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ABSTRACT 
 

 
In this paper, we introduce a modification of the Fuzzy ARTMAP (FAM) neural network, namely, the Fuzzy ARTMAP 
with adaptively weighted distances (FAMawd) neural network. In FAMawd we substitute the regular L1-norm with a 
weighted L1-norm to measure the distances between categories and input patterns. The distance-related weights are a 
function of a category’s shape and allow for bias in the direction of a category’s expansion during learning. Moreover, 
the modification to the distance measurement is proposed in order to study the capability of FAMawd in achieving more 
compact knowledge representation than FAM, while simultaneously maintaining good classification performance. For a 
special parameter setting FAMawd simplifies to the original FAM, thus, making FAMawd a generalization of the FAM 
architecture. We also present an experimental comparison between FAMawd and FAM on two benchmark classification 
problems in terms of generalization performance and utilization of categories. Our obtained results illustrate FAMawd’s 
potential to exhibit low memory utilization, while maintaining classification performance comparable to FAM.   
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1.  INTRODUCTION 

 
FuzzyARTMAP1 (FAM) is a neural network architecture with deep roots in the adaptive resonance theory (ART) 

paradigm2 proposed by Grossberg. The primary purpose of FAM is to learn cluster associations (mappings) between an 
input and an output domain. As a special case, it is capable of performing classification tasks, when the output domain 
coincides with a set of pertinent class labels. FAM is based of Fuzzy ART3 (FA), which is used for clustering. To perform 
its learning task, FAM (and FA) summarizes similar input patterns of the same class label into FA categories. These 
categories are constructed in a self-organizing fashion and constitute the building block of knowledge/memory 
representation. Furthermore, their geometric representations are axis-parallel hyper-rectangles embedded in the data 
domain. It is the use of categories for clustering that makes FAM an exemplar-based architecture. FAM features several 
desirable characteristics. First, it is simultaneously capable of off-line (batch) and on-line (incremental) learning. In the 
first mode FAM learns its task after repeatedly presenting the entire training set, while in the second mode FAM 
incrementally incorporates new evidence as it becomes available.  Under fast learning rule1 assumptions, FAM exhibits 
fast, stable and finite off-line learning: the networks’ knowledge stabilizes relatively fast after a finite number of list 
presentations (epochs). Furthermore, due to the nature of its architecture, it is easy to explain FAM’s responses to 
specific input patterns, in contrast to other neural network models, where in general it is difficult to explain why an input 
pattern x produced an output y. An important characteristic of FAM is the employment of novelty detection mechanisms 
that identify input patterns not typical in relation to previously experienced inputs. This novelty detection capability of 
FAM constitutes the backbone of its match-based learning. 
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FAM’s representation and learning rules induce a L1-norm geometry. For example, distances of input patterns from 
clusters are measured using the L1 (city-block, Manhattan) distance. Our intent in this paper is to study a modification of 
the basic FAM architecture, which we call Fuzzy ARTMAP with adaptively weighted distances (FAMawd). In the 
introduced architecture distances are measured using a weighted version of the L1 distance, whose weights depend on the 
shape of the category (cluster). This allows for increased selectivity of direction in the input domain, when categories 
expand during learning. The modification to the distance measurement is proposed to study the capability of FAMawd to 
achieve more compact knowledge representation than FAM, while simultaneously maintaining good classification 
performance. Towards that goal, we compare the original FAM to FAMawd on two benchmark classification problems 
in terms of both performance and number of categories employed. The obtained results approve to be very favorable for 
the case of FAMawd, which is capable of achieving comparable generalization to FAM utilizing, though, fewer 
categories. 

The rest of the paper is organized as follows. In Section 2 we provide some background on FAM, such as the 
description of FA categories and the architecture’s two phases of operation. In Section 3 we introduce the modification 
to FAM that gives rise to FAMawd. Section 4 presents the results of our simulations and, finally, in Section 5 we 
summarize our approach and experimental findings.  

