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Abstract 
A measure of s k c e s s  for any learning algorithm is how u s e  
ful it is in a variety of learning situations. Those learning 
algorithms that support universal function approximation 
can theoretically h e  applied to a very large and interesting 
class of learning problems. Many kinds of neural network 
architectures have already been shown to support univer- 
sal approximation. In this paper, we will provide a proof to 
show that Fuzzy ART augmented with a single layer of per- 
eeptrons is a universal approximator. Moreover, the  Fuzzy 
ARTMAP neural network architecture, by itself, will be 
shown to be a universal approximator. 

Keywords: Adaptive Resonance Theory, Machine Learning, Neu- 
ral Networks, Universal Function Approximation. 

I. INTRODUCTION 
In the late 1980's and early 199O's, important theo- 

retical results were proved that showed certain classes 
of learning algorithms capable of universal function ap- 
proximation. Early on it was shown that combinations 
of sigmoid functions could be used to support universal 
function approximation [I]. This result was important 
since a standard neural network perceptron computes a 
sigmoid function. Then multi-layered feedforward neural 
networks with either sigmoid or Gaussian kernel functions 
were shown to he universal approximators [2], [3], [4]. 
Also, radial basis function neural networks were proved to 
he capable of universal function approximation [5 ] .  Very 
recently a hybrid ART-based neural network has been 
shown to be a universal approximator IS]. 

In this paper we will show that Fuzzy ART with only an 
extra layer of perceptrons can support universal approx- 
imation. More importantly, the Fuzzy ARTMAP neural 
network by itself can perform universal approximation. 
The result showing Fuzzy ART to be'a universal approx- 
imator is an important fact in establishing the utility of 

ART-based neural network architectures as viable learn- 
ing techniques. A learning algorithm which is known to 
be a universal approximator can he applied to a large 
class of interesting problems with the confidence that a 
solution is at least theoretically available. 

Before presenting our main results, we will describe the 
Fuzzy ART and Fuzzy ARTMAP neural network archi- 
tectures. Then we will present a proof showing how a 
Fuzzy ART neural network extended with a layer of per- 
ceptrons can he used to support universal function ap- 
proximation. Next we will show how Fuzzy ARTMAP by 
itself can support this same capability. Finally, we will 
discuss the utility of Fuzzy ART, the curse of dimension- 
ality and practical learning algorithms. 

11. F U Z Z Y  ART AND FUZZY ARTMAP 
Fuzzy ARTMAP is a neural network architecture d e  

signed to learn a mapping between example instances and 
their associated labels [7]. These training examples are 
denoted (z, y), where 2 E [O, 1Im is an example data in- 
stance, and y € [0, m)d is its corresponding d-dimensional 
label. Fuzzy ARTMAP is composed of two Fuzzy ART 
neural network modules connected through a MAP field, 
as shown in Fig. 1. 

During training, the pair (z,y) is preprocessed to form 
the pair ((z zC), (y y")) which is then presented to the 
neural network. The instance z is presented to the A-side 
Fuzzy ART module (ARTA) and label y is presented to 
the B-side Fuzzy ART module (ARTB) in Fig. 1. Fuzzy 
ARTMAP performs supervised learning by enforcing that 
the A-side FZ node which learns z will only be associated 
with a single B-side FZ which learns y.  
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Fig. 1. The Fuzzy ARTMAP Architecture. 

A .  Fuzzy ART 
The Fuzzy ART neural network architecture w& de- 

signed to conduct unsupervised learning, or clustering, on 
real-valued data [SI. Clustering is the process of grouping 
similar data points into cluster groups, clusters or cate- 
gories. ‘The measure of similarity among data points for 
Fuzzy ART will be specified in detail below. In this sec- 
tion, we will describe the structure of the Fuzzy ART 
neural network architecture, followed by a detailed look 
at its clustering algorithm. 

