boosted ARTMAP, we incorporate two changes 

to the Fuzzy ARTMAP MAP field. First, we allow F2 
nodes from the A-side ART module to  associate with 
all F2 nodes in the B-side. We also keep track of asso- 
ciation frequencies between A-side and B-side nodes, 
similar to  PROBART [15]. The MAP field weights are 
initially set to 0, w j k  = 0, Vj,  k. Consider a training 
sample, (z, y) presented to the network, assume that 
node J is chosen in the A-side, and node K is cho- 
sen in the B-side of the architecture. During learning 
in the MAP field, the associated weight value is in- 
creased by 1, W J K  = W J K  + 1. All other weight values 
remain the same. We then use these frequencies to  
gage the performance of each F2 node in the A-side 
ART module, not done in PROBART. Our estimate 
for the performance error of a committed node, j is 

max W j k  

(10) 
l < k < C  

E:='=, wjk 
e j = l -  - -  

In order to  bound the learning process, we use the fre- 
quency information gathered in the MAP field with 
the lateral reset match tracking mechanism described 
in the Fuzzy ARTMAP section above. The input er- 
ror tolerance parameter, E ,  is used to control the lat- 
eral reset. Again, consider training sample (2, y) pre- 
sented to the Boosted ARTMAP architecture, where 
J is the chosen A-side F2 node, and K is the cho- 
sen B-side F2 node. If increasing W J K  by 1 would 
increase J's estimated error performance, Eq. ( lo),  to 
a value greater than E ,  a lateral reset occurs. The 
lateral reset is precisely the same as described in the 
Fuzzy ARTMAP section above. In fact the operation 
of Boosted ARTMAP is exactly the same as Fuzzy 
ARTMAP described above except for the frequency 
estimation and lateral reset of the MAP field. 

The Boosted ARTMAP neural network architecture 
has a couple of distinct advantages over the original 
Boosted ARTMAP [13]. First, the training error of a 
Boosted ARTMAP network is explicitly bounded by 
the input desired error tolerance parameter, E .  Each 
F2 node in the A-side Fuzzy ART module of a Boosted 
ARTMAP network is forced to have a training error 
at least as small as E .  An original Boosted ARTMAP 
network starts in a very erroneous state, near 50% er- 
ror, and proceeds to reduce the training error towards 
E .  However, it may take many F2 nodes and many 
training epochs for this network to achieve its goal. 
Learning for the current version of Boosted ARTMAP 
proceeds, similar to  Fuzzy ARTMAP, in producing a 
trained network with at most E training error. Finally, 
if E is set t o  0, then a Boosted ARTMAP network 
reduces exactly to  a Fuzzy ARTMAP network. An 
advantage of Boosted ARTMAP is that it is trained 
on-line, and while finding the best E value does require 
some tuning, it is highly related to  the overlap in the 
data at hand. Thus, appropriate.values for e can be 
determined through off-line a priori data analysis. 

V. EMPIRICAL RESULTS 

For our empirical results, we first compare the gen- 
eralization performance of Boosted ARTMAP (BARTMAP) 
with Fuzzy ARTMAP (FuzARTMAP), ART-EMAP [16], 
ARTMAP-IC [17], Distributed ARTMAP (dARTMAP) [18], 
Gaussian ARTMAP (GARTMAP) [19], PARTMAP [20], 
[21], the original Boosted ARTMAP (called EmpARTMAP 
here) [13] and Hierarchical ARTMAP (HARTMAP) [22] 
on several learning tasks. Finally, we compute Rademacher 
penalties for all architectures for two of the learning 
problems. 

A. Simple Learning Problems 
In each of the learning problems, one class was la- 

beled 0 and the other 1. All data were normalized to  fit 
within the unit square so that the Fuzzy ART architec- 
ture could be used. In our experiments, each network 
was trained on 1000 training samples and tested with 
10000 test samples. For each of the learning prob- 
lems, we conducted 10 such training/testing scenarios 
for the average values reported in the tables below. 

For all architectures, an ART" baseline vigilance of 
0.0 and ARTB baseline vigilance of 1.0 was used, and 
the MAP field vigilance was 1.0. In GARTMAP, we 
used y values of 0.1 or 0.2, and we trained GARTMAP 
for 5 epochs for each learning problem. The Em- 
pARTMAP network was trained using a step size of 
0.1 for increasing the vigilance values. HARTMAP 
was trained using the same value for both the base- 
line training vigilance and the baseline testing vigi- 
lance, in both cases either 0.8 was used. BARTMAP 
was trained using the same parameter values as Fuzzy 
ARTMAP. For both EmpARTMAP and BARTMAP, 
the desired error tolerance values are problem specific. 
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Architecture 
FuzARTMAP 
ART-EMAP 
ARTMAP-IC 
dARTMAP 
GARTMAP(O.1) 
Emp ARTMAP 
HARTMAP(0.8) 
pARTMAP(0.15) 
BARTMAP(0.05: 

F2 % std. 
Epochs Nodes correct deu. 

