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ABSTRACT 
 
In the recent past category regions have been introduced as new geometrical concepts and provide a visualization tool 
that facilitates significant insight into the nature of the competition among categories during both the training and 
performance phase of Fuzzy ART (FA) and Fuzzy ARTMAP (FAM). These regions are defined as the geometric 
interpretation of the Vigilance Test and the competition of each category with an uncommitted F2-layer node for a 
specific input pattern (Commitment Test). In this paper we show how the notion of category regions can be naturally 
extended to Ellipsoid ART (EA) and Ellipsoid ARTMAP (EAM) and focus on the regions’ theoretical properties, when 
considering the Choice-by-Difference category choice function. Based on these properties we state three theoretical 
results applicable to both EA and EAM. Specifically, if U and a denote the vigilance and the choice parameter 
respectively, we show that in certain areas of the (a,U) plane the result of EA/EAM training is independent of the 
specific value of either U or Z (parameter of the activation function value for an uncommitted F2-layer node). Finally, we 
provide a refined upper bound on the size of categories created in EA/EAM during training. All the results are 
immediately applicable to FA/FAM as well. 
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1.  INTRODUCTION 

 
Ellipsoid ART1,2 (EA) and Ellipsoid ARTMAP1,2 (EAM) are two neural network architectures that follow the adaptive 

resonance theory (ART) paradigm3 introduced by Grossberg and have been recently introduced as alternatives to Fuzzy-
ART4 (FA) and Fuzzy-ARTMAP5 (FAM). A major function of ART architectures is to group similar input patterns into 
categories. These categories are constructed in a self-organizing fashion and constitute the building block of 
knowledge/memory representation for all ART architectures. While FA and FAM utilize categories whose geometric 
representations are axis-parallel hyper-rectangles, EA and EAM employ arbitrarily oriented hyper-ellipsoids for the 
same purpose. EA is used for unsupervised clustering tasks and EAM, which consists of two EA modules interconnected 
via an inter-ART module, is capable of learning associative maps between an input and an output domain in a supervised 
manner. When its output domain coincides with a set of class labels, EAM can perform classification tasks (EAM 
classifier). Despite the different category representation shape, due to their design, EA and EAM share almost all 
properties of learning with their fuzzy counterparts. First, they are both capable of off-line (batch) and on-line 
(incremental) learning. Under fast learning rule1,2,4 assumptions, both exhibit fast, stable and finite learning: the 
networks’ knowledge stabilizes relatively fast after a finite number of list presentations (epochs). Furthermore, they both 
feature novelty detection mechanisms that identify input patterns not typical in relation to previously experienced inputs. 
Also, due to the specifics of their neural architecture, responses of EA and EAM to specified inputs are easily explained, 
in contrast to other neural network models, where in general it is difficult to explain why an input pattern x produced an 
output y. 

We must note that significant insight into the functionality of FA/FAM has been gained by studying certain 
geometrical concepts related to FA categories. For example, the fact that FA categories can be represented as hyper-
rectangles in the input domain has aided in the development of several properties of learning and has increased our level 
of understanding about the inner workings of these architectures. In this paper we define EA category regions based on 
the use of Choice-by-Difference category choice function and examine their properties. In the sequel, these properties 
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will lead us to the discovery that, depending on the network parameter values of EA/EAM, for all already created EA 
categories and for all input patterns presented, satisfaction of the VT simultaneously implies satisfaction of the CT and 
vice versa. Also, pertaining to EA/EAM’s training phase, we will derive upper bounds for EA category sizes. 

The rest of the paper is organized as follows. In Section 2 we provide some background on EA and EAM, such as 
basic elements and functionality of these two architectures. Next, in Section 3 we continue with the definitions of 
category regions and present some of their important properties. Based on these properties in Section 4 we derive 3 
theoretical results that are applicable to both EA and EAM. Finally, in Section 5 we summarize all our findings and 
underline the importance of the derived results.   

