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ABSTRACT 
 

Ellipsoid ARTMAP (EAM) is an adaptive-resonance-theory neural network architecture that is capable of 
successfully performing classification tasks using incremental learning. EAM achieves its task by summarizing labeled 
input data via hyper-ellipsoidal structures (categories). A major property of EAM, when using off-line fast learning, is 
that it perfectly learns its training set after training has completed. Depending on the classification problems at hand, this 
fact implies that off-line EAM training may potentially suffer from over-fitting. For such problems we present an 
enhancement to the basic Ellipsoid ARTMAP architecture, namely Boosted Ellipsoid ARTMAP (bEAM), that is 
designed to simultaneously improve the generalization properties and reduce the number of created categories for 
EAM’s off-line fast learning. This is being accomplished by forcing EAM to be tolerant about occasional 
misclassification errors during fast learning. An additional advantage provided by bEAM’s desing is the capability of 
learning inconsistent cases, that is, learning identical patterns with contradicting class labels. After we present the theory 
behind bEAM’s enhancements, we provide some preliminary experimental results, which compare the new variant to the 
original EAM network, Probabilistic EAM and three different variants of the Restricted Coulomb Energy neural network 
on the square-in-a-square classification problem. 
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1.  INTRODUCTION 
 
Ellipsoid ARTMAP (EAM) is a neural network architecture rooted on the foundations of Adaptive Resonance 

Theory (ART) presented by Grossberg1. It is a machine that can learn associative mappings from an input domain to an 
output domain and, as a special case, it can be utilized as a classifier. EAM2 appeared as a generalization of Hyper-
sphere ARTMAP3 (HAM). It is an alternative architecture to Fuzzy ARTMAP4 (FAM) in the sense that it uses a 
different geometry for category formation and representation. While FAM constructs and updates categories, whose 
geometric representation are axis-parallel hyper-rectangles embedded in the input/output domains, EAM employs 
arbitrarily oriented hyper-ellipsoids to describe distributions of similar data. While FAM measures sizes of categories 
and distances of patterns from categories via an L1 metric, EAM accomplishes the same task using suitably weighted L2 
metrics. Using appropriate learning parameter settings, EAM simplifies to HAM and uses L2-based distances and sizes to 
cluster relevant data into hyper-spherical categories. 

EAM is a successful attempt to derive an ART-based architecture that shares the main characteristics and properties 
of learning with FAM, while using a different approach to category description. Therefore, by design, EAM is capable of 
both on-line (incremental) and off-line (batch) learning. Also, an important component of EAM’s training and 
performance phase is the capability of detecting atypical patters, which do not match the structural characteristics of 
already formed categories. Furthermore, by using local encoding of information, EAM is a transparent learning 
machine, in contrast to opaque neural network architectures, for which it is difficult, in general, to explain why an input 
x produced a particular output y. Additionally, EAM’s most interesting and appealing property is the one of self-
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stabilization in off-line mode via fast learning (see Section 2.3). Under these circumstances EAM displays fast, finite 
and stable learning: in a usually small, finite number of list presentations (epochs) the network’s weights converge, 
which implies that after a point no categories are being created and already existing categories are not being updated 
anymore. 

However, this desirable characteristic of fast self-stabilization is accompanied by a (rather unwanted, in many cases) 
side effect: a resubstitution error5 of zero. Stated in a different way, after fast off-line learning has completed, EAM has 
memorized its training set to perfection without committing any classification errors. Therefore, if EAM is tested on its 
training set, the percent correct classification will be 100%. Note that by virtue of a zero resubstitution error, the EAM 
classifier operating in off-line mode via fast learning law belongs to the family of consistent5 classifiers. Especially in 
the case of abundant noise present in the training data or in the case of highly overlapping classes in the framework of a 
classification task this type of over-fitting may cause problems to EAM’s performance on a test or cross-validation set 
by affecting its ability to generalize. In this problem setting EAM will tend to memorize the noise and will fail to capture 
the general, underlying characteristics of the training data. In other words, fast off-line learning tends to increase EAM’s 
generalization error to a degree that depends on the noise inherent in the training set. An additional byproduct of 
memorizing inherent noise is the phenomenon of category proliferation, in which EAM will create an increased number 
of categories in order to cluster appropriately the data and avoid prediction errors. 