 
 

2.  ELEMENTS OF FUZZY ARTMAP 
 
A block diagram of FAM is depicted in Figure 1. The architecture consists of two FA modules, ARTa and ARTb, that 

cluster patterns from the input and output space respectively. These two modules are interconnected with an inter-ART 
module (map field), which stores the information regarding the associations between input and output clusters. It is 
assumed that the data domain for each FA module is the set UM (unit hyper-cube), where U=[0,1] and M is the 
dimensionality of the domain. Moreover, each FA module consists of three layers: Fo, F1 and F2. Layer Fo performs 
complement coding on the input patterns. Complement coding refers to the transform of an input row vector x to xe=[x 
xc]=[x 1-x], where 1 is the all-ones row vector.  The complement-coded patterns xe are eventually presented to the F1 
layer (presentation layer). Layers F1 and F2 are interconnected via top-down and bottom-up connections and each one of 
these connections feature a weight. In specific, the vector wj consisting of all top-down weights emanating from F2-layer 
node j is called template of j. The F2 layer (representation layer) itself is a MAXNET featuring inhibitory lateral 
connections and consists of two types of nodes: committed and uncommitted. Committed nodes feature a template that 
contains the description of a single FA category (cluster) that has been learned via training and which summarizes the 
patterns that have been encoded by the corresponding F2-layer node. In contrast, uncommitted nodes do not correspond 
to real categories and constitute the blank memory of the system. Finally, each FA module also contains a reset node to 
disable F2-layer nodes under certain circumstances, which are going to be clarified later in the text. As we have 
mentioned earlier, cluster associations are learned by the map field of FAM. During training, when ARTa chooses to 
incorporate a specific pattern into a category, such that it would violate an already learned association to a second 
category in ARTb, FAM responds by performing a lateral reset of the offending F2-layer node in ARTa and engages 
match tracking (MT). Let us note that for classification tasks the role of the ARTb module in FAM becomes trivial. The 
output domain is the set of class labels pertinent to the classification problem at hand and ARTb will create a distinct FA 
category for each class label. Since FAM finds more applications as a classifier, in the future, when we will refer to 
FAM and its network parameters, we will mean the FAM classifier and its ARTa module’s network parameters. Also, 
when we will refer to F2-layer nodes we will refer to the ones in FAM’s ARTa module. 

The geometric representation of an FA category (or simply, category) is a hyper-rectangle embedded in the input 
domain of FAM’s ARTa module. It is the description of this hyper-rectangle that is stored in the category’s template. For 
a F2-layer node j its template wj is of the form wj=[uj vj

c]∈ U2M, where uj, vj∈ UM are its template elements. Due to 
FAM’s learning scheme, for every template it always holds that ujm≤vjm with m=1..M. Therefore, the template elements 
uniquely define a category, whose geometric representation is a hyper-rectangle. Uncommitted nodes feature a template 
of wu=wu1 with wu∈ U2M, where wu≥1 is one FAM’s network parameters. Let |⋅|:U2M →R to be the L1 norm for the U2M  
domain and ||⋅||1:UM →R to be the L1 norm for the UM domain. Additionally, let us define the min-operator ∧ :U2M×U2M 
→U2M, such that, if w1, w2∈ U2M and w3= w1∧ w2, then the mth component w3m of vector w3 is w3m=min{w1m, w2m}. 
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Figure 1: Block diagram of Fuzzy ARTMAP. 

 
 
Then we define as the size s(wj) of a category j the quantity 
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Note, that for every input pattern x∈ UM and template wj it holds 
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Based on Equations 1 and 2, we define as the distance of a pattern x∈ UM from category j the quantity 
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Also, we define as representation region R(wj) of a category (committed node) j with template wj the following subset of 
UM 
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An example of a FA category j for 2-dimensional input space is depicted in Figure 2. The union of the illustrated 
shaded area and the boundaries of the rectangle defined by uj and vj, corresponds to the representation region R(wj) of 
category j. Also depicted in the same figure, dis(x,wj) reflects the minimum L1 distance  (also known as city-block or 
Manhattan distance) between pattern x and category’s j representation region. Note that, if x were inside or on the 
borders of the rectangle, its distance from category j would have been 0. 
 