 
2.  ELEMENTS OF ELLIPSOID ART/ARTMAP 

 
A block diagram of an EA module is presented in Figure 1. The module consists of two subsystems: attentional and 

orienting. Input patterns are presented to the F1 layer of the attentional subsystem. Layers F1 and F2 are interconnected 
via top-down and bottom-up connections and each one of these connections feature a weight. In specific, the vector wj 
consisting of all top-down weights emanating from F2-layer node j is called template of j. The F2-layer itself is a 
MAXNET featuring inhibitory lateral connections and consists of two types of nodes: committed and uncommitted. 
Committed nodes feature a template that contains the description of a single EA category (cluster) that has been learned 
via training and which summarizes the patterns that have been encoded by the corresponding F2-layer node. In contrast, 
uncommitted nodes do not correspond to real categories and constitute the blank memory of the system. 
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Figure 1: Block diagram of an Ellipsoid ART module. 

 
On the other hand, EAM is comprised of two independent EA modules, ARTa and ARTb, bridged via an inter-ART 

module. This last module encodes the associations between input domain and output domain EA categories learned by 
ARTa and ARTb respectively. Erroneous category associations are corrected via the match tarcking1,2 mechanism. For 
classification tasks the role of the ARTb module in EAM becomes trivial. The output domain is the set of class labels 
pertinent to the classification problem at hand and ARTb will create a distinct EA category for each class label. Since 
EAM finds more applications as a classifier (as FAM does), in the future, when we will refer to EAM and its network 
parameters, we will mean the EAM classifier and its ARTa module’s network parameters.  

The geometric representation of an EA category (or simply, category) is a hyper-ellipsoid embedded in the 
input domain of the EA module. It is the description of this hyper-ellipsoid that is stored in the category’s template. If M 
is the input domain dimensionality, for a committed node j its template wj is expressed as wj=[mj dj Rj], where mj�RM is 
the hyper-ellipsoid’s center location vector, dj�RM is its orientation vector and Rj is its (Mahalanobis) radius. The last 
quantity also represents the length of the hyper-ellipsoid’s major semi-axis. A characteristic of EA categories is that the 
length of the rest of the semi-axes always equals PRj, where P�(0,1] is the EA module’s ratio parameter and which is 
common to all categories. The aforementioned constraint arises from some design requirements of EA/EAM1,2. Also, if 
P=1, EA/EAM simplify to Hyper-sphere ART6 and Hyper-sphere ARTMAP6 respectively. A depiction of a 2-
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dimensional EA category is provided in Figure 2a. We define as the size s(wj) of category j and the distance dis(x,wj) of 
a real-valued input pattern x from category j the quantities 
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2jmx �  stands for the standard L2-norm (Euclidian) distance of x from mj. A pattern x, for which 

dis(x,wj)=0, is considered to be already encoded (learned) by category j. In Figure 2a the shaded area represents the set 
of all input domain patterns that j already encodes and are located inside the category’s ellipsoid. At this point we note 
that templates of F2-layer uncommitted nodes are not defined and that there is no geometric representation for their 
corresponding “virtual” categories. 
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Figure 2: Geometric representation (a) and update (b) of an EA category in 2 dimensions. 

 
EA/EAM have two modes of operation: training phase and performance phase. Both phases are of similar nature 

except that during performance phase no category updates or creations take place. During training phase EA/EAM 
incrementally clusters input domain data into categories by committing F2-layer nodes and by updating appropriately 
their templates. Before any learning takes place, all F2-layer nodes are uncommitted. As more knowledge is accumulated 
about the input domain during training, F2-layer nodes become gradually committed. An integral part of both the training 
and performance phases of EA/EAM is the competition among F2-layer nodes upon the presentation of an input pattern 
x. Nodes compete in terms of category choice function (CCF – or simply, activation function) value T(wj|x). The node of 
the highest CCF value and smallest index is declared as being the winner of the competition. Uncommitted nodes also 
participate in the competition with a parameterized, but constant, CCF value of Tu for all patterns x. Upon completion of 
identifying the winning node J, its category match function (CMF) value U(wJ|x) is being calculated. The CMF for a 
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committed node j is given in Equation 4, while for an uncommitted node j it is defined to be constant U(wj|x)=1 for all 
patterns x. 
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where D>0 is another network parameter and whose value is large enough so that U(wj|x)t0 for all categories and all 
input patterns. Next, the CMF value U(wJ|x) of J is compared to the vigilance network parameter value U�[0,1]. This 
comparison, which is called vigilance test (VT), checks if the following inequality holds: 

