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Abstract. A recent report by the National Research Council (NRC) declares neu-
ral networks “hold the most promise for providing powerful learning models”.
While some researchers have experimented with using neural networks to model
battlefield behavior for Computer Generated Forces (CGF) systems used in dis-
tributed simulations, the NRC report indicates that further research is needed to
develop a hybrid system that will integrate the newer neural network technology
into the current rule-based paradigms.  This paper supports this solicitation by
examining the use of a context structure to modularly organize the application of
neural networks to a low-level Semi-Automated Forces (SAF) reactive task.
Specifically, it reports on the development of a neural network movement model
and illustrates how its performance is improved through the use of the modular
context paradigm.  Further, this paper introduces the theory behind the neural
networks’ architecture and training algorithms as well as the specifics of how the
networks were developed for this investigation.  Lastly, it illustrates how the
networks were integrated with SAF software, defines the networks’ performance
measures, presents the results of the scenarios considered in this investigation,
and offers directions for future work.

1   Introduction

The combination of computer simulation and networking technologies has provided
military forces with an effective means of training through the use of Distributed In-
teractive Simulation (DIS).  DIS is an architecture for building large-scale simulation
models from a set of independent simulator nodes that represent entities in the simu-
lation [1].  These simulator nodes individually simulate the activities of one or more
entities in the simulation and report their attributes and actions of interest to other
simulator nodes via the network.  DIS nodes simulating combat vehicles, such as M1
Abrams tanks, are crewed by soldiers being trained. The trainees operate the controls
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of the simulators as they would in the actual vehicles, and the simulators implement
actions in the simulated battlefield.  Since, in a synthetic battlefield, the trainees need
opposing forces against which to train, a type of DIS node known as a Computer
Generated Force (CGF) system was developed.

CGFs are computer-controlled behavioral models of combatants used to serve as op-
ponents against whom trainees can fight or as friendly forces with which the trainees
can fight.  At a minimum, the behavior generated should be feasible and doctrinally
correct.    For example, behaviors should be able to emulate the use of formations in
orders, identify and occupy a variety of tactical positions (e.g., fighting positions, hull
down positions, turret down positions, etc), and plan reasonable routes.

Researchers in [2], [3], and [4] have experimented with using neural networks to
model battlefield behavior for CGF systems used in military simulations.  This tech-
nology has been identified as one that “holds the most promise for providing power-
ful learning models” in a recent National Research Council Report [5].  Also asserted
in this report, however, is the need for further research to develop hybrid systems that
will integrate the newer neural network technology into the current rule-based para-
digms.  This investigation considers one such approach by using a framework based
on modular decomposition to develop and apply the neural networks generating SAF
behavior.  Specifically, this research examines the performance improvements made
to a neural network based near-term movement model by adopting a modular ap-
proach that groups neural networks according to contexts..

2   Modular Decomposition

The use of a modular approach to a modeling task can be beneficial in a variety of
ways.  For example, it can be used for the purposes of improving performance.  In
other words, although the task could be solved with a monolithic set, better perform-
ance is achieved when it is broken down into a number of expert modules.  Once the
task is decomposed it is possible to switch to the most appropriate module, depend-
ing on the current circumstances or context.  Switching has been discussed in the
control literature [6][7], as well as the literature on behavior-based robotics [8].

In addition to performance improvement, other motivations for adopting a modular
approach to a problem include a reduction in model complexity and construction of
the overall system such that it is easier to understand, modify, and extend.  Thus the
“divide and conquer” principle is used to reduce the complexity of a single net sys-
tem.  This enables the use of different neural net architectures or algorithms to be
applied to individual sub-problems, making it possible to exploit specialist capabili-
ties.  Moreover, where appropriate, some of these components could make use of
non-neural computing techniques.  This justification has been noted [9][10] and is
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common to engineering design in general.  Another motivation for adopting a modu-
lar approach is the reduction of network training times [11].  Finally, in well-defined
domains, the use of a priori knowledge can be used to suggest an appropriate decom-
position of a task. This approach complements the knowledge acquisition efforts and
knowledge representation paradigms used in current SAF systems [12] and can be
easily extended to the acquisition of knowledge and tactics for SAF systems [13].

The decomposition of a problem into modular components may be accomplished
automatically or explicitly.  When the decomposition of the task into modules is de-
termined explicitly, this usually relies on a strong understanding of the problem.  The
division into sub-tasks is known prior to training [14], and improved learning and
performance can result.  An alternative approach is one in which the task is automati-
cally decomposed according to the blind application of a data partitioning technique.
Automatic decomposition is typically applied with the intent of performance im-
provement, whereas explicit decomposition could have the aim of either improving
performance or accomplishing tasks that might not be accomplished as easily or as
naturally with a monolithic net.