 

u j

s(w j)

v j

dis(x ,w j)

x  

Figure 2: Geometric representation of FA category j assuming a 2-dimensional input space. 

 
 
FAM has two modes of operation: training phase and performance phase. Both phases are of similar nature except 

that during performance phase no learning is performed. Learning itself in FAM is achieved by creating and then 
updating categories. More specifically, during its training phase FAM incrementally clusters input domain data into 
categories by committing F2-layer nodes and by updating appropriately their templates. Simultaneously it forms 
associations of categories to class labels via its map field. Before any learning takes place, all F2-layer nodes are 
uncommitted. As more knowledge is accumulated about the pattern domain during training, F2-layer nodes become 
gradually committed. 

Upon presentation of a specific input pattern x, F2-layer nodes compete in terms of their category choice function 
(CCF – also known as activation function) values. In this paper we consider two types of CCF, namely the Weber Law 
(WL) and the Choice-by-Difference4 (CBD), which are given in Equations 5 and 6 respectively. 
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In the above definitions a is a FAM network parameter; for the case of the WL choice function a∈ (0,∞) and for the case 
of CBD choice function a∈ (0,1). During the competition the node of the highest CCF value T(wj|x) and smallest index j 
is declared as being the winner. Uncommitted nodes also participate in the competition with a constant CCF value of Tu 
for all input patterns x that is parameterized by wu. The expressions of Tu for the WL and CBD choice functions are 
given in Equations 7 and 8 respectively.   
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The competition of a committed node j against an uncommitted is termed as commitment test (CT). Category j satisfies 
the CT for a given pattern x if the following inequality holds 
 

 uj TT ≥)|( xw . (9) 

 
Non-satisfaction of Equation 9 means that x will choose an uncommitted node over node j. The CT is implicitly 
performed during the node competition for pattern selection that we have described here.   

Upon completion of identifying the winning node J (which might be committed or uncommitted), its category match 
function (CMF) value ρ(wJ|x) is being calculated. The CMF for a committed node j is given in Equation 10, while for an 
uncommitted node j it is defined to be constant ρ(wj|x)=1 for all patterns x. 
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Next, the CMF value ρ(wJ|x) of J is compared to the vigilance network parameter value ρ∈ [0,1]. This comparison, 
which is called vigilance test (VT), checks if the following inequality holds: 
 

 ρρ ≥)|( xw J . (11) 

 
If Equation 11 is not satisfied, then J is temporarily reset via the module’s reset node (mismatch reset – its CCF value is 
set to zero) until the presentation of the next input pattern. With J effectively excluded from the competition, the search 
continues for the category featuring the highest CCF value among the remaining ones. If all categories become gradually 
reset, an uncommitted node will eventually emerge as the winning node; then we say that x chooses an uncommitted 
node. On the other hand, if Equation 11 is true, we say that pattern x chooses node (category) J. 

If FAM is operating in its performance phase, the network reports the class label associated to category J as being the 
class label of x. On the other hand, if FAM is operating in training phase, a prediction test (PT) is performed: if the class 
label associated to J differs from the class label of pattern x, letting J be modified by x would cause its misclassification. 
Therefore, a lateral reset will occur, so that T(wJ|x) is reset to 0 and node J  will be effectively removed from the node 
competition process until the next input pattern is presented. Next, MT is engaged, which temporarily raises the 
vigilance ρ from its baseline value to a new value of ρ(wJ|x)+ε with ε<<1 and the node competition process resumes 
until finally a suitable node has been identified that was chosen by x and that makes the correct class label prediction. 
Then, the vigilance parameter ρ is set back to its baseline value. At this point let’s assume that the class label associated 
to J coincides with the class label of pattern x. The final step in the learning process is to modify J’s template in light of 
the new information x. If J is an uncommitted node, then x will initiate the creation of a new category by modifying its 
template to 
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This type of category and any other category j that features s(wj)=0 is called a point category. If J is an already 
committed node with template wj