 UU t)|( xw J . (5) 
If Equation 5 is not satisfied, then J is temporarily reset (mismatch reset – its CCF value is set to zero) until the 
presentation of the next input pattern.  With J effectively excluded from the competition, the search continues for the 
category featuring the highest CCF value among the remaining ones. If all categories become gradually reset, an 
uncommitted node will eventually emerge as the winning node; then we say that x choses an uncommitted node. On the 
other hand, if Equation 5 is true, we say that pattern x chooses node (category) J. EA/EAM’s performance phase stops 
right at this point, where x chooses a node. If EA is operating in training phase, the template of the winning node is 
going to be updated. In EAM’s training phase, however, an extra step is involved. Only if J predicts the correct class 
label of x, J will be updated. Otherwise, match tracking goes into effect, J becomes temporarily reset until th enext 
pattern presentation and the competition process repeats itself until a suitable winning category is found. More details 
about match tracking can be found in the references1,2,5. At this point let us assume that J is about to be updated. If J is 
an uncommitted node, x will initiate the creation of a new category with the following template elements: 
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A category of this kind and any other category j with s(wj)=0 is called point category. If J is a committed node with 
template wJ

old=[mJ
old dJ

old RJ
old], its updated template elements are given by Equation 7 and 8.   
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The network parameter J�(0,1] is called learning rate. In the special case where J=1, we say that fast learning is being 
performed; for any other value J<1, slow learning.  The orientation vector is updated only if J is a point category and x 
does not coincide with its center location, as shown in Equation 9.  
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When J is no longer a point category, its orientation vector dJ will remain unchanged. Figure 2b shows the update of 
a category’s template elements for fast learning. Due to pattern x the category’s initial representation region (ellipsoid) 
will expand from Eold to Enew so that it will barely include x into Enew. After a category has been updated or created, 
training proceeds with the presentation of the next input pattern and so forth. A complete presentation of the entire 
training set is called a list presentation (epoch).  When using fast learning we say that EA has completed its learning task 
(converged), when after a complete list presentation no categories were updated or created. 

In the original presentation of EA/EAM1,2 the CCF, which is was used is of Weber Law1,2 type:  
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where a>0 is the network’s choice parameter. However, in this paper we are going to equip EA (and EAM) with the 
Choice-by-Difference7 (CBD) choice function, which for a committed node j is defined as 
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and for an uncommitted node j as 
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where Z t1/2 is a network parameter that controls the competitiveness of uncommitted nodes. The higher the value of Z, 
the less competitive the uncommitted nodes become. Equation 12 shows that the CCF value of uncommitted nodes 
features a constant value for all input patterns. Note also, that for the CBD choice function it is assumed that a�(0,1). 
From Equation 11 we can show that for all categories j and input patterns x it holds 
 maxmin )2()|()1( TaDTaDT j  �dd� xw . (13) 

From Equation 13 we can conclude that, if Z <1/2, EA/EAM becomes unstable, because Tu>Tmax and, thus, input 
patterns always select uncommitted nodes. In general, the comparison of CCF values to Tu is termed as commitment test8 
(CT). The CT is satisfied if 

 uj TT t)|( xw . (14) 

Non-satisfaction of Equation 14 means that x will choose an uncommitted node over node j. The CT is implicitly 
performed during the node competition for pattern selection that we have described earlier. In the past it has been 
shown8 that the CT, i.e., the competition against uncommitted nodes, is a category-filtering mechanism similar (but not 
identical) to the VT. The fact that a category j does not satisfy the VT and/or the CT for a specific input pattern x can be 
interpreted as “x does not match the characteristics of j and therefore should not select j”. In essence, both the CT and 
the VT act as novelty detection mechanisms that implement match-based learning and that are able to detect patterns that 
are atypical with respect to whatever input has been experienced in the past by an EA/EAM network.  