3   Methodology

The synthetic force system used for the prototype development work was ModSAF, a
training and research system developed by the Army’s Simulation, Training, and In-
strumentation Command (STRICOM).  ModSAF provides a set of software modules
for constructing computer-generated force behaviors at the company level and below.
Typically, ModSAF models are employed to represent individual soldiers or vehicles
and their coordination into orderly-moving squads and platoons, but their tactical
actions as units are planned and executed by a human controller. The human behav-
iors represented in ModSAF include move, shoot, sense, communicate, tactics, and
situation awareness.  The authoritative sources of these behaviors are subject matter
experts and doctrine provided by the Army Training and Doctrine Command (TRA-
DOC).  ModSAF uses finite state machines (FSMs) to represent the behavior and
functionality of a process for a pre-defined number of states.

Figure 1 illustrates the scope of a Road March task through a possible representation
of its FSM transition formalism.  Inherent in this representation, is a temporal logic
or sequencing to the state transitions in the formalism.  For example, a tank would
never reach an “end of road march" state (where it would slow down) before it would
reach a "start of road march" state (where it would speed up). The near-term move-
ment models addressed in this research pertain to the “Follow Route” state of the
Road March FSM shown in Figure 1.  In other words, the model is developed for and
evaluated when the M1A2 is in a “Follow Route” state that is not influenced by
proximity to the start or the end of the route.  This simplifies the modeling task since
the model does not have to learn to speed up and slow down at the beginning and end
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of the route, respectively.  Further, it indicates that long-term route planning is not a
part of the model’s functionality.  Lastly, it constrains the model’s range of operabil-
ity to those scenarios where there are no “Halt” states embedded in the Road March
behavior.

Start

End

Plan Route

Follow Route

Halt

End Route

Start Route

Fig. 1. FSM Representation of Road March Behavior

Figure 2 further illustrates the model addressed in this research and presents it rela-
tive to other models that might be required in a “Follow Route” state of the Road
March FSM.  These models blend low-level decisions with motor skills and envi-
ronmental feedback.  This model is responsible for the physical movement of the tank
through the virtual battlefield and is represented by the change in the tank’s speed
and orientation.

Scan MoveSearch

Follow Route

Fig. 2. Skill Models Supporting Follow-Route State
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The route used for development and testing in the prototype work (see Figure 3) can
be found in the section of terrain east of Barstow Road and west of Hill 720 in the
NTC-0101 terrain database. In general, the route is represented by 45 route points
and is approximately 7 kilometers long.  It takes the M1A2 tank about 15 minutes of
simulation time to travel at 8m/s.  From this route, two similarly constructed seg-
ments were selected for detailed work.  Each of these segments consisted of 4 route
points centered about a turn.  These are labeled as segments 1 and 2 in Figure 3 and
they were used for purposes of model training and testing.

Eleven scenarios were constructed for purposes for training and testing.  In each of
these scenarios a single ModSAF M1A2 entity was placed at X,Y position
22579,24328 with an initial heading of 359� and each entity was assigned to perform
a Road March with the route boldfaced in Figure 3.  These scenarios were created
with identical user-supplied parameters.

Segment 1

Segment 2

Fig. 3. Segments Used for Model Training Testing

As communicated in Table 1, a preliminary analysis of these graphs resulted in one
possible partitioning of the data.  These data groupings are considered with the intent
to improve model generalization and system performance.

Table 1. Classification of Data According to Approach Type

Scenario Number Approach Category
DEMO Nominal
1 Nominal
2 Early
3 Late
4 Early
5 Late
6 Nominal
7 Early
8 Double
9 Nominal
10 Late
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where “Approach Category” categorizes the approach types to a curve by distance
away from the target waypoint.  Specifically, this is defined by:

Early     > 45m to target waypoint
Nominal              45< > 30 m to target waypoint
Late   < 30 m to target waypoint

This categorization can be expressed as a rule-set that represents an explicit decom-
position of the task.  We refer to the product of this explicit task decomposition as a
“context” [15].  The application of this rule results in the generation of six networks
for three categories including two networks each.  These two networks represent the
change in the M1A2 entity’s speed and the change in the M1A2 entity’s heading.

All of the networks used a feed-forward architecture and were trained with back-
propagation according to the delta learning rule using a momentum factor to speed
the descent along the error surface.  All networks were trained with randomly gener-
ated initial weights according to four different random seeds.  Also, all networks used
0.01 for the training rate,η , and 0.9 for the initial momentum parameter,α .  The

momentum parameter was periodically adjusted to speed the rate of descent along the
error surface.