Fuzzy A R T  Input Data. The Fuzzy ART neural net- 
work architecture, with complement coding, assumes that 
the input data used to train it is normalized to fit within 
the unit hypercube. Thus, an input data point, x, is a m -  
dimensional vector of values each of which lies between 
zero and one, inclusive (i.e., xi E [0,1], i = 1 , 2 , .  . . ,m). 
The dimension, m, is constant for a particular learning 
problem. The complement of an input vector, x, is now 
well defined as x: = 1 - xi, i = 1,2 , .  . . , m. 

Fuzzy ART is structured 
into three layers of interacting nodes, labeled Fo, FI and 
Fzr where the output of FO is connected to 4, and FI 
and FZ are mutually interconnected, as shown in Fig. 1. 
At Fa, a m-length input vector from the environment is 
complement coded and passed on to Fl. The process of 
complement coding a pattern vector, x, produces a new 
vector I = ( x , x c ) ,  where xc is the complement of x de- 
fined previously. 

There are 2m nodes in layer Fl, and N 2 1 nodes in 
layer Fz. Each node in the F2 layer is fully connected, 
by a weighted link, wj in Fig. 1, to each node in the FI 
layer.’ The number of nodes in the FZ layer is allowed 
to grow as necessary during learning. An FZ layer node 
that has learned at  least one data point is called commit- 

f i zzy  ART Structure.  

‘Actually, there are bottom-up and top-dawn weights connecting 
the nodes in the F, layer to the nodes in the Fz layer. In this paper, 
the topdown weights representing the cluster template are the only 
weights of interest, and so these weight will be referred to as w j .  

ted. A Fuzzy ART neural network module always has one 
uncommitted node in the FZ layer available for training, 
along with N - 1 committed nodes. When the uncommit- 
ted node learns its first data point, a new uncommitted 
node then becomes available, and N is increased by one. 
Each committed Fz node and its associated weights, wj 
represents a separate category of input data, also called a 
category template. 

The output vector, y, from a Fuzzy ART network con- 
sists of boolean values signifying those FZ nodes which are 
active. Thus 

(1) 1, if FZ node j is active 
’j = 0, otherwise { 

where 1 5 j 5 N. Note that the uncommitted node, N, is 
available in (1). The operation of Fuzzy ART ensures that 
only a single Fz node is active for a given pattern. We 
will see this in more detail in the algorithmic description 
presented next. 

Fuzzy A R T  Algorithm. The Fuzzy ART algorithm 
described here is a combination of work presented by Car- 
penter and Moore, however, the symbols used will reflect 
those used throughout the rest of this paper for consis- 
tency [SI, [9]. For a given input data point, the Fuzzy 
ART learning algorithm has three stages. First, the in- 
put is complement coded. Then the “best” matching FZ 
node is found for the complement coded input data. Note 
that the FZ node found might be the uncommitted node, 
and initially, a Fuzzy ART neural network architecture 
has only the single uncommitted node available for learn- 
ing. Finally, the best matching F2 node found is allowed 
to learn the new data point. Given a complement coded 
input vector, I, the similarity measure at node j of the 
Fz layer, called Tj(I), is computed as a weighted sum of I 
and the weights wj, shown in (2). Note that these weights 
connect the FI layer nodes to node j in the FZ layer. 

The mathematical formula used by Fuzzy ART to find 
the best matching category template during cluster for- 
mation is 

J = arg maw Tj( I ) ,  (2) O<j<N 

The parameter a, called the choice parameter, is usually a 
small positive quantity, A is the element-wise vector min 
operator, and I . I is the &norm of a vector. The best 
matching FZ node from the choice competition, J ,  must 
satisfy the vigilance criterion 

(4) 

The vigilance parameter, p in  (4), is a user-supplied input 
between zero and one. Note that at least one FZ node, the 

1988 



uncommitted node, will always satisfy the vigilance crite- 
rion. The madmum choice Fz template node satisfying 
the vigilance criterion is allowed to learn the input vector, 
a condition called resonance. Ties between F2 nodes with 
the same choice value are broken by assigning an index 
to all FZ nodes, and choosing the node with the lowest 
index value in a tie. The index values are assigned when 
F2 nodes are committed. 