An ideal approach would be to design an EAM variant that combines the merits of both fast off-line learning and 
good generalization capabilities. The latter one could be achieved with a design that allows for a resubstitution error 
larger than zero. A first attempt along this direction has been successfully implemented in Boosted ARTMAP-S6 
(bARTMAP-S). It is a variant of FAM with a tunable, universal misclassification tolerance parameter that indirectly 
influences the level of the resubstitution error. It has been shown6 that bARTMAP-S is capable of reducing its 
hypothesis complexity (it minimizes structural risk7,8) and manages to reduce the gap between resubstitution error and 
error on a test set. 

In this paper we adopt a similar approach to bARTMAP-S, which we apply to EAM in order to improve its 
generalization ability and reduce the effect of category proliferation, when it is trained using fast off-line learning. Let us 
emphasize at this point that bARTMAP-S’s training principles can be directly applied to EAM by virtue of the design 
similarities of the latter to FAM. We call the new architecture Boosted Ellipsoid ARTMAP (bEAM) to indicate its 
connection to the principals of bARTMAP-S. As we will show later in Section 3.2, a byproduct of bEAM’s enhanced 
training procedure is the ability of coping with contradictory training examples. The rest of the paper is organized as 
follows: first, we are going to present an overview of EAM, then we will continue with the description of bEAM and 
finally we will present some limited, preliminary experimental results, which clearly demonstrate the merit of our 
approach. 

 
 

2. ELLIPSOID ARTMAP 
 
In this section we present some important aspects of EAM such as its major network components, the way it 

describes categories, its operation and the way it performs learning. 
 

 2.1 Brief overview of the Ellipsoid ARTMAP architecture 
  
A block diagram of EAM is depicted in Figure 1. As shown, EAM consists of two ART modules interconnected via 

an inter-ART module (also known as map field). Each ART module is in essence an Ellipsoid ART2 (EA) network. 
While ARTa clusters patterns of the input space, ARTb clusters patterns of a related output space. Moreover, clustering in 
each module is performed by grouping together similar patterns into EA categories (or simply stated, categories). The 
information that describes associations between input and output categories is encoded in the weights wjk of the map 
field. Each module consists of two layers (fields): the F1 layer and the representation layer F2. In contrast to FAM, 
EA/EAM lack a coding layer Fo, because they do not need to perform complement coding on their input patterns. Both 
F1 and F2 layers consist of an array of nodes that are interconnected across the layers via bottom-up Wj and top-down 
weights wj. The latter ones are also called templates. Especially the F2 layer features two kinds of nodes: committed and 
uncommitted. The former kind is associated to a template that contains the description of a single category. The latter 
ones have “blank” templates and correspond to the system’s available memory of the system that is used to learn data 
clusters. 
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Figure 1: Block diagram of Ellipsoid ARTMAP. 

 
 
2.2 Ellipsoid ART Categories 

 
As we have mentioned before, EAM (and EA) summarizes data into groups via the use of categories. In EA/EAM the 

geometric representation of these categories are hyper-ellipsoids embedded in the data domain. As shown in the Figure 
2, each 2-dimensional category j corresponds to a committed node j and is characterized by a collection of descriptive 
quantities: a location  (center) vector mj, an orientation vector dj and the length Rj of its major semi-axis (radius). The 
collection of these quantities constitute the node’s template wj=[ mj, dj, Rj]. For uncommitted nodes the templates cannot 
be defined in this manner, since they do not correspond to “real” categories. The shaded area in Figure 2 is called the 
representation region of category j and it encompasses all patterns that the category has encoded. 