 
3.  CATEGORY REGIONS INDUCED BY CHOICE-BY-DIFFERENCE 

 
The notion of category regions surfaces upon investigation of the VT’s and CT’s geometric interpretation. Given a 

particular category j of known template wj we want to identify the regions of the EA module’s input domain (the set of 
input patterns) for which j satisfies the VT and/or the CT. The introduction of category regions for FA categories8, when 
Weber Law CCF is used, resulted to a better geometrical understanding of under which conditions a specific category 
has the potential of being chosen by an input pattern. Furthermore, via the study of the region’s properties it was possible 
to show certain theoretical results8 that pertain to both the training and performance phase of FA/FAM. By virtue of 
EA/EAM’s design, it can be shown that all of these results also hold for EA/EAM with slight modifications, when 
Weber Law CCF is used. In this paper we are going to study the category regions defined by the CBD choice function 
for EA categories. All the definitions and properties that we will state can be extended to FA/FAM in a straightforward 
manner. In this particular section we present the category regions’ definitions and a collection of pertinent properties. 
Due to lack of space we omit the proofs of these properties, but hopefully the reader will be able to visually verify them 
in the 2-dimensional case with the aid of the figures and comments provided in this section. Also, note that all the 
definitions and properties presented in this section are valid for any value P�(0,1]. 

 
Definition 1 
We define as representation region R(wj) of a category (committed node) j with template wj the following subset of RM 
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In the example of Figure 2b the category’s representation region would be the shaded area. From Equation 7 and 8 it 

can be shown that if x chooses j and x�R(wj), then no category update will occur. Also, from Figure 2b it becomes 
evident that, if j has initially a template of wj

old and x�R(wj
old), then after j’s template update to wj

new via Equation 7, 8 
(and 9, if applicable) it will hold that R(wj

old)�R(wj
new), otherwise R(wj

old)�R(wj
new). This implies that R(wj

old)�R(wj
new) 

for any x�RM, J�(0,1] and, when a category is being modified, its representation region expands and includes more 
points of the input domain.  Next, we proceed with a definition that adorns the VT with a geometrical interpretation. 
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Definition 2 
We define as match (vigilance) region V(wj|U) of a category (committed node) j with template wj for a particular value U 
of the vigilance parameter the following subset of RM 

 ^ ` ^ `
°̄

°
®
­

�� 

d� 
�t� 

)()1()|(

)|(),(|)|(
          )|(|)|(

4.

jjV

jVj
M

j
Eq

j
M

j
sMd

ddisRV
RV

ww

wwxxw
xwxw

UU

UU
UUU . (16) 

 
We call the quantity dV(wj|U) the radius of the match (vigilance) region. It stands for the maximum weighted L2 distance 
a pattern x can have from the category’s representation region, so that the category (with template wj) still passes the VT 
for a vigilance parameter value of U. Due to Definition 2, x�V(wj|U) if and only if j passes the VT with respect to x. 
From Equation 16 we observe that the match region radius decreases with increasing category size. When this radius 
becomes 0, it can be shown that V(wj|U)=R(wj) and category j cannot expand any more. This fact implies that depending 
on the value of U the match region imposes a maximum size for the size of categories. 

 
Property 1 
Due to restrictions solely imposed by the VT, during training, for all U�[0,1] and J�(0,1] an EA category can reach a 
maximum size of D(1-U). Also for an EA category j with template wj it holds that R(wj)�V(wj|U) �U�[0,1]. Only if the 
category’s size equals the maximum size D(1-U), then R(wj)=V(wj|U)  �U�[0,1]. 

 
We know at this point that the match region always contains the representation region. Also, if for some pattern x and 
category with template w it holds U(wj|x)=U, then x is located on the boundary of the category’s match region. In other 
words, the match region’s boundary represents all points, for which the category will barely pass the VT. A typical 
illustration of an EA category’s match region in 2 dimensions is given in Figure 3. The union of both ellipsoidal, shaded 
areas constitutes j’s match region. According to what we have presented so far, j will pass the VT with respect to x1 and 
x4 (since x4�R(wj)�V(wj|U)), it will barely pass the VT for x2 and it will fail it for x3 (since x3�V(wj|U)). It becomes 
obvious that for higher dimensionalities of the input space the match region’s boundary generalizes to a hyper-ellipsoid. 
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Figure 3: Match region of a template j in 2 dimensions. 
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Property 2 
During the training phase, for any U�[0,1] and J�(0,1] the match region of any EA category contracts, whenever the 
category expands due to an update. Stated in terms of sets, for any EA category j with template wj