Initially all template weights w j  are set to one, and 
learning proceeds as follows 

w y 4  = p(1 A w y d ) )  + (1 - p)wYd), ( 5 )  

where /3 is the learning parameter. In this paper we use 
= 1, which is a special case called fast learning. Note 

that learning only occurs a t  the winning FZ .node, J ,  dur- 
ing resonance. An important feature of Fuzzy ART is that 
the F2 layer grows as needed for a particular problem. 
Fuzzy ART Fz Node Category Template. .The 

Fuzzy ART neural network module accepts a vector of 
values as input, hut it also produces a .vector of values 
as output. A committed Fuzzy ART FZ node j has a 
weight vector defined as wj = XI A xz A . . . A x,, where 
F2 node j has learned all of the input data points in 
X = {xl, x2,. . . , x,}. Because of complement coding, wj 
defines the minimum hyperhox containing the data points 
in X. The vigilance criterion ensures that lwjl 2 p .  

2 m  2m 

Thus, wj = (pq') where pk = minic{~,~,, , , ,n} xik and qk  = 
maxiE~l,z, . . , ,n~ z i b .  The axis-parallel hyper-rectangle for 
w j  has a minimum point at p and a maximum point a t  
q.  The first m points from wj  are the "lower left" corner, 
and the second m points are the complement of the "up- 
per right" corner of the hyperbox defined by the FZ node 
j. The vigilance parameter, p, can he used to control 
the granularity of clusters covering the problem space. A 
larger p value will force Fuzzy ART to create smaller clus- 
ters, nccessitating more clusters to cover a larger problem 
space. A smaller p value will allow Fuzzy ART to create 
larger clusters, meaning fewer clusters are needed to cover 
a problem space. 

B. Fuzzy ARTMAP 
The Fuzzy ARTMAP architecture shown in Fig. 1 con- 

sists of two Fuzzy ART modules connected by a MAP 
field. The ARTA module is given pattern data and the 
ARTB module is given label data for a given supervised 
learning task. The MAP field links data cluster templates 
(A-side) with label cluster templates (B-side). Supervised 
learning is performed in Fuzzy ARTMAP by ensuring that 
each ARTA template is linked with only one ARTB tem- 
plate. Thus, a many-to-one association from pattern to 
label templates is formed in the Fuzzy ARTMAP MAP 
field. 

1s 

The Fuzzy ARTMAP MAP field weights, wff, are used 
to control associations between A-side F2 nodes and B- 
side Fz nodes. An uncommitted A-side FZ node, j, has 
the following initial weight values 

= 1, V k ,  0 5 k 5 N E ,  (7) 

meaning that j is not currently associated with any B- 
side F2 node (there are N B  B-side F2 nodes), and in fact 
it is available for future learning. An uncommitted A- 
side F2 node j becomes committed with B-side FZ node 
K through the following weight assignments 

wf/ = 1 ,and wf: = 0, Qk # K ,  (8) 

thus A-side FZ node, j, is exclusively and permanently 
linked with B-side F2 node, K .  

The f izzy ARTMAP architecture ensures the many- 
to-one mapping through the use of a match tracking lat- 
eral reset, as shown in Fig. 1. The lateral reset is used 
in Fuzzy ARTMAP to ensure that each triining pattern 
resonates with an A-side F2 node associated with a B- 
side Fz node that is consistent with the pattern's label. 
After a bounded number of epochs,' Fuzzy ARTMAP is 
guaranteed to reach a steady state [lo]. Note that during 
testing it is possible for a test pattern, never seen before, 
to choose the uncommitted node. In this case no B-side 
label prediction is possible. 

111. MAIN RESULTS 
In this chapter, we will present a proof showing the 

universal approximation capabilities of the Fuzzy ART 
neural network. Actually, these results will apply to a 
modified Fuzzy ART network. It will also be shown that 
the Fuzzy ARTMAP network can he used without further 
modification to perform universal approximation. 