During the training phase of EAM, learning is accomplished by creating new categories or by expanding already 
existing ones. A category’s template elements are updated incrementally in the light of new evidence provided by the 
presentation of input patterns. An idiosyncrasy of EAM is that during the training phase the orientation of the hyper-
ellipsoids, once decided as suggested by training patterns, will remain fixed despite of potential, future updates. 
Moreover, during training the ratio of any minor semi-axis length over the length of the major semi-axis is always held 
constant to a predetermined value P�(0,1], which is common to all categories in the same EA module. It has been 
shown9 that exactly this behavior guarantees the fast off-line, self-stabilizing learning property of EA and EAM. 

Once it is has been decided that a pattern x is going to be encoded into a specific category, in all of these 
architectures the category will expand enough to include this pattern in its representation region. More precisely, for 
Fuzzy ART10 (FA) and FAM the representation region of the updated category will be the minimum hyper-volume, axis-
parallel hyper-rectangle that contains both the entire, former representation region and the newly encoded pattern x. 
Similarly, in EA/EAM, Hypersphere-ART3 (HA) and HAM the updated representation region of an EA (HA) category 
will be the minimum hyper-volume hyper-ellipsoid (hyper-sphere) that simultaneously contains both the entire, pre-
update representation region and the new pattern. 
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Figure 2: Ellipsoid ART category embedded in a 2-dimensional input space. 

 
 

2.3 Operation of Ellipsoid ARTMAP 
 
EAM has two modes of operation: training phase and performance (testing) phase. In the first phase the network 

learns the associations between input domain and output domain categories. Its performance phase is functionally 
comparable to its training phase with the exception that no categories are updated and no new ones are created. 
Therefore it suffices to only describe the training phase. Prior to any training all F2 layer nodes in both ARTa and ARTb 
modules are uncommitted reflecting the fact that the system starts with a blank memory. When training commences, 
real-valued input-output pairs (x,y) of training patterns are presented on at a time. In on-line learning mode each pattern 
is presented to the network only once. In contrast, during off-line learning each pair is presented repeatedly. A single 
presentation of the complete training set constitutes a list presentation (epoch). Thus, off-line learning may involve 
several list presentations. 

During the progress of the training phase some of the F2 layer nodes may be already committed and correspond to 
learned clusters. Upon presentation of a pattern x to the ARTa module, all the nodes, committed and uncommitted, will 
compete for this pattern in terms of category choice function (CCF – or simply, activation) values. For a committed node 
j the (Weber Law) CCF value is defined as 
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is a weighted L2 distance of the pattern x from the center of  category j. Also, the T-exponent signifies the transpose of 
the quantity it is applied upon; all vector quantities are assumed to be column vectors. For the Weber Law CCF in 
Equation 1, a>0 is the choice parameter; the network parameter D>0 is usually set as 
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that is, D is set at least equal to the Euclidian diameter of the input domain divided by P. This last constraint is there to 
ensure that CMF values (see Equation 6) remain positive. Uncommitted nodes feature a constant, pattern-independent 
CCF value of 
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where the parameter Z is chosen as Z t0.5 to ensure stable learning in EAM. The node J featuring the maximum CCF 
value and smallest index j is considered to be the winner of the winner-take-all competition. 
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Next, EAM measures the degree to which x matches the characteristics of the category corresponding to node J. This is 
established via the vigilance test (VT), which is a major component of EAM’s match-based learning and which is 
depicted in Equation 8. First, the category match function (CMF) value for node J is calculated. If J is a committed node, 
the CMF value is computed as 
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If J is an uncommitted node, its CMF value is constant and is given as 
 1)|(      xw JU  (7) 

which implies that any pattern will match the shape of the “virtual” category associated with an uncommitted node. 
Next, the CMF value is compared to the baseline value of the module’s vigilance parameter U�[0,1] as shown below 

 UU t)|( xw J  (8) 
If the above inequality is not satisfied (J fails the VT), a mismatch reset occurs, during which the CCF value of J is 
temporarily set to 0 until the presentation of the next training pattern and the competition among F2 layer nodes for x 
continues effectively without the participation of J. Otherwise, we say that pattern x chooses node J and now J is eligible 
to learn pattern x. For each input pair (x,y) a single node J from ARTa and a single node K from ARTb are chosen. 
Whether J (K) is permitted to learn x (y) depends on the mechanism that regulates the association between J and K (see 
Section 3.2).  