old, its template will be updated to wj
new as follows: 
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where γ∈ (0,1] is the learning rate parameter of FAM. When γ=1, FAM is said to be performing fast learning, otherwise 
slow learning. The learning rule in Equation 13 causes the representation region of J to expand in the direction of x. In 
particular, for fast learning its new representation region will be the minimum hyper-volume hyper-rectangle that 
contains both the old representation region and pattern x. For any value of the learning rate it can be shown from 
Equations 1,2,3 and 13 that the size of J and the distance of x from J after the update are given by 
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Figure 3 illustrates the above observations for an update of a 2-dimensional category j. Updated template elements uj

new1, 
vj

new1 result, when slow learning is in effect, and elements uj
new2, vj

new2 , when fast learning is used.  
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Figure 3: FA category updates - slow vs. fast learning. 

 
 
After a category has been updated or created, training proceeds with the presentation of the next input pattern and so 

forth. A complete presentation of the entire training set is called a list presentation (epoch).  When using fast learning we 
say that FAM has completed its learning task (converged), when after a complete list presentation no categories were 
created or updated. 

Before we bring this section to a closure, it is important to underline the role of VT and CT in the operation of FAM. 
The VT is a category-filtering mechanism and is one of the components that implement the match-based aspect of FAM. 
If a category j does not satisfy the VT with respect to a specific input pattern x, this can be interpreted as “x does not 
match the geometrical characteristics of j and therefore should not select j”. In the past it has been shown5,6 that the CT, 
i.e., the competition against uncommitted nodes, is a category-filtering mechanism similar (but not identical) to the VT. 
In essence, both the CT and the VT act as novelty detection mechanisms and are able to detect patterns that are atypical 
with respect to whatever input has been experienced in the past by the FAM network.  

 
 

3.  FUZZY ART/ARTMAP WITH ADAPTIVELY WEIGHTED DISTANCES 
 

In this paper we propose a modification to FAM, namely the adoption of a different distance measure, yielding a 
variant of FAM, which we call Fuzzy ARTMAP with adaptively weighted distances (FAMawd). For each category j that 
is competing for a pattern x let us define the vector quantities 
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The mth component ljm of lj equals the length of j’s representation region (hyper-rectangle) along the mth axis. On the 
other hand, the mth component djm of dj equals the minimum L1 distance of pattern x from j’s representation region along 
the mth axis. Obviously, it holds 
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Next, in Equation 20, we introduce the new distance measure that will be used in FAMawd for calculating the distance 
of a pattern x from the representation region of any category j. 
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where lj

ref is a function of category j’s lengths lm, m=1…M and is called reference length for j. The new distance measure 
is parameterized by λ∈ (0,1]. Notice that when λ=1 for any choice of lj

ref the distance defined in Equation 20 becomes 
the regular city-block distance used in FAM, that is, 
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Furthermore, it can be easily shown that for any choice of reference length lj

ref the weighted L1 distance dis(x,wj|λ,ref) is 
bounded as 
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although the above bounds are not necessarily tight. Typical choices for lj

ref can be lj
max and lj

avg, which are defined 
below: 
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Also, we designed FAMawd to use the following CMF: 
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Moreover, the expressions for Weber Law and Choice-by-Difference CCF in FAMawd take the form displayed below: 
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Equations 25, 26 and 27 use a network parameter D>0, such that ρ(wj|x)≥0 for every category j and pattern x. In our 
design we have used the following values of D, when lj

max (Equation 28) and lj
avg (Equation 29) are used for the 

calculations of weighted distance:   
 