Each network used a sigmoid function at the hidden nodes and a linear transforma-
tion at the output nodes.  Each of these networks had 7 inputs, 20 nodes in the first
hidden layer, 5 nodes in the second hidden layer, and a single output.  The inputs
were derived and normalized according to equations 1 – 18 below.  Fundamentally,
the inputs for each of the networks were a function of the M1A2 entity’s state at the
last simulation clock and how this state related to the road characteristics and March
Order parameters.
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     trt HxyHabHRab ×= (8)

     trt HxyHbcHRbc ×= (9)

     tatspeedentitySt = (10)

     waypointprevioustodistanceDat = (11)

     waypointcurrenttodistanceDbt = (12)

     waypointnexttodistanceDct = (13)

     speedordermarchM = (14)

     roadtodistancelarperpindicuPt = (15)

     absegmentroadofdirectionHabt = (16)

     bcsegmentroadofdirectionHbct = (17)

     norientatioentityHxyt = (18)

As a point of comparison, this scheme of models (i.e., 2 models for each of three cate-
gories) was compared with a non-categorized set of the same training data.  That is,
the experimental baseline model used all of the same model parameters but did not
apply the classification rule to partition the training data or control the model execu-
tion.  As such, the experimental baseline model was trained with roughly 3 times more
data than were any of the models in the categorized approach.  Thus, by comparing the
two methods (i.e., context approach according to rules and monolithic approach), the
utility of the context approach can be evaluated for this application.

4   Experimental Results

Essential to the task of determining whether one model out-performed another is a
metric to make such a comparison.  Validating SAF models has typically been per-
formed subjectively by SMEs and the DIS community has no known quantitative
performance measure to evaluate the performance of a SAF near-term movement
model.  Given the level of resolution  of SAF maps, it is impractical to assume that a
SME could detect a noticeable difference in models due to the addition of a context
shift.  In other words, even if a human observer could visibly discriminate between
two different types of movement models, it is unlikely that he could visibly detect the
difference in the same movement model represented by a monolithic neural network
versus represented by a module of networks.  Because using SME validation to com-
pare the models in this research was susceptible to error, the investigators made use
of the DIS entity state synchronization concept to evaluate model performance.  This
was accomplished by implementing each of the models as DIS dead-reckoning mod-
els [16] and then comparing the numbers of ESPDUs generated by each of models 1
and 2.  DIS dead-reckoning is a predictive contract of vehicle movement that can be
used to reduce network traffic in a distributed simulation.  An ESPDU is the protocol
data unit used to communicate that an error between the entity’s synchronization
model and the entity’s true position exceeds some threshold value.  By communicat-
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ing the vehicle’s location, velocity and acceleration to other DIS simulators, the dead-
reckoning models residing on these simulators can predict the physical location of the
vehicle.  Implicit in this measure of performance is the assumption that the model
with the lower PDU count is the model that best fits the source data used to develop
the model and from which the PDU count is derived.
As shown in Figure 4, the comparison of the entity’s true position and the position
according to the dead-reckoning model occurs in the ModSAF libentity library.  As
such, the neural network models used in this investigation replaced the dead-
reckoning code in the libentity library

Standard ModSAF Program 1

ModSAF Entity

Experimental ModSAF Program 1

ModSAF Entity

ModSAF DR Check

LIBENTITY Entity Data

State DataModSAF DR ModelLast
ESPDU

LIBUCF Entity
Data

NN DR
Model

State Data

ModSAF DR
Model Update

Neural Network
Model
Update

ModSAF Environmental Variables

NN Engine

NN Weights

Inputs/Outputs

Inputs

+
-

Last
ESPDU

Fig. 4. Functional Relationship of Neural Networks to ModSAF Dead-Reckoning Code

Evaluating the context-based neural network scheme over segment 1 results in the
PDU counts indicated in Table 2.

Table 2. Combined Segment 1 Results of Networks Trained According to Approach Type
Classification Scheme

Scenario by Classification of Segment 1 Approach
Training on
Segment1

D
N

1
N

2
E

3
L

4
E

5
L

6
N

7
E

8
D

9
N

10
L

DEMO&1(N) 24 24 45 47 38 41 33 42 56 41 42
2 & 4 (E) 44 42 23 39 19 39 38 27 54 58 40
3 & 5 (L) 52 45 49 18 36 16 46 42 44 68 17
DIS 40 42 41 31 33 35 42 38 41 45 34
% Reduction 40 43 44 42 43 55 22 29 X 9 50

where N – nominal, E – early, L – late, D - double
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From these results, it is apparent that the same category of networks consistently per-
forms better on like categories of testing.  Thus, it appears that the use of a hybrid
approach is of some benefit to this problem.  Using this approach would yield an aver-
age ESPDU reduction of 45% over Scenarios involved in training (D-5) and 28% over
the same category scenarios not used in training (6-10).