Let us assume it has been decided that node J (or K) is permitted to learn a pattern x. If J is an uncommitted node, a 
new EA category will be created by committing J and initializing its template elements to  
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A category j featuring Rj =0 is called a point category. On the other hand, if J is a committed node its template elements 
are updated as follows: 
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where J�(0,1] is the module’s learning parameter. Fast learning is performed by setting J =1. Also, the orientation 
vector dJ is updated according to Equation 12 only if J was a point category (RJ =0) prior to the update. 
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After the update is performed, dJ will remain fixed throughout the entire training phase. Let us point out here that similar 
operations are taking place for F2 layer nodes in ARTb. 

EAM has found major applications in tackling classification problems. The architecture can be used as a classifier, 
when the set of class labels is used as its output domain and its ARTb vigilance parameter is set to U =1. From hereon, 
when we refer to EAM, we will refer to the EAM classifier. Also, when we refer to the network parameter of the EAM 
classifier, we will mean the corresponding parameters of its ARTa module. It is worth noting that EAM reduces to some 
other classifiers with an appropriate choice of network parameters. When training with P =U =1 and then testing with P 
=1, U =0 and Zof, EAM becomes an L2-norm 1-Nearest Neighbor classifier11. In general, when P =1 is used for both 
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the training and performance phase, EAM becomes equivalent to HAM. The interested reader may refer to the 
references9 for more properties and characteristics of EA/EAM. 

 
 

3. BOOSTED ELLISPOID ARTMAP 
 
Due to EAM’s design that follows the operating principles of FAM, modifications made in the past to FAM (in order 

to improve some of its shortcomings) can be readily and easily applied to EAM. Below we discuss such a modification, 
which gives rise to Boosted Ellispoid ARTMAP. 

 
3.1 The role of the map field 

 
EAM features an inter-ART module (the map field) interconnecting each F2 layer node j in ARTa with a 

corresponding node k in ARTb. Each such connection features a weight wjk that is initialized to 0 prior to training. The 
map field’s role is to keep track of associations between input domain clusters and class labels. As we are going to 
demonstrate at this point, in EAM only many-to-one mappings are possible. Assume that during training J and K are the 
chosen nodes in ARTa and ARTb respectively after the presentation of a particular input-output pair (x,K), where K is a 
class label. If J is uncommitted, then J becomes committed and it will be associated with K by setting wJK=1, while for 
all other weights wJc =0 c=1..C. Here, C is the number of class labels. In other words, category J will be labeled as K. 
Let’s assume now that J is already committed and that it is associated to a class label L. If K=L, then node J has correctly 
predicted the class label and is allowed to be updated by pattern x. Otherwise, if KzL (wrong prediction), EAM resorts 
into performing a lateral reset, which will set the CCF value of J to 0 until the next training pattern is presented and 
match tracking will go into effect: the value of the vigilance parameter will be temporarily raised to U(wJ |x)+'U, where 
'U is some small quantity, and the search for a more suitable category will continue in ARTa. Eventually, the vigilance 
will be reset to its baseline value after an uncommitted node or a committed node with correct class prediction has been 
chosen in ARTa. Also, any committed nodes in ARTa that have been reset during the last pattern presentation are 
reinstated. 