7.0 24.7 95.9 0.6 
7.0 24.7 88.7 4.4 
7.0 24.7 95.9 0.6 
1.0 13.7 90.9 2.3 
5.0 11.4 85.6 15.7 
9.3 125.5 85.2 3.5 
2.4 126.4 89.7 1.2 

49.6 17.0 93.3 3.2 
8.3 19.6 94.9 0.5 1 

3.9 
1.9 
9.0 
2.0 

Architecture 
FuzARTMAP 
ART-EMAP 
ARTMAP-IC 
dARTMAP 
GARTMAP(O.2) 
EmpARTMAP 
HARTMAP(0.8) 
pARTMAP(0.3) 
BARTMAP(O.251 

Circle-in-the-Square [2]. In this problem, the 

F2 % 
Epochs Nodes correct 

7.5 202.6 73.0 
7.5 202.6 79.4 
7.5 202.6 72.9 
1.0 60.3 66.8 
5.0 17.1 84.2 
9.5 147.9 82.5 
2.4 126.4 86.4 

47.3 30.0 69.1 
13.3 63.8 85.3 

circumference of the circle represents the optimal de- 
cision boundary. The area of the circular class is half 
that of the square, and both are centered about the 
same point. In table I, we see the learning per- 
formance of Fuzzy ARTMAP, GARTMAP (y = O. l ) ,  
EmpARTMAP ( E  = O.l), HARTMAP ( p  = 0.8) and 
BARTMAP ( E  = 0.05 on the circle-in-square prob- 
lem averaged over the 100 experiments. The second 
column shows the average number of passes through 
the training data, i.e., epochs, needed to  reach a solu- 
tion. The third column give the average number of F2 
nodes used in training the networks. The fourth col- 
umn shows the percentage of correctly classified test 
instances, and the last column is the standard devia- 
tion of the error percentage over the 10 experiments. 

Noisy Circle-in-the-Square. In this problem, we 
use the training data from the previous problem, ex- 
cept that each label is flipped with probability of 0.2. 
In table 11, we see the learning performance of Fuzzy 

ARTMAP, GARTMAP (y = 0.2), EmpARTMAP ( E  = 
0.25), HARTMAP ( p  = 0.8) and BARTMAP ( E  = 
0.25 on the noisy circle-in-square problem averaged 
over the 10 experiments. 

Overlapping Circle and Square. This experi- 

Architecture Epochs 
FuzARTMAP 

EmpARTMAP 7.0 

TABLE 111 
OVERLAPPING CIRCLE AND SQUARE. 

Architecture 
FuzARTMAP 

ARTMAP-IC 
d ARTMAP 
GARTMAP(0.2) 
EmpARTMAP(0.25) 
EmpARTMAP(0.38) 
HARTMAP(0.8) 
pARTMAP(0.3) 
BARTMAP(0.25) 

ART-EMAP 

1.4 
1.7 

Training 
error 

0.0 
11.3 
0.0 
7.0 

13.4 
10.2 
25.2 

7.8 
30.9 
11.6 

Rademacher I 
penalty -4 

3.7 
51.4 
53.0 
57.0 
51.7 
15.1 
52.4 
39.2 
34.5 

TABLE IV 
RADEMACHER PENALTY FOR NOISY CIRCLE-IN-THE-SQUARE. 

ment involves a uniformly distributed. circle overlap- 
ping a uniformly distributed square, where the circle 
has half the area of the square, as in the circle-in-the- 
square problem above. Both circle and square are cen- 
tered on the same point. At this point, we only have 
results for FuzARTMAP, GARTMAP, EmpARTMAP, 
HARTMAP, and BARTMAP, and these values were 
averaged over 100 such experiments. 

B. Rademacher Penalty for Noisy Circle-in-the-Square. 
Here we compute the average Rademacher penalty 

each architecture produces for the Noisy circle-in-the- 
square problem. The results are averaged over 10 such 
experiments. In table IV we see that most of the ar- 
chitectures have a Rademacher penalty near or greater 
than 0.5, which indicates a tendency for “over-fitting” 
the training data. ART-EMAP was specifically de- 
signed to reduce effect of noisy data, which it does very 
well, as indicated by the very low Rademacher penalty 
value. However, this noise reduction is not available 
during training. ART-EMAP training is identical to 
Fuzzy ARTMAP, thus, even though it seems to have a 
low penalty value, its effective Rademacher penalty is 
the same as Fuzzy ARTMAP’S. Empirical ARTMAP 
has the capability of affecting the Rademacher penalty 
based upon its desired error tolerance parameter ( E ,  

with values 0.38 and 0.25 shown in table IV). 
A key feature of Boosted ARTMAP is its ability to 
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100, 

Fig. 2. Change in Performance for Boosted ARTMAP. 

indirectly effect the Rademacher penalty through the 
value of its desired error tolerance parameter ( E ) .  The 
use of E in BARTMAP is much more pronounced that 
with EmpARTMAP as demonstrated in figure 2. In 
this figure, BARTMAP’S performance is plotted ver- 
sus increasing values for E from 50 to  50000. In fig- 
ure 2, we see exactly what structural risk minimiza- 
tion theory predicts, that the best generalization per- 
formance will occur where the the sum of both train- 
ing error and penalization are minimized, occurring at 
c = 0.35, see table 111. 

VI. CONCLUSIONS AND FUTURE WORK 

After conducting the experiments, we have seen that 
Boosted ARTMAP is a reasonable alternative to  Fuzzy 
ARTMAP in learning situations where there is over- 
lap between classes. Another benefit that BARTMAP 
provides a mechanism by which the number of F2 
nodes necessary for learning is reduced, at the expense 
of more epochs on the training data. This reduced 
hypothesis complexity results in improved generaliza- 
tion performance consistent with the theory of Struc- 
tural Risk Minimization for cases of classification over- 
lap and noisy data. Furthermore, In situations where 
there is no class overlap, Boosted ARTMAP can be 
made to  execute exactly as Fuzzy ARTMAP by using 
a desired error tolerance of 0. 
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