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Abstract ~ In this paper we introduce Boosted Ellipsoid
ARTMAP (bEAM), a variant of Ellipsoid ARTMAP,
which via a tunable misclassification error tolerance
increases the network’s resubstitution error and
implicitly performs structural risk minimization.
bEAM  constitutes another example of how
modifications to Fuzzy ARTMAP can be naturally
extended to Ellipsoid ARTMAP.

1. INTRODUCTION

Ellipsoid ARTMAP (EAM) is a neural network
architecture rooted on the foundations of Adaptive
Resonance Theory (ART) presented by Grossberg [1]. It is
a machine that can learn associative mappings from an
input domain to an output domain and, as a special case, it
can be utilized as a classifier. EAM appeared in [2] as a
generalization of Hyper-sphere ARTMAP (HAM) [3]. It is
an alternative architecture to Fuzzy ARTMAP (FAM) [4]
in the sense that it uses a different geometry for category
formation and representation. While FAM constructs and
updates categories, whose geometric representation are
axis-parallel  hyperrectangles embedded in the
input/output domains, EAM employs arbitrarily oriented
hyper-ellipsoids to describe distributions of similar data.
While FAM measures sizes of categories and distances of
patterns from categories via an L; metricc, EAM
accomplishes the same task using weighted L, metrics.
Using appropriate learning parameter settings, EAM
simplifies to HAM and uses L;-based distances and sizes
to cluster relevant data into hyper-spherical categories.

EAM is a successful attempt to derive an ART-based
architecture that shares the main characteristics and
properties of learning with FAM, while using a different
approach to category description. Therefore, by design,
EAM is capable of both on-line (incremental) and off-line
(batch) learning. Also, an important component of EAM’s
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training and performance phase is the capability of detecting
atypical patters, which do not match the structural
characteristics of already formed categories. Furthermore, by
using local encoding of information, EAM is a transparent
learning machine, in contrast to opaque neural network
architectures, for which it is difficult, in general, to explain why
an input x produced a particular output y. Additionally, EAM’s
most interesting and appealing property is the one of self-
stabilization in off-line mode via fast learning (see Section
11.C). Under these circumstances EAM displays fast, finite and
stable learning: in a usually small, finite number of [list
presentations (epochs) the network’s weights converge, which
implies that after a point no categories are being created and
already existing categories are not being updated anymore.

However, this desirable characteristic of fast self-stabilization
is accompanied by a (rather unwanted, in many cases) side
effect: a resubstitution error [5] of zero. Stated in a different
way, after fast off-line training has completed, EAM has
memorized its training set to perfection without committing any
errors. Therefore, if EAM is tested on its training set, the
percent correct classification will be 100%. Note that by virtue
of a zero resubstitution error, the EAM classifier operating in
off-line mode via fast learning law belongs to the family of
consistent [5] classifiers. Especially in the case of abundant
noise present in the training data or in the case of highly
overlapping classes in the framework of a classification task this
type of over-fitting may cause problems to EAM’s performance
on a test or cross-validation set by affecting its ability to
generalize. In this scenario EAM will tend to memorize the
noise and will fail to capture the general, underlying
characteristics of the training data. In other words, fast off-line
learning tends to increase EAM’s generalization error to a
degree that depends on the nois e inherent in the training set. An
additional byproduct of memorizing inherent noise is the
phenomenon of category proliferation, in which EAM will
create an increased number of categories in order to cluster
appropriately the data and avoid prediction errors.
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An ideal approach would be to design an EAM variant
that combines the merits of both fast off-line learning and
good generalization capabilities. The latter one could be
achieved with a design that allows for a resubstitution error
larger than zero. A first attempt along this direction has
been successfully implemented in Boosted ARTMAP-S
(bARTMAP-S) [6]. It is a variant of FAM with a tunable
misclassification tolerance parameter that determines the
level of the resubstitution error. It has been shown in [6]
that bBARTMAP-S is capable of reducing its hypothesis
complexity (it minimizes structural risk [7], [8]) and
manages to reduce the gap between resubstitution error
and error on a test set, in an indirect fashion.

In this paper we adopt a similar approach to
bARTMAP-S and we apply it to EAM in order to improve
its generalization ability and reduce the effect of category
proliferation when it is trained using fast off-line learning.
We call the new architecture Boosted Ellipsoid ARTMAP
(bEAM) to indicate its connection to the principals of
bARTMAP-S. First, we are going to present an overview
of EAM, then we will continue with the description of
bEAM and finally we will present some limited,
preliminary  experimental  results, which clearly
demonstrate the viability of our approach.