 
3.2 Boosted Ellipsoid ARTMAP 

 
The scheme that we have just described adorns EAM with zero resubstitution error in fast off-line learning, since 

categories in ARTa are always forced to predict the correct label of the training pair. A straightforward approach that 
improves the generalization qualities and ameliorates the category proliferation phenomenon in EAM is to allow for 
many-to-many pattern-label associations and regulate the amount of prediction error that each category is permitted to 
commit. This approach has been successfully implemented in Boosted ARTMAP-S6 (bARTAMAP-S) and we adopt it in 
this paper by introducing Boosted Ellipsoid ARTMAP (bEAM). 

The new architecture, bEAM, keeps track of the frequency with which categories (nodes) in ARTa are associated to 
the various class labels in ARTb in a similar fashion to ProbART12. However, it features an additional mechanism to 
control the categories’ prediction accuracy. First of all, in bEAM each category “remembers” the class label of the 
pattern that initiated its creation. Under the new scheme assume that during training J and K are the chosen nodes in 
ARTa and ARTb respectively as a response to the presentation of a pair (x,K). If J is uncommitted, then J becomes 
committed and it will be associated with K by setting wJK =1, while for all other weights wJc =0 c=1..C. It will also 
remember the class label of x that created it by setting its initial class label to I(J)=K. Considering the alternative case, 
let us assume that J is already committed with initial class label I(J). If I(J)=K, then node J has correctly predicted the 
class label and is allowed to be updated by pattern x. Furthermore, we set wJK = wJK +1. Otherwise, if I(J)zK, we proceed 
with the following prediction test (PT) 
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where H�[0,1] is a network parameter of bEAM called category prediction error tolerance. If node J passes the PT, then 
we assume that it did a correct prediction, we set wJK = wJK +1 and allow J to be updated by x. In contrast, if J fails the 
PT, a lateral reset is performed and the match tracking mechanism is activated as in standard EAM training. 
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The existence of PT in bEAM guarantees that every category in bEAM’s ARTa module will not exceed a prediction 
error of 100H % with respect to its initial class label. It can be easily shown that for H=0 bEAM becomes equivalent to 
EAM, since no category prediction error is allowed. Let us note here that bARTMAP-S employs a slightly different PT 
as shown below 
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where D(J) is the category’s dominant class label defined as 
 1maxarg     ,
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The reason we selected the PT of Equation 13 for bEAM instead of the one in Equation 14 is that it allows bEAM to 
reduce to an Ellipsoid version of ProbART, namely Probabilistic EAM (ProbEAM), by setting H=1. This way any 
category in ARTa is permitted to predict any class label. Note that for the PT in Equation 14 values of H less than 0.5 are 
of uninteresting nature. 

The performance phase of bEAM is similar to the one of EAM with only a small exception. If training was 
performed using some value of H>0 it is necessary to convert the many-to-many associations of the map field to many-
to-one. This is because we usually want the network to predict a single class label for each unlabeled test pattern. Thus, 
for each category j in ARTa we need to extract its dominant class label D(j) prior to executing bEAM’s performance 
phase. If it happens that D(j) is not unique for some category j (the category strongly predicts more than one class label – 
a “confused” category), we usually discard it. Pseudocode for the bEAM classifier is provided in the Appendix. 

First, by tolerating prediction error in the expansion of categories during bEAM training we are guaranteed to 
achieve a non-zero resubstitution error and potentially improve the generalization of bEAM. Secondly, we are 
potentially able to reduce the number of categories created in ARTa and therefore reduce the complexity of the 
hypothesis that is learned eventually by bEAM. The latter one is in general true, since for H >0 patterns corresponding to 
different class labels will be consolidated into the same cluster eliminating this way the need for the creation of extra 
categories. As a final, interesting note we mention that, due to its misclassification tolerance feature, bEAM is also 
capable of coping with inconsistent training patterns, that is, identical patterns associated with contradicting class labels. 
For an appropriate value of H bEAM can consolidate inconsistent patterns into a single category. This is not the case with 
EAM, since inconsistent patterns force the network to become unstable. It can be shown that if a pattern x occurs L times 
in the training set and each time it is associated with a different class label, then bEAM will be able to cope with this 
contradictory evidence, when we choose 
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4. EXPERIMENTAL RESULTS 