old and any pattern 
x�V(wj

old|U)-R(wj
old) it holds that V(wj

new|U)�V(wj
old|U) �U�[0,1] and J�(0,1]. Also, it holds that V(wj

new|U)= V(wj
old|U), 

if and only if x�R(wj
old). As a general statement, if x� x�V(wj

old|U), then x�V(wj
new|U)�V(wj

old|U) �U�[0,1] and 
J�(0,1]. 

 
Since match regions contract whenever their related representation regions expand, an immediate result of Property 2 is 
the following: 

 
Property 3 
During the training phase, for any U�[0,1] and J�(0,1] the match region’s hyper-volume of any EA category decreases, 
whenever the category expands due to an update, i.e., if x�V(wj

old|U)-R(wj
old), then Vol(V(wj

new|U))<Vol(V(wj
old|U)). 

 
Figure 4 provides an example that demonstrates the last two properties. In the figure the category’s representation region 
Rj

old expands to Rj
new due to category’s j update (Figure 4a) and its match region decreases in volume (surface, in 2 

dimensions), while it remains contained in the original match region Vj
old (Figure 4b). Notice that for convenience we 

have dropped the dependence of the regions from templates or parameters. 
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Figure 4: Contraction of match region in 2 dimensions. 

 
 

A similar study can be performed on the geometric interpretation of the CT by appropriately defining an associated 
category region and then studying its properties.  

 
Definition 3 
For the Choice-by-Difference CCF we define as choice (commitment) region C(wj|a,Z) of an EA category j with 
template wj for particular values of the parameters a and Z the subset of RM 
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In other words, C(wj|a,Z) stands for all points of the input space, for which the category j with template wj would satisfy 
the CT for the specific values of a and Z. Category j passes the CT for x if and only of  x� C(wj|a,Z). Points, for which 
T(wj|x)=Tu, lie on the boundary of j’s choice region. The quantity dC(wj|a,Z) in Equation 16 is called the radius of the 
choice (commitment) region. Observations similar to the ones that we have stated for the match region radius can be 
stated for dC(wj|a,Z) as well. Before we continue further with properties, let us define the quantities 
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It can be easily shown, that 1��
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UU  for all a�(0,1) and Z�[1/2,f). These two quantities will prove helpful in the 
sequel. 
 
Property 4 
Due to restrictions solely imposed by the CT, during training, for all a�(0,1), Z�[1/2,f) and J�(0,1] the least upper 

bound for any EA category’s size equals 
a

aD
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U . Moreover, for any EA category j with template 

wj under the same conditions it holds R(wj)�C(wj|a,Z). 
 

EA choice regions have the same shape as match regions, but differ in radii, as can be observed from Definitions 2 and 
3. Let us note that for choice regions there is no counterpart to Property 2 or 4. As it turns out, the choice region after an 
update does not completely lie within the original choice region (see Figure 5). However, there is a counterpart to 
Property 3. 

 
Property 5 
During the training phase, for all a�(0,1), Z�[1/2,f) and J�(0,1] the choice region of any EA category j decreases in 
terms of hyper-volume each time the category is being updated due to an input pattern. In other words, if x�C(wj

old 
|a,Z)-R(wj

old), then Vol(C(wj
new |a,Z))< Vol(C(wj

old |a,Z)). 
 