II. ELLIPSOID ARTMAP

In this section we present some important aspects of
EAM such as its major components, the way it describes
categories, its operation and the way it performs learning.

A. Overview of the Ellipsoid ARTMAP Architecture

EAM consists of two ART modules interconnected via
an inter-rART module (also known as map field). Each
ART module is in essence an Ellipsoid ART (EA) [2]
network. While ART, clusters patterns of the input space,
ART, clusters patterns of a related output space.
Moreover, clustering in each module is performed by
grouping together similar patterns into EA categories (or
simply stated, categories). The information that describes
associations between input and output categories is
encoded in the weights wy of the map field. Each module
consists of two layers (fields): the F; layer and the
representation layer F;,. In contrast to FAM, EA/EAM lack
a coding layer F,, because they do not need to perform
complement coding on its input patterns. Both F; and F,
consist of an array of nodes that are interconnected across
layers via bottomup W; and top-down weights w;. The
latter ones are also called templates. Especially the F layer
features two kinds of nodes: committed and uncommitted.
The former kind is associated to a template that contains
the description of a single category. The latter ones have
“blank” templates and correspond to the system’s available
memory of the system that is used to learn data clusters.
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B. Ellipsoid ART Categories

As we have mentioned before, EAM (and EA) summarizes
data into groups via the use of categories. In EA/EAM the
geometric representation of these categories are hyper-ellipsoids
embedded in the data domain. As shown in the Figure 1, each 2-
dimensional category j corresponds to a committed node j and is
characterized by a collection of descriptive quantities: a location
(center) vector my, an orientation vector d; and the length R; of
its major semi-axis ¢adius). The collection of these quantities
constitute the node’s template w=[ my, d;, R;]. For uncommitted
nodes the templates cannot be defined in this manner, since they
do not correspond to “real” categories. The shaded area in
Figure 1 is called the representation region of category j and it
encompasses all patterns that the category has encoded.

During the training phase of EA and EAM, learning is
accomplished by creating new categories or by expanding
already existing ones. A category’s template elements are
updated incrementally in the light of new evidence provided by
the presentation of input patterns. An idiosyncrasy of EA/EAM
is that during the training phase the orientation of the hyper-
ellipsoids, once decided as suggested by training patterns, will
remain fixed despite of potential, future updates. Moreover,
during training the ratio of any minor semi-axis length over the
length of the major semi-axis is always held constant to a
predetermined value £&(0,1], which is common to all categories
in the same EA module. It is shown in [9] that exactly this
behavior guarantees the fast off-line, self-stabilizing learning
property of EA and EAM.

Figure 1: Ellipsoid ART category embedded in a 2-dimensional input space.

Once it is decided that a pattern x is going to be encoded into
a specific category, in all of these architectures the category will
expand enough to include this pattern in its representation
region. More precisely, for Fuzzy ART (FA) {10] and FAM the
representation region of the updated category will be the
minimum hyper-volume, axis-parallel hyperrectangle that
contains both the entire, former representation region and the
newly encoded pattern x. Similarly, in EA/EAM, Hypersphere-
ART (HA) [3] and HAM the updated representation region of
an EA (HA) category will be the minimum hyper-volume hyper-
ellipsoid (hyper-sphere) that simultaneously contains both the
entire, pre-update representation region and the new pattern.

C. Operation of Ellipsoid ARTMAP

EAM has two modes of operation: training phase and
performance (testing) phase. In the first phase the network

2651



learns the associations between input domain and output
domain categories. Its performance phase is functionally
comparable to its training phase with the exception that no
categories are updated and no new ones are created.
Therefore it suffices to only describe the training phase.
Prior to any training all F, layer nodes in both ART, and
ART}, modules are uncommitted reflecting the fact that the
system starts with a blank memory. When training
commences, real-valued input-output pairs (x,y) of training
patterns are presented on at a time. In on-line learning
mode each pattern is presented to the network only once.
In contrast, during off-line learning each pair is presented
repeatedly. A single presentation of the complete training
set constitutes a list presentation (epoch). Thus, off-line
learning may involve several list presentations.