In order to show that the Fuzzy ART FZ node is capable 
of universal approximation, it will be necessary to show 
that the Fuzzy ART neural network architecture is capa- 
ble of computing any member of a sequence of functions, 
S = U sn(x) which are dense in LP(F2"'). Actually, Fuzzy 
ART with complement coding operates in-the unit hyper: 
square, thus the space of interest is P ( [ O , l I m )  where 
[0, I]"' C Em. Saying that sn(z) is dense in LP([O, I]"') 
where 1 5 p < M is equivalent to saying that for every 
f E LP([O, I]"') and every c > 0, there exists Q E S such 
that 1 1  f - Qllp 5 E .  If we have S C LP([0, 11'") and our 
modified Fuzzy ART architecture can be shown to com- 
pute any member of S, then we will have shown that this 
neural network is capable of universal function approxi- 
mation in LP([O, 11"'). 

Fuzzy ART Fz nodes conduct data clustering similar to 
the internal layer nodes of a radial basis function (RBF) 
neural network 151. By itself then, the Fuzzy ART module 
cannot be expected to perform function approximation, 
but by adding an output layer of perceptron nodes, this 
approximation can be achieved. The internal layer of an 
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for n = 1 , 2 , 3 , . . .  
2" 

l x  
Fig. 2. Modified &zzy ART far Universal Approximation, 

RBF neural network is connected to an output layer of 
nodes to perform approximation in a similar manner, see 
Figure 1 in [5]. In Fig. 2, the Fuzzy ART neural net- 
work module is connected to an  output layer perceptron. 
Universal approximation for the Fuzzy ART will apply 
to an m-dimensional input space, but for simplicity in 
this paper, only a single input dimension will be consid- 
ered. Also, the approximation output will, in general, fit 
multi-dimensional output, but for simplicity, only a sin- 
gle output dimension will be considered, and thus, only a 
single output layer perceptron is used, as shown in Fig. 2. 

There are several steps necessary to  prove the univer- 
sal approximation capabilities of the Fuzzy ART FZ node. 
Given a measurable function f > 0, the first task will be 
to determine a sequence of functions which will be used 
to approach f from below. This sequence of functions 
will rely upon partitioning of the domain of f into dis- 
joint sets. Next, the Fuzzy ART F2 node will be shown 
to be capable of computing the indicator function for an 
arbitrary member of these disjoint sets. It is this indicator 
function that will actually be used in the sequence of func- 
tions that we are interested in. Finally, these results will 
be pulled together with the construction and specification 
of the modified Fuzzy ART neural network architecture, 
shown in Fig. 2, for computing the sequence of functions 
for approximating f, and this sequence of functions will 
be shown to be dense in LP([O, 11"'). 

Given a measurable function f E LP([O,l]"), f 2 0 
and e > 0, Consider the following sequence of functions 

j=l 

where the coefficients Cn,j are determined using and the 
diadic sets Dn,j C [0,1]. Diadic sets, also called diadic 
intervals, boxes or cubes are members of R = R I  U Rz U 
RS U . . ., where 0, is defined as the collection of all 2-" 
boxes with corners at P,, and P, is the set of all z E L" 
whose coordinates are integer multiples of 2-" [ll]. Thus, 
Dn,j E 0,. 0's density in L" and its capacity to cover 
(measurable) sets is exploited by the sequence of functions 
defined in (10) [ll], [12]. Later i t  will be shown that 
sn(z) 5 f(z) for all z except for a set of measure less than 
c. Note that sn(x) are simple functions if the coefficients 
take on a finite number of values, and this will he shown 
below. Thus sn(z) E LP([O,l]"). 

Next, it will be shown that the modified Fuzzy ART 
neural network architecture in Fig. 2 can be configured 
such that it computes sn(z) in (10). The first step is to 
show that Fz nodes in Fig. 2 can compute the indicator 
functions of Dn,j from (10) with proper network quanti- 
ties including weights, indexes and vigilance values). 