 
In this section we present some limited, but illustrative experimental results about bEAM’s behavior and 

classification performance. Towards that end we compare bEAM to the L1-norm, L2-norm and Lf-norm Restricted 
Coulomb Energy13 (RCE) neural network architecture. Also, we consider EAM and ProbEAM as special cases of 
bEAM. We have implemented the aforementioned architectures (as well as others) as MEX files for use with 
MathWorks’ MATLAB® and they can be found at http://www.geocities.com/g_anagnostop. We compare the 
classification performance of these architectures on the noisy square-in-the-square (NSIS) problem. This particular 
classification task considers a square of surface 1/2 centered inside the unit square. Patterns inside the inner square are 
labeled ‘1’, while the ones outside it are labeled ‘0’. Noise is introduced into the classification problem by flipping the 
class label of patterns from ‘0’ to ‘1’ and vice versa with a probability of 0.15. Obviously the optimal classifier for this 
task would achieve on average 85 percent correct classification (PCC) performance on any test set. In our experiments 
we used training, cross-validation and test sets of cardinalities 100, 1000 and 5000 respectively. All three sets were 
generated by randomly sampling points from the unit-surface square and then introducing noise as we have previously 
described. 
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In the sequel, we trained bEAM (including standard EAM and ProbEAM as special cases) and the three version of 
the RCE network on 100 different orders of training patterns. For each order we selected via cross-validation the best (in 
terms of PCC) 100 representatives for each architecture. Finally, we recorded the performance of these elite networks on 
a separate test set. For bEAM we used the following training parameter values: H =0.0, 0.05, ... 1.0 (21 values), P =0.2, 

0.4, … 1.0 (5 values), U =0.0, 0.02, … 0.98 (50 values), a=0.001 (1 value), J =1 (fast learning), Z =f and P/2 D  

for each value of P, which totaled 525000 bEAM off-line training sessions. Each training phase of bEAM was run until 
the corresponding network stabilized. For bEAM’s performance phase we used U =0 and Z =f to force classification of 
all patterns. ”Confused” categories were removed from bEAM prior to executing its performance phase. As we have 
mentioned in Section 3.2, bEAM becomes equivalent to EAM for H =0.0 and equivalent to ProbEAM for H =1.0. Finally, 
for the RCE networks we used Rmax = 0.0036, 0.0057, … 1.2489 (593 values) and performed a total of 177900 off-line 
training sessions. The results of our experiments are displayed in Figure 3 and Tables I. 
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Figure 3: Percent Correct Classification vs. values of H on the test set of the best 100 Boosted EAM networks 

for the noisy square-in-the-square problem. 

 
Figure 3 displays the maximum, average and minimum PCC on the test set of the 100 best bEAM networks, which 

were determined on the basis of their classification performance on the cross-validation set. The PCC statistics are 
graphed versus the value of the misclassification tolerance parameter H. We observe that as H is increases (as bEAM 
transitions from standard EAM to ProbEAM behavior), the maximum PCC has the tendency to increase as well. 
Simultaneously, however, the variability in PCC also increases, since, in general, the minimum PCC has the tendency to 
decrease. For values of H>0.7 the best bEAM networks feature a PCC that is 15% more than the one of the best EAM 
architecture. The previous fact demonstrates the efficiency of bEAM to cope with data-inherent noise through better 
generalization properties than EAM in the NSIS problem. Evidently, for this problem EAM tends to over-fit the training 
data more than bEAM does. A final observation is that for values of H >0.8, the tolerance H has no effect on the training 
of bEAM for the classification problem at hand: choosing H =0.85 or H =1.0 (ProbEAM) seems to yield identical 
architectures for the same values of the rest of the network parameters and the same order of training pattern 
presentation.    