Figure 5 presents a 2-dimensional demonstration of Property 5. Although the choice region decreases in hyper-volume 
(surface, in 2 dimensions) from Cj

old to Cj
new, Cj

new is not completely contained within Cj
old. 
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Figure 5: Hyper-volume decrease of choice region in 2 dimensions. 
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Up to this point we have examined both the VT and the CT separately but we saw that their geometric interpretations 
are similar, which justifies our statement that both of these tests share a common functionality. Upon presentation of an 
input pattern the VT and the CT conjointly filter out categories from the selection competition. Only those categories are 
disqualified, for which the presented pattern does not seem to match the categories’ characteristics. It is evident, that for 
a category j and an input pattern x, if x�V(wj|U) or x�C(wj|a,Z) or both, j will fail the VT, the CT or both respectively 
and will not have a chance to be selected x. Thus, for j to be potentially selected by x it must at least hold that 
x�V(wj|U)�C(wj|a,Z). This last observation motivates the next definition:   

 
Definition 4 
For the Choice-by-Difference CCF we define as claim region L(wj|U,a,Z) of an EA category j with template wj for 
particular values of the parameters U, a and Z the subset of RM  

 
^ `

^ `°̄

°
®
­

 

d� 
�� 

),|(),|(min),,|(

),,|(),(|),,|(
),|()|(),,|(

ZUZU

ZUZU
ZUZU

addad

addisRaL
aCVaL

jCjVjL

jLj
M

j
jjj www

wwxxw
www . (20) 

 
As expected, the quantity dL(wj|U,a,Z) is called the radius of the claim region, which also decreases, when a category’s 
size increases. From Figures 4 and 5 we have observed that both the match and the choice region have a similar shape; in 
general, the regions differ only in their radii. Also, in view of Definition 4 we expect that the claim region will coincide 
either with the match or the choice region depending on the values of U, a and Z. 

 
Property 6 
For the Choice-by-Difference CCF the claim region L(wj|U,a,Z) of an EA category j with template wj coincides either 
with the category’s match region V(wj|U) or its choice region C(wj|a,Z) depending on the value of the vigilance 
parameter U, the value of the choice parameter a, the value of Z and, under certain circumstances, on the category’s size 
s(wj). For a�(0,1) and Z�[1/2,f) we discriminate 3 major cases: 

i) If 0dUdU+, then L(wj|U,a,Z)=C(wj|a,Z). 

ii) If U+<U<U� and we define ¸
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·
¨
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Dsthres , then  

iia) if s(wj)<sthres, then L(wj|U,a,Z)=C(wj|a,Z). 
iib) if sthres<s(wj), then L(wj|U,a,Z)=V(wj|U). 

 iic) if s(wj)=sthres, then L(wj|U,a,Z)=C(wj|a,Z)=V(wj|U). 
iii) If U�dUd1, then L(wj|U,a,Z)=V(wj|U). 
 

An immediate result stemming from Definition 4, Properties 3 and 5 is the following: 
 

Property 7 
For all U�[0,1], a�(0,1), Z�[1/2,f) and J�(0,1] the claim region of any EA category j decreases in terms of hyper-
volume each time the category is updated due to an input pattern. That is, if x�L(wj

old|U,a,Z)-R(wj
old), then 

Vol(L(wj
old|U,a,Z))< Vol(L(wj

new|U,a,Z)). 
 

4.  RESULTS APPLICABLE TO EA & EAM 
 
The definition of the three category regions along with their properties are useful towards the derivation of some 

interesting results regarding EA and EAM. All the results of this section apply for EA modules with parameters U�[0,1], 
a�(0,1) and Z�[1/2,f). Result 1 presented below follows immediately from Property 6. Depending on the values of U, 
a,Z and occasionally from a category’s size, satisfaction of the VT by a category with respect to an input pattern will 
automatically imply the simultaneous satisfaction of the CT with respect to the same pattern and vice versa. Again, note 
that all the results presented in this section are valid for any value P�(0,1]. 
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Result 1 
For the Choice-by-Difference CCF, during the training or performance phase of an EA/EAM network, for all categories 
and all input patterns satisfaction of the VT implies simultaneous satisfaction of the CT and vice versa depending on the 
value of the network parameters U, a, Z and, under certain circumstances, on the category’s size. For all input patterns 
and existing categories: 

i) If If 0dUdU+, then it suffices to perform only the CT. 

ii) If U+<U<U� and we define ¸
¹
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¨
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Z
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a
Dsthres , then  

iia) if s(wj)<sthres, then it suffices to perform only the CT. 
iib) if sthres<s(wj), then it suffices to perform only the VT. 

 iic) if s(wj)=sthres, then perform either the CT or the VT. 
iii) If U�dUd1, then it suffices to perform only the VT. 