Lemma 1: The Fuzzy ART F2 node can compute the 
indicator function for D,,j E 0,. 
Proof. Given Dn,j, the network quantities for a Fuzzy 
ART FZ node will be determined so that it computes 
X O . , ~ ( Z ) .  A Fuzzy ART Fz node has three quantities 
that need to be determined, wTA, p and the node index 
6.  The minimum point in Dn,j is and the mini- 
mum point not in Dn,j is $ +2-" = $. Therefore, the 
weights become 

The function computed by the Fuzzy ART F2 node j is 

1 if j = arg max T,(I(z)) 
0 otherwise 

(11) l < i < N  Yj(Z) = 

I (2 )  = (2 I C )  

where I ( r )  is the complement coded value for z and a is 
a small positive number. Note that because of comple- 
ment coding I /  1(z) 1, Vz (in general this will be m, 
but here m = 1). The vigilance parameter will have the 
following value 
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Thus, yj(z) will only be 1 if I E [G, &]. And so the 
Fuzzy ART F2 node j computes the indicator function 
for the closed interval [F, $3 and F2 node j + 1 will 
compute the indicator'function for [&, F]. Note that 
these two overlap at p. In Fuzzy ART ties between com- 
peting F2 nodes are broken by assigning an index value to 
the competing Fz nodes and choosing the FZ node with 
the lowest index. The index values, V,, for the modified 
Fuzzy ART FZ nodes become V, = 2" - j + 1. Thus, 
yj(z) = x [ ~ , ~ ) ( ~ )  for 1 5 < 2", and y z - ( I ( s ) )  = 
X [ ~ , ~ I ( Z ) .  Therefore, the Fuzzy ART FZ nodes con- 
structed as described above compute the disjoint intervals 
Dn,j for 1 <_ j 5 2" from (10). Q 

Before proceeding with the construction of the modified 
Fuzzy ART network, thg coefficients Cn,j from (10) will 
be specified. Here is the complete specification of the 
sequence of functions sn(r) including the coefficients 

2" 

Sn(2) = cn,jXO,,j (.) (13) 
j=1 

En,n2.+1 = f - 1  ([n, 4). 
Note that I?,,,< are the pre-images of the Lehesgue inter- 
vals of f [Ill.  The index values in B,,j refer to those 
En,< which intersect with Dn,j with measure greater than 
or equal to f. Therefore, Cn,j 5 f(s) for all 5 E D,,j 
except for a set of measure < f. Note that there are 2" 
diadic sets D,J. And so, sn(z) 5 f(z) for all I except 
for a set of measure r .  

Now the final result can be shown. 
Theorem 1: The modified Fuzzy ART neural network, 

shown in Fig. 2, can be used to universally approximate 
any measurable function in LP([O, 11). 
P~oof. Given 1 5 p < M and f E LP([O,l]), f 2 0, a 
series of functions, s,, computable by the modified Fuzzy 
ART neural network in Fig. 2, will be determined such 
that these functions approximate f in the limit, and it 
will be shown that s, is dense in LP([O,l]). The Fuzzy 
ART neural network shown in Fig. 2 with parameters de- 
termined in (10) and (12) computes the following function 

1 

0 otherwise 

if j = arg min Vk 
kEJ. yn:j(z) = 

Given the results from Lemma 1, these equations can be 
reduced to 

N 

sn(Z) = W:: ' xO,,j (Z) (15) 
j=1 

D",Z" = [-'1] 2" - 1 

The final step is to determine the values for w::, which 
can be set as 

1.:; = C",J (16) 
where Cn,j is defined in (14). 

Since If(z) - sn(z)lP <_ fP, Lebesgue's dominated con- 
vergence theorem implies Ilf(s) - sn(+)\lP + 0 as n + 
CO [Ill.  Our modified Fuzzy ART neural network com- 
putes the function in (14). Since 0 5 5, 5 f, then 
s, E LP([O, llm). Thus, f is in the LP-closure of s,. 0 

We have implemented a very simple, proof of concept, 
version of the modified Fuzzy ART architecture in 
MATLABTM, as shown in Fig 3. The modified Fuzzy 

Fig. 3. Modified Fuzzy ART with n = 4 

ART architecture is capable of representing any measur- 
able function in L p ( [ O ,  4 )  with an arbitrarily large num- 
ber of Fz nodes. Note that for each n in the sequence 
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defined above, a separate Fuzzy ART network is needed 
since there is only a single vigilance parameter p .  Fuzzy 
ART F2 nodes, in a single network, can represent any 
Dn,j E an. 
A .  Universal Approximation With Fuzzy ARTMAP 