Table 1 compares the performance (PCC on the test set) statistics of bEAM to the ones of EAM, ProbEAM, and the 
three RCE variants. Our first observation is that the family of ellipsoid networks outperforms the RCE family by at least 
2% in maximum PCC. The RCE networks seem to suffer from over-fitting like the standard EAMs do. The best 100 
networks seem to be bEAMs that were trained with H =0.75. Although these networks feature a maximum PCC value 
equal to the one exhibited by the 100 best ProbEAMs, their average PCC value is almost 1.5% better than the 
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corresponding value for the ProbEAMs. This difference in average PCC is significant, since 5000 test patterns were used 
to evaluate performances.    

 

Table 1: Comparison of PCC statistics on the test set for the champion network of each type. 

Architecture Maximum PCC Average PCC Minimum PCC Std. Dev. PCC 
Boosted EAM 71.12 53.1992 36.12 5.700601 

Probabilistic EAM 71.12 53.0564 36.12 5.735463 
EAM 56.66 50.9618 43.26 2.943694 

L1-norm RCE 52.3 50.761 49.66 0.485502 
L2-norm RCE 52.66 50.6864 48.52 1.018547 
L
f
-norm RCE 53.28 51.0718 49.62 0.926552 

 
 

5. SUMMARY 
 

In this paper we introduced Boosted Ellipsoid ARTMAP as a variant of Ellipsoid ARTMAP that can potentially 
reduce its generalization error and ameliorate the phenomenon of category proliferation, while maintaining self-
stabilization during fast off-line learning. Furthermore, the newly introduced variant is capable of coping with 
inconsistent training patterns. We also presented some limited, preliminary results that show the potential of Boosted 
Ellipsoid ARTMAP as a classifier. Finally, by designing this last architecture we have demonstrated that modifications 
and extensions of Fuzzy ARTMAP can be readily and easily applied to Ellipsoid ARTMAP as well. 
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APPENDIX 
 
The following pseudocode implements the performance phase and the training phase for off-line, fast learning (�=1) of 
the Boosted Ellipsoid ARTMAP classifier. Lines starting with “//” imply comments and the assignment operator is 
denoted as “:=”. 
 
 
 

// Training Phase of Boosted EAM: 
// Set in_training_phase:=true 
// Provide values for the network parameters: H�[0,1], P�(0,1], U�[0,1], 'U<<1,a>0, Z t0.5 
// To use bEAM as ProbEAM set H=1 
// To use bEAM as EAM set H=0   
// To use bEAM as HAM set H=0 and P=1 
// Set the initial number of committed nodes N:=0 
// It is assumed that the training set consists of P>1 normalized pattern-label pairs 
// of the form {xp, lp} p=1..P, where lp �{1,..,C} and xp �[0,1]M (M is the dimensionality 
// of the patterns).  
// Set all the map field weights wjk:=0 j=1..Nun and k=1..C, 
// where Nun is the total number of uncommitted F2-layer nodes in the ARTa module 
// of bEAM and C is the number of class labels. Note that prior to training bEAM 
// starts off with all F2-layer nodes in the ARTa module being uncommitted.  
// 
// Performance Phase of Boosted EAM: 
// Set in_training_phase:=false 
// Provide values for the network parameters: U�[0,1], a>0, Z t0.5 
// It is assumed that during training N categories have been created and their description 
// is summarized in the pairs {wj, D(j)} j=1..N, where D(j) is the dominant label of category j. 
// It is assumed that the test set consists of P>1 normalized, unlabeled patterns xp�[0,1]M p=1..P 
// To force classification of all test patterns use U=0, Zof and eliminate all categories j,    
// for which D(j)=confused. 
 
 
// Initialization 

Set
P

M
D  : , 

aD

D
Tu

�
 

Z2
:  

 
 
DO 
{ // Pattern List Presentation Loop. 