During the progress of the training phase some of the F,
layer nodes may be already committed and correspond to
learned clusters. Upon presentation of a pattern x to the
ART, module, all the nodes, committed and uncommitted,
will compete for this pattern in terms of category choice
function (CCF - or simply, activation) values. For a
committed node j the CCF value is defined as

D—Rj —max{Rj,"x—mj"Ci}

D—2Rj+a

T(w,|x)=

where

-l = Ll -0-sk aom ) @

is a weighted L, distance of the pattern x from the center of
category j. Also, the T-exponent signifies the transpose of
the quantity it is applied upon; all vector quantities are
assumed ®© be column vectors. In Equation 1 a>0 is the
choice parameter and D>0 is the effective diameter of the
module’s input domain. Usually D is set as

1
o2 mack, ), 0
that is, D is set at least equal to the Euclidian diameter of
the input domain divided by g This last constraint is there
to ensure that CMF values (see Equation 6) remain
positive. Uncommitted nodes feature a constant, pattern-
independent CCF value of

T(w ; |x)= D

—_— @
2D w+ a

where the parameter @is chosen as @ 20.5 to ensure
stability of EAM. The node J featuring the maximum CCF

value is considered to be the winner of the winner-take-all
competition.

®)

Next, EAM measures the degree to which x matches the
characteristics of the category corresponding © node J.
This is established via the vigilance test (VT), which is a
major component of EAM’s match-based learning and
which is depicted in Equation 8. First, the category match

J =arg max T(w; |x)
J
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function (CMF) value for node J is calculated. If J is a
committed node, the CMF value is computed as

R ; +maxiR,,|x—-m
P10 =1-— iRJD" e} O]

If J is an uncommitted node, its CMF value is constant and is
given as

Aw, |x)=1 )
which implies that any pattern will match the shape of the
“virtual” category associated with an uncommitted node. Next,
the CMF value is compared to the baseline value of the
module’s vigilance parameter pe[0,1] as shown below

P, |02 p ®

If the above inequality is not satisfied (J fails the VT), a
mismatch reset occurs, during which the CCF value of J is
temporarily set to 0, and the competition among F2 layer nodes
for x continues effectively without the participation of J.
Otherwise, we say that pattern x chooses node J and now J is
eligible to learn pattern x. For each input pair (x,y) a single node
J from ART, and a single node from ART}, are chosen. Whether
J is permitted to learn x depends on the mechanism that
regulatesthe association between J and K (see Section II1.B).

Let us assume that it has been decided that node J (or X) is
permitted to learn a pattern x. If J is a committed node its
template elements are updated as follows:

min R.;u’ X _m‘.,lld Icold}
m’*” =m2%¢ Y- z x—m‘,’."‘) )]
2 IIX_ m;ld old
€y
R = R9% +%[max{Rj“ ,"x -m% ,Cold }—R;"' )
! 10

where 9€ (0,1} is the module’s learning parameter. Fast learning
is performed by setting =1. Also, the orientation vector d;is
updated according to Equation 11 only if J has learned a single
pattern in the past.

X—

d, = L
Ix-m,1,

X#m;

an

After the update, d; will remain fixed throughout the entire
training phase. Finally, if J is an uncommitted node, then the
node becomes committed and its template is initialized to w; =[x
0 0]. Let us point out here that similar operations are taking
place for F, layer nodes in ART},.

EAM has found major applications in tackling classification
tasks. The architecture can be used as a classifier, when the set
of class labels is used as its output domain and its ART,
vigilance parameter is set to p=1. From hereon, when we refer
to EAM, we will refer to the EAM classifier. Also, when we
refer to the vigilance parameter of the EAM classifier, we will
mean the corresponding parameter of its ART, module. It is
worth noting that EAM reduces to some other classifiers with an
appropriate choice of network parameters. When training with £
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=p=1 and then testing with =1, p=0 and w->, EAM
becomes an Lj-norm INearest Neighbor classifier [11].
Also, when g =1 is used for both the training and
performance phase, EAM becomes equivalent to HAM.
The interested reader may refer to [9] for more properties
and characteristics of EA/EAM.

I11. BOOSTED ELLISPOID ARTMAP

Due to EAM’s design that follows the operating principles
of FAM, modifications made in the past to FAM in order
to improve some of its shortcomings can be readily and
easily applied to EAM. Below we discuss such a
modification, which gives rise to Boosted Ellispoid
ARTMAP.