 
λ

1
1

−+= M
D . (28) 

 

 

odd  if     

even  if     

1
1

4

1
1

4

1
1

2
M

M

M
M

M

D



























 −−+





 −+

=

λ
λ

λ
λ

. (29) 

 
Notice that the CMF and CCF expressions in Equations 25, 26 and 27 simplify to the ones of FAM’s depicted in 
Equations 10, 5 and 6, when λ=1. Aside from the different CMF and CCF expressions, the operations and features of 
FAMawd are identical to the ones of FAM. Therefore, we can state that FAM is a special case of the FAMawd network. 
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Figure 4: Contours of constant weighted L1 distance for different values of λ. 

In subfigure (a) lj
ref = lj

max is used and in subfigure (b) lj
ref = lj

avg. 

 
 

The effect of using the weighted L1 distance of Equation 20 for a 2-dimensional category in FAMawd is presented in 
Figure 4. The contours that are plotted for 3 different values of λ around the category’s representation region correspond 
to the points of the input domain that are located at a constant weighted L1 distance from the category. It should become 
apparent that categories in FAMawd will tend to expand during training along the axis, for which they feature maximum 
length. In other words, categories in FAMawd will tend to preserve their already formed direction throughout the 
training phase. It is also important to point out that the newly introduced distance, as defined in Equation 20, features 
weights that adapt according to the particular shape of a category after it becomes updated pronouncing this way the 
preservation of direction.  
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4.  EXPERIMENTAL RESULTS 
 
In order to compare the FAMawd and the FAM architectures we have performed preliminary experiments on two 

different data sets. The first data set consists of 2200 patterns obtained from the abalone7 database. The first 200 patterns 
were used for training, the next 1000 patterns for validation, and the last 1000 for testing. The second experiment is the 
“circle in a square” problem, where the circle is located at the center of the square and occupies half the square’s area. 
The data set consists of 10200 patterns. The first 200 patterns were used for training, the next 5000 patterns for 
validation, and the last 5000 for testing. For the experiments we considered 30 orders of pattern presentation and 20 
different values (0,0.05,…, 0.95) for the vigilance parameter ρ. Also, for the parameter α we considered 9 different 
values (0.1, 0.2, …, 0.9) for the CBD choice function and 7 values (0.0001 0.001 0.01 0.1 1.0 10.0 100.0) for the Weber 
Law choice function. Finally, we used 11 different values (0.5, 0.55, ..,1) for the parameter λ. Let us note that in all of 
our experimentations we assumed that wu→∞. 

We have used cross validation for each order of pattern presentation. More specifically, one FAM network and one 
FAMawd network are selected for each order. These are the ones that maximize the percent correct classification (PCC) 
on the validation set with respect to the different architecture parameters. The networks chosen via the cross validation 
procedure could be the ones that maximize the PCC on the validation set with respect to both the different architecture 
parameters and the different orders of pattern presentation. However, we have treated the two (architecture parameters 
and orders of pattern presentation) separately. The justification is that the PCC on the validation set can be sufficiently 
examined for the different parameters if a large set of parameter values is chosen. In contrast, there can be an 
exceptionally large number of different orders of pattern presentation, so that it is unrealistic to use cross validation for 
all possible orders. 