Evaluating this same combination of networks over segment 2 results in the PDU
counts communicated in Table 3.

Table 3.  Combined Segment 2 Results of Networks Trained According to Approach Type
Classification Scheme

Scenario by Classification of Segment 2 Approach
Training on
Segment1

D
N

1
N

2
E

3
L

4
E

5
L

6
N

7
E

8
D

9
N

10
L

DEMO&1(N) 91 95 66 101 110 102 105 121 105 108 101

2 & 4 (E) 53 53 47 50 70 50 46 56 45 46 49
3 & 5 (L) 42 43 36 43 72 44 45 51 48 42 44
DIS 42 43 47 32 58 30 43 43 40 38 39

While these models do not consistently reduce PDU counts across all of the Scenarios
over Segment 2, a pattern of lower PDU counts in Scenarios whose approach classifi-
cation correlates with the network classification is apparent.  For example, the Sce-
narios in Segment 2 classified as “L” yield consistently lower PDU counts with the
network trained by Segment 1 Scenarios 3 and 5 (also both classified as late).  Also,
the Scenario in Segment 2 classified as “E” yields a lower PDU count when tested
with the network trained by Segment 1 Scenarios 2 and 4 (also both classified as
early).  So, while the total PDU count for Segment 2 is not reduced through this mod-
eling scheme, there does appear to be a correlation between the type of approach rep-
resented by the trained model and the approach classification of the tested segment.
As a means of comparison, the data from the scenarios used to generate the networks
for the previously presented modular configuration were used to develop a single,
monolithic neural network with the same parameters. That is, the entire, aggregated
data set in a single network category (as opposed to three, individual data sets parti-
tioned by Approach Type) was considered.  Thus, the results of this network can be
compared with the results of previously defined to determine the effects of modular-
izing the data on the system’s performance.  The results of this experiment may be
seen in Tables 4 and 5, representing the evaluation of the model over Segment 1 and
Segment 2, respectively.

The results of this experiment indicate a reduction in ESPDUs on Segment 1 (see
Table 4) and seem to suggest an ability to generalize to scenarios not used in training.
However, by comparing results in Tables 2 and 4, it is apparent that neither the sce-
narios used in training nor the scenarios held out from the context-based network
scheme outperform the current monolithic network scheme.  Correspondingly, as
evidenced in a comparison of Tables 3 and 5, when evaluated on Segment 2, the
monolithic network scheme did not perform as well as the modularized scheme.
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Table 4.  Combined Segment 1 Results of Monolithic Networks Trained with Data from all
Scenarios DEMO,1,2,3,4,&5

Scenario by Classification of Segment 1 Approach
Training on
Segment1

D
N

1
N

2
E

3
L

4
E

5
L

6
N

7
E

8
D

9
N

10
L

All (D-5) 32 34 34 32 25 29 36 29 48 55 31
DIS 40 42 41 31 33 35 42 38 41 45 34

Table 5.  Combined Segment 2 Results of Monolithic Networks Trained with Data from all
Scenarios DEMO,1,2,3,4,&5

Scenario by Classification of Segment 2 Approach
Training on
Segment1

D
N

1
N

2
E

3
L

4
E

5
L

6
N

7
E

8
D

9
N

10
L

All (D-5) 48 47 41 52 71 52 48 55 48 48 52
DIS 42 43 47 32 58 30 43 43 40 38 30

5   Summary

In summary, a context-based neural-network modeling scheme was empirically devel-
oped and then tested in a simulated environment.  As part of this effort, the use of
explicit model decomposition schemes was considered as a mechanism for improved
model performance.   The performance of the best modeling combination was evalu-
ated in three ways.  First, the models were tested on movement methods that were
used in training.  Second, the models were tested on movement methods that were not
used in training, but similar to those used in training.  Third, the models were tested on
movement methods on an entirely new part of the route other than that used in train-
ing.  The modeling scheme in the first case gave an average ESPDU reduction of
approximately 45% over current DIS dead-reckoning methods.  The same modeling
scheme in the second case resulted in an average ESPDU reduction of approximately
28% over current DIS dead-reckoning methods.  Lastly, the modeling scheme in the
third cases did not result in ESPDU reduction over DIS dead-reckoning methods, but
did yield results consistent with the expectations of the classification scheme.  These
results suggests that the performance of neural networks applied to a low-level SAF
reactive-task is improved by the use of the context-based task decomposition scheme.
Future work in this aspect of the study includes investigating methods of automating
the learning of the task decomposition and hence, the context-shifting rules.  Also, the
improvement of the neural networks’ performance continues to be explored.  This
includes considering alternative types of architectures, inputs, normalization schemes,
and sampling strategies.  Since the ModSAF infrastructure to collect data and evaluate
models is now in place, more work can be done to improve these preliminary results.
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