A. THE ROLE OF THE INTER-ART MODULE

EAM features an inter-rART module interconnecting
each F; layer node j in ART, with a corresponding node £
in ART),. Each such connection features a weight wj, that is
initialized to O prior to training. The interrART module’s
role is to keep track of associations between input domain
clusters and class labels. As we are going to demonstrate at
this point, in EAM only many-to-one mappings are
possible. Assume that during training J and X are the
chosen nodes in ART, and ART) respectively after the
presentation of a particular input-output pair (x,X), where
K is a class label. If J is uncommitted, then .J becomes
committed and it will be associated with X by setting
w,x=1, while for all other weights wy. =0 ¢=1..C. Here, C
is the number of class labels. In other words, category J
will be labeled as K. Let’s assume now that J is already
committed and that it is associated to a class label L.If
K=L, then node J has correctly predicted the class label
and is allowed to be updated by pattern x. Otherwise, if
K+#L (wrong prediction), EAM resorts into performing a
lateral reset, which will set the CCF value of J to 0 and
match tracking will go into effect: the value of the
vigilance parameter will be temporarily raised to g(w;
[xy+Ag@ where Apis some small quantity, and the search
for a more suitable category will continue in ART,.
Eventually, the vigilance will be reset to its baseline value
after an uncommitted node or a committed node with
correct class prediction has been chosen in ART,. Also,
any committed nodes in ART, that have been reset during
the last pattern presentation are reinstated.

B. MODIFICATION TO THE INTER-ART MODULE

The scheme that we have just described adorns EAM
with zero resubstitution error in fast off-line learning, since
categories in ART, are always forced to predict the correct
label of the training pair. A straightforward approach that
improves the generalization qualities of EAM and
ameliorates the category proliferation phenomenon is to
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allow for many-to-many pattern-label associations and regulate
the amount of prediction error that each category is permitted to
commit. This approach has been successfully implemented in
Boosted ARTMAP-S (bARTAMAP-S) [6] and we adopt it in
this paper by introducing Boosted Ellipsoid ARTMAP (bEAM).

The new architecture, bEAM, keeps track of how many times
categories (nodes) in ART, are associated to the various class
labels in ART,, in a similar fashion to ProbART [12]. However,
it features an additional mechanism to control the categories’
prediction accuracy. First of all, in bEAM each category
remembers the class label of the pattern that initiated its
creation. Under the new scheme assume that during training J
and K are the chosen nodes in ART, and ART}, respectively as a
response to the presentation of a pair (x,K). If J is uncommitted,
then J becomes committed and it will be associated with K by
setting wyx =1, while for all other weights wj. =0 ¢=1..C. It will
also remember the class label of x that created it by setting its
initial class label to IJy=K. Considering the alternative case, let
us assume that J is already committed with initial class label
I). If I(J)=K, then node J has correctly predicted the class label
and is allowed to be updated by pattern x. Furthermore, we set
wyx = wyg +1. Otherwise, if I(J)2K, we proceed with the
following prediction test (PT)

Wirwy

C
1+ z wy .
c=l

where &[0,1] is a network parameter of bEAM called category
prediction error tolerance. If node J passes the PT, then we
assume that it did a correct prediction, we set wx = wyx +1 and
allow J to be updated by x. In contrast, if J fails the PT, a lateral
reset is performed and the match tracking mechanism is
activated as in EAM.

The existence of PT in bEAM guarantees that every category
in bEAM’s ART, module will not exceed a prediction error of
100g % with respect to its initial class label. It can be easily
shown that for £0 bEAM becomes equivalent to EAM, since
no category prediction error is allowed. Let us note that
bARTMAP-S employs a slightly different PT as shown below

2l-€

12)

Wy .D(J)

- z2l-¢g (13)
1+ z Wy,
c=1
where D(J) is the category’s dominant class label defined as
D(J)=arg max w,, . = 1 (14)

The reason we selected the PT of Equation 12 for bEAM instead
of the one in Equation 13 is that it allows bEAM to reduce to an
Ellipsoid version of ProbART by setting &=1. This way any
category in ART, is permitted to predict any class label. For the
PT in Equation 13 values of gless than 0.5 are of uninteresting
nature.