Therefore, in order to present a fair comparison between FAM and FAMawd we have plotted the PCC on the test set 
versus the corresponded PCC on the validation set and also the number of nodes created versus the corresponded PCC 
on the validation set. These plots for both experiments are shown in Figures 5 and 6. Figure 5 shows the results for the 
experiments on the abalone data set. Figures 5(a) and 5(b) present respectively the PCC on the test set and the number of 
nodes created versus the PCC on the validation set for all 30 orders of pattern presentation using CBD. Figures 5(c) and 
5(d) present the corresponding results, when using WL. In each plot, we also show the two lines that best fit the points 
that correspond to FAM and FAMawd. From Figures 5(b) and 5(d) we can conclude that the number of nodes created for 
orders that have given a high PCC on the validation set is generally smaller for FAMawd than for FAM. The latter is 
verified by the more negative slope of the line that best fits the points for FAMawd in both plots. For instance, the 
average number of nodes for the orders of pattern presentation that have given the best 7 PCC scores on the validation 
set is 128 for FAM and for 108 FAMawd, when using CBD, and 78 for FAM and 55 for FAMawd, when using WL. On 
the other hand, there is no specific pattern for the PCC on the test set, and the two architectures seem to have similar 
performance. For instance, the average PCC for the orders of pattern presentation that have given the best 7 PCC scores 
on the validation set is 46.1% for FAM and for 46.2% FAMawd, when using CBD, and 46.3% for FAM and 46.1% for 
FAMawd, when using WL. 

Similar conclusions can be drawn from the results presented in Figure 6 for the “circle in a square” experiment. 
Again, from Figures 6(b) and 6(d) we can conclude that the number of nodes created for those orders that have given a 
high PCC on the validation set is smaller for FAMawd than for FAM. For instance, the average number of nodes for the 
orders of pattern presentation that have given the best 7 PCC scores on the validation set is 79 for FAM and for 69 
FAMawd , when using CBD, and 61 for FAM and 42 for FAMawd, when using WL. Again, there is no specific pattern 
for the PCC on the test set, and the two architectures seem to have similar performance, with a slightly better PCC for 
the FAMawd. The average PCC for the orders of pattern presentation that have given the best 7 PCC scores on the 
validation set is 96.3% for FAM and for 96.5% FAMawd, when using CBD, and 96.1% for FAM and 96.6% for 
FAMawd , when using WL. 
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Figure 5. Results for the abalon data set: (a) PCC on the test set versus PCC on the validation set (choice by difference), (b) 

Number of nodes created versus PCC on the validation set (choice by difference), (a) PCC on the test set versus PCC on the validation 

set (Weber’s Law), (a) Number of nodes created versus PCC on the validation set (Weber’s Law). 
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Figure 6. Results for the “circle in a square” problem: (a) PCC on the test set versus PCC on the validation set (choice by 

difference), (b) Number of nodes created versus PCC on the validation set (choice by difference), (a) PCC on the test set versus PCC 

on the validation set (Weber’s Law), (a) Number of nodes created versus PCC on the validation set (Weber’s Law). 

 
 

5  SUMMARY AND CONCLUSIONS 
 
In this paper, we proposed a modification of the Fuzzy ARTMAP (FAM) neural network, namely, the Fuzzy 

ARTMAP with adaptively weighted distances (FAMawd) neural network. In FAMawd we substitute the regular L1-norm 
with a weighted L1-norm to measure the distances between categories and input patterns. The distance-related weights 
are a function of a category’s shape and allow for bias in the direction of a category’s expansion during learning. 
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Moreover, the modification to the distance measurement is proposed in order to study the capability of FAMawd in 
achieving more compact knowledge representation than FAM, while simultaneously maintaining good classification 
performance. For a special parameter setting FAMawd simplifies to the original FAM, thus, making FAMawd a 
generalization of the FAM architecture. We also presented an experimental comparison between FAMawd and FAM on 
two benchmark classification problems in terms of generalization performance and utilization of categories. The results 
showed that the proposed FAMawd neural network creates, in general, smaller architectures than the original FAM 
neural network for those orders of pattern presentation that result in a large percent of correct classification (PCC) on the 
validation set. This is a significant result, since networks with high PCC on the validation set are more likely to be 
chosen as the final candidates. In summary, our results illustrate FAMawd’s potential to exhibit low memory utilization, 
while maintaining classification performance comparable to FAM. 
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