 
Definition 5 
We define as U-insensitive parameter domain of the (a,U) parameter space the subset of (0,1)u[0,1] for which 0dUdU+ 
and as Z-insensitive parameter domain of the (a,U) parameter space the subset of (0,1)u[0,1] for which U�dUd1. 

 
Based on this definition and Result 1 we reach the following conclusion: 

  
Result 2 
If an EA/EAM network uses Choice-by-Difference CCF and operates in the U-insensitive (or Z-insensitive) parameter 
domain of the (a,U) parameter space, then its training and performance phase does not depend on the specific value of U 
(or Z). 

 
Result 2 tells us, for example, that, if an EA network operates in the U-insensitive parameter domain, the number of 
categories it is going to create during training does not depend on the specific choice of U as long as 0dUdU+. A similar 
statement can be made if the network is operating in the Z-insensitive parameter domain. An immediate result derived 
from Properties 1, 4 and 6 is the following statement pertaining to the maximum size of categories. 

 
Result 3 
If an EA/EAM network uses Choice-by-Difference CCF and has been trained with a finite cardinality training set, the 
size of EA categories obeys the following restrictions 

i) If 0dUdU+, then for any category j it will hold that )1()( �

�� UDs jw . 

ii) If U�dUd1, then for any category j it will hold that )1()( U�d Ds jw . 

Both statements can be combined in a single inequality 

 ^ `> @�

�d UU,max1)( Ds jw . (21) 

Figure 6 illustrates different regions in the (a,U) parameter space for different values ofZ. Region I is the U-insensitive 

parameter domain, where satisfaction of the CT implies automatic satisfaction of the VT and )1()( �

�� UDs jw for 

every j. The “mixed” region II corresponds to all pairs (a,U) that satisfy the condition U+<U<U�, where the necessity of 
VT or CT depends on the size of the category. Finally region III is the Z-insensitive parameter domain, where 
satisfaction of the VT implies automatic satisfaction of the CT and )1()( U�d Ds jw for every j. The last region can be 

further refined into 2 sub-regions IIIa and IIIb. The first (or second) one stands for all choices of (a,U) in the Z-
insensitive parameter domain, for which uncommitted nodes are (or are not) competitive, that is, Tu>Tmin (or TudTmin). 
We observe that, as Zof, the Z-insensitive parameter domain finally dominates. This is to be expected, since for Zof 
we have that Tu o-f and uncommitted nodes are not competitive anymore. 
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Figure 6: Regions of interest in the (a,U) parameter domain for successively larger values of Z. 
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As a final note it is worth mentioning that, due to the similar design of EA/EAM’s and FA/FAM, all the results that 
we have presented in this paper can be easily extended to FA/FAM with some small modifications: P can be ignored, 
since there is no FA/FAM counterpart parameter, D must be replaced by M and Z must be replaced with wut1 (the 
quantity, with which the weights of uncommitted nodes is being initialized prior to network operation). 
 

5.  CONCLUSIONS 
 
In this paper we have presented the concept of Ellipsoid ART (EA) category regions and their associated properties 

as they develop via the use of the Choice-by-Difference (CBD) category choice function. Based on their properties we 
have established the similarity in role of the vigilance test (VT) and the participation of uncommitted F2-layer nodes in 
the competition process (commitment test – CT) within an EA module. We have shown that upon presentation of an 
input pattern the two tests conjointly filter out categories, for which the presented pattern does not match their 
characteristics. Moreover, based again on the category regions’ properties, we have presented 3 theoretical results 
pertaining to both the training and performance phase of Ellipsoid ART and the Ellipsoid ARTMAP classifier. In 
specific, we have shown that, depending on the value of their network parameters, for all existing categories in an EA 
module and all presented input patterns satisfaction of the VT implies simultaneous satisfaction of the CT and vice versa. 
Under the same setting, the maximum size of EA categories that can be constructed during training also depends on the 
values of the network parameters. Finally, we note that all the results presented here can be applied to Fuzzy ART and 
Fuzzy ARTMAP with some small modifications.   
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