FOR p:=1..P  DO 
{ Set S:=� 

 
  // Loop for the calculation of CMF and CCF values. 
  FOR j:=1..N  DO 

  { Calculate 
¿
¾
½

¯
®
­

�� jjpjp Rdis
jC

mxwx ,0max:),( with help of Equation 2 

   IF 0),( !jpdis wx  THEN 

   { Calculate 
D

disR jpj
pj

),(2
1:)|(

wx
xw

�
� U  

    // Perform the Vigilance Test (VT) 
    IF UU �)|( pj xw THEN NEXT j 

   } 
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   // Observe that, if 0),(  jpdis wx , category j is guaranteed to pass the VT. 

 

Calculate 
aRD

disRD
T

j

jpj
pj

��

��
 

2

),(2
)|(     

wx
xw  

Include j in S. 
 
  } // End of j-loop 
 
  Set J:=none 
 
  WHILE Sz� DO 
  { // Find the node J with maximum CCF value. 
   // If more than one node features the maximum CCF value, 
   // pick the one of lowest index. 
   Find ^ `)|(maxarginf: pj

Sj
TJ xw

�

  

 
   IF in_training_phase=false THEN 
   { // Perform the Commitment Test (CT). 
    IF upJ TT �)|( xw THEN set J:=none 

    EXIT WHILE LOOP 
   } 
 
   // The following actions are performed only during the training phase. 
   // Perform the Commitment Test (CT). 
   IF upJ TT �)|( xw THEN exclude J from S. 

   ELSE IF upJ TT t)|( xw THEN 

   { // Category J passed the CT. 
    // Now perform the Prediction Test (PT). 
 

    IF lp=D(J) OR H�t

�¦
 

1

1
1

,

)(,

C

c
cJ

JIJ

w

w
THEN EXIT WHILE LOOP 

    ELSE IF IF lpzD(J) AND H��

�¦
 

1

1
1

,

)(,

C

c
cJ

JIJ

w

w
THEN 

{ // Category J is not suitable for update, 
  // since it failed the PT. We must search for 

// another eligible category. 
 
Exclude J from S. 

 
 // Perform Match Tracking (MT) 
 Set UUU '� )|(: pJ xw  

 
Set J:=none 

} 
   } 
  } // End of while-loop 
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  IF J=none THEN 
  {  // An uncommitted node was chosen by xp. 
   // This means that xp. is an atypical pattern that could not be classified. 

 
IF in_training_phase=false THEN report that pattern xp‘s label is unknown. 
ELSE IF in_training_phase=true THEN 
{ // Create new category by committing node J  

    Set ppJJpJ lJDlJIR      :)(,:)(,0:,:,: 0dxm  

Set N:=N+1 
   } 
  } 
  ELSE IF Jznone THEN 
  { // An already committed node was chosen by xp. 
 
   IF in_training_phase=false THEN report that pattern xp‘s label is D(J). 

ELSE IF in_training_phase=true THEN 
{ // Category J is eligible to be updated. 

Set 1:
pp ,, � lJlJ ww  

 
// Recalculate the dominant label of J 
Find ^ `cJ

c
wL ,maxarg:  

IF L is a non-unique maximizer of wJ,c THEN set D(J):=confused 
ELSE IF L is the unique maximizer of wJ,c THEN set D(J):=L 
 
// Update category J. 
// Observe that due to bEAM’s learning law in Equations 
// 10-12, if 0),(  Jpdis wx , no update occurs. 

IF 0),( !Jpdis wx  THEN 

{ IF RJ=0 THEN set 

2

:
Jp

Jp
J

mx

mx
d

�

�

  

Calculate ),(
2

1
: JpJ disR wx '  

 Set JJJ RRR '� :  

 Set 

JCJp

Jp
JJJ R

mx

mx
mm

�

�
'� :  

} 
} 

  } 
 
 } // End of p-loop 
 
 // The outer while-loop is only executed once during performance phase 
 IF in_training_phase=false THEN EXIT DO-WHILE 
 
} WHILE no new categories have been created and no categories have been updated during the last list presentation (epoch). 
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