The performance phase of bEAM is similar to the one of
EAM with only a small exception. If training was performed
using some value of £>0 it is necessary to convert the many-to-
many associations of the map field to many-to-one. This is
because we usually want the network to predict a single class
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label for each unlabeled test pattern. Thus, for each
category j in ART, we need to extract its dominant class
label Dfj) prior to executing bEAM’s performance phase.
If it happens that DXj) is not unique for some category j
(the category strongly predicts more than one class label —
a “confused” category), we usually discard it.
First, by tolerating prediction error in the expansion of
categories during bEAM training we are able to achieve a
non-zero resubstitution error and potentially improve the
~ generalization of bEAM. Secondly, we are able to
potentially reduce the number of categories created in
ART, and therefore reduce the complexity of the
hypothesis that is learned eventually by bEAM. The latter
one is in general true, since for £>0 patterns corresponding
to different class labels are being consolidated into the
same cluster eliminating this way the need for the creation
of extra categories. As a final, interesting note we mention
that, due to its misclassification tolerance feature, bEAM is
also capable of coping with inconsistent training patterns,

_that is, identical patterns associated with different class
labels. For an appropriate value of £ bEAM can
consolidate inconsistent patterns into a single category.
This is not the case with EAM, since inconsistent patterns
force the network to become unstable.

IV.PRELIMINARY EXPERIMENTATION

In this section we present some limited, but illustrative
experimental results. More specifically our intent is to
demonstrate the capability of bEAM as a classifying
machine. Towards that end we compare bEAM to EAM
and the L,norm Restricted Coulomb Energy (RCE) [13]
neural network architecture. We have implemented these
three architectures (as well as others) as MEX files for use
with MathWorks’ MATLAB® and they can be found at
http://www.geocities.com/g_anagnostop. Since all three
classifiers feature category representations that are
spherical or ellipsoidal, we decided to compare them on
the Dichotomized Square problem, which features a linear
boundary. A unit-surface square is equally divided into
two parts via a perpendicular, dichotomizing boundary.
Points on the left side of the boundary are labeled “L” and
the remaining “R”. We considered two versions of the
problem: the Dichotomized Square (DS) problem with no
noise (no class overlap) and the Noisy Dichotomized
Square (NDS) problem, where each side may contain some
patterns belonging to the other side. In order to create a
. training set for the NDS, we randomly flipped the label of
patterns with a 10% probability. Moreover, in our
experiments we used a training, cross-validation and test
set of cardinalities 200, 5000 and 5000 respectively. All
three sets were generated by randomly sampling points
from the unit-surface square.

In the sequel, we trained bEAM, EAM and RCE on 30
different orders of training patterns. For each order we
selected via cross-validation the best representatives
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(champions) of each architecture. Finally, we recorded the
performance of these champions on a separate test set. For
bEAM we used the following training parameter values: £=0.1,
0.2, .. 0.9 (9 values), =03, 04, ... 1.0 (8 values), p=0.85,
0.86, ... 0.98 (14 values), a=0.001, 0.01, 0.1 (3 values), ar

and D=+2 /p for each value of g4 which totaled 3024

experiments per order. For EAM we used the same parameter
settings as bEAM with the exception of £ which does not apply
to EAM. Thus, for EAM we performed 336 eperiments per
order. Note that fast off-line learning (y=1) was used for both
bEAM and EAM training. For their performance phase we used
=0 and =< to force classification of all patterns. "Confused”
categories were removed from bEAM prior to executing its
performance phase. Finally, for RCE we used R, = 0.0036,
0.0057, ... 1.2489 (593 values). The results of our experiments
are displayed in Figures 2, 3 and Tables I, II. Each point in the
figures represents the champion network for a different order of
pattern presentation that was selected via cross-validation and
then evaluated on the test set.

TABLE I
MISCLASSIFICATION RESULTS FOR THE
NOISY DICHOTOMIZED SQUARE

% Misclassification bEAM EAM  RCE
Best 3.02 5.86 8.5
Average 6.44 7.56 9.86
Worst 9.84 9.3 11.26
Std. Dev. 1.66 0.73 0.66
TABLE II
MISCLASSIFICATION RESULTS FOR THE
DICHOTOMIZED SQUARE

% Misclassification bEAM  EAM  RCE
Best 0.92 0.66 0.72
Average 1.24 0.92 1.23
Worst 1.88 1.54 1.94
Std. Dev. 0.23 0.19 0.25

For the NDS problem the overall champion among the
architectures is a bEAM network featuring a misclassification
error of 3.02% (96.98% correct classification) that utilizes only
20 categories (committed nodes). The next best network is an
EAM with 2.84% more error and 16 extra categories. This fact
implies that in the presence of noise bEAM may demonstrate
better generalization qualities with less complex structure than
EAM. 1t seems that for the NDS problem EAM networks had
the tendency of over-fitting the noise, which caused an increase
in categories utilized and a decrease in their prediction accuracy.
However, they were still able to outperform on average the RCE
networks, which seem to have suffered from overfitting to a
higher degree.

Regarding the results for the noiseless DS problem, EAM and
RCE networks seem to have met slightly more success in both
generalization and data compression than bEAM.
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Figure 2: Percent Misclassification Error on the test set versus Number
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Figure 3: Percent Misclassification Error on the test set versus Number
of Categories for the Noisyless Dichotomized Square.

This can be attributed to the fact that in the absence of
noise bEAM was less successful to distinguish between the
two classes, since it probably created categories
encompassing patterns from both classes right on the ideal
decision boundary. It was discovered afterwards that the
best bEAM network was trained with a value of £=0.1,
which should indicate the lack of noise in the data and that
in this case bEAM with £=0 (i.e., EAM) would exhibit a
better performance. In the experiments of this section we
used cross-validation to identify good values for bEAM’s
tolerance & However, other methods of determining its
value a priori are an interesting topic for future research.
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V. CONCLUSIONS

In this paper we introduced Boosted Ellipsoid ARTMAP as a
variant of Ellipsoid ARTMAP that can potentially reduce its
generalization error and ameliorate the phenomenon of category
proliferation, while maintaining self-stabilization during fast
off-line learning. Furthermore, it is capable of coping with
inconsistent training patterns. We also presented some limited,
preliminary results that show the potential of Boosted Ellipsoid
ARTMAP as a classifier. Finally, by designing this last
architecture we have demonstrated that modifications and
extensions of Fuzzy ARTMAP can be readily and easily applied
to Ellipsoid ARTMAP as well.

REFERENCES

{1

[2]

[3]

(4]

(5]

(6]

(7
(8]
(91

[10]

(1]
(12]

[13]

2655

S. Grossberg, “Adaptive Pattern Recognition and Universal
Encoding II: Feedback, Expectation, Olfaction, and Illusions”,
Biological Cybernetics, Vol. 23, pp. 187-202, 1976.

G.C. Anagnostopoulos and M. Georgiopoulos, “Ellipsoid ART and
ARTMAP for Incremental Unsupervised and Supervised Learning”,
Proceedings of the IEEE-INNS-ENNS International Joint Conference
on Neural Networks (IJCNN °01), Vol. 2, pp. 1221-1226,
Washington, Washington D.C., July, 2001.

G.C. Anagnostopoulos and M. Georgiopoulos, “Hypersphere ART
and ARTMAP for Unsupervised and Supervised Incremental
Learning”, Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN ’00), Vol. 6, pp. 59-64,
Como, Italy, 2000.

G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds and D.B.
Rosen, “Fuzzy ARTMAP: A Neural Network Architecture for
Incremental Supervised Learning of Analog Multidimensional
Maps”, IEEE Transaction on Neural Networks, Vol. 3:5, pp. 698-
713, 1992.

J.C. Bezdek,, T. Reichherzer, G.S. Lim, and Y. Attikiouzel,
“Multiple-prototype Classifier Design”, IEEE Transactions on
Systems, Man, and Cybernetics — Part C: Applications and Reviews,
Vol. 28:1, pp. 67-79, 1998.

S.J. Verzi, G.L. Heileman, M. Georgiopoulos and M. J. Healy,
“Rademacher Penalization Applied to Fuzzy ARTMAP and Boosted
ARTMAP”, Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks (IICNN ’01), Vol. 2, pp. 1191-
1196, Washington, Washington D.C., July, 2001.

V.N. Vapnik, The Nature of Statistical Learning Theory, Springer
Verlag, New York, 1995.

V.N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New
York, 1998.

G.C. Anagnostopoulos, Novel Approaches in Adaptive Resonance
Theory for Machine Learning, Doctoral Dissertation, University of
Central Florida, Orlando, Florida, USA, 2001.

G.A. Carpenter, S. Grossberg and D.B. Rosen, “Fuzzy ART: Fast
Stable Learning and Categorization of Analog Patterns by an
Adaptive Resonance System”, Neural Networks, Vol. 4:6, pp. 759-
771, 1991.

R.O. Duda, P.E.Hart and D.G. Stork, Pattern Classification, 2™ Ed,
Wiley & Sons, New York, 2001.

S. Mariot and R.F. Harrison, “A Modified Fuzzy ARTMAP
Architecture for the Approximation of Noisy Mappings”, Neural
Networks, Vol. 8:4, pp. 619-641, 1995.

M.H. Hassoun, Fundamentals of Artificial Neural Networks, MIT
Press, Cambridge, Massachusetts, 1995.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