It is a very simple extension to use Fuzzy ARTMAP, 
by itself, instead of the modified Fuzzy ART neural net- 
work to perform universa.1 approximation. With Fuzzy 
ARTMAP, we need to construct the A-side Fuzzy ART 
module, the B-side Fuzzy ART module and the MAP 
field. The A-side Fuzzy ART module will be constructed 
precisely as described in the previous section, however, 
instead of using the extra layer of perceptron nodes with 
their association weights, we use the Fuzzy ARTMAP 
MAP field and the B-side category templates. There will 
be one B-side template for each of the Lehesgue intervals, 
E,,,, in (14). The value of the B-side template weight will 
be exactly the same as the coefficients used in the mod- 
ified Fuzzy ART network, Cn,j in (14). Note that there 
will be no complement coding in the B-side Fuzzy ART 
module. Next, the MAP field will he used to compute 
the minimum intersection between the diadic cube that 
A-side node J computes and the pre-images of all B-side 
nodes 1 5 k 5 N E ,  A,,,, in (14). Therefore, w;lks = 1 
if A,,j = k, otherwise w$? = 0. Because each An,j is 
unique, then the constructed MAP field will conform to 
Fuzzy ARTMAP learning in that each A-side F2 node 
is associated with only a single B-side F2 node. Thus, 
given input z, the value output by this Fuzzy ARTMAP 
network will be Cn,j where z E D,,j. 

IV. CONCLUDING REMARKS 
An example of an ART-based neural network archi- 

tecture that can perform such universal approximation 
described above is BARTMAP-SRM [13]. BARTMAP- 
SRM operates using the diadic hyperhoxes described prc- 
viously. The network is initiated using the unit hyper- 
box, which is subsequently split in half across each dimen- 
sion creating 2’” new squares for an m-dimensional input 
learning space. Note that BARTMAP-SRM as well as 
the network constructions described in our main results 
above both suffer from the curse of dimensionality [14]. 
This means that for an m-dimensional input space, an ex- 
ponentially large number of internal layer Fz nodes may 
be required to reach a final solution. BARTMAP-SRM 
was not designed as a practical solution for high dimen- 
sion input problems but rather as a theoretical construct 
for demonstrating the universal approximation capabili- 
ties. Another modification to Fuzzy ART, called Boosted 
ART has been shown to represent the same data space 
with exponentially fewer F2 nodes, with respect to the 
input dimension m [15]. It is hoped that Boosted ART 
can be used in high dimension input spaces to help ad- 
dress the curse of dimensionality. 

In this paper we have shown that Fuzzy ART aug- 
mented with a single layer of perceptron nodes can s u p  
port universal function approximation. Furthermore, we 
have demonstrated that Fuzzy ARTMAP, by itself is a 
universal approximator. These results establish both of 
these neural network architectures as viable learning tech- 
niques on a large class of learning problems. These re- 
sults continue to suffer from the curse of dimensionality, 
as do other universal approximation results. Our future 
research continues to expand upon these results in design- 
ing practical ART-based neural network architectures for 
conducting learning. 

ACKNOWLEDGMENT 

The authors from the University of Central Florida ac- 
knowledge the partial support from NSF through a CRCD 
grant number 0203446 entitled ”Machine Learning Ad- 
vances for Engineering Education”. 

REFERENCES 
G. Cybenko, “Approximation by superpositions of a sigmoidal 
function,” Mathematical Journal of Contml, Signals, and Sys- 
temics. vol. 2. DD. 303-314. 1989. ,.. 
K. Funahashi, “On the approximate realization of continuous 
mappings by neural networks,” Neuml Networks, vol. 2,  pp. 
183-192. 19s9. . ~~~~ 
~~. ~~~ 

K. M. Homik, M. Stinchcombe, and H. White, “Multllayer 
feedforward networks are universal approximators,” Neuml 
Networks, vol. 2 ,  pp. 359-366, 1989. 
E. J. Hartman, J.  D. Keeler, and J. M. Kowalski, “Layered 
neural networks with gaussian hidden units as universal ap  
prosimators,” Neuml CompuQtlOfI, vol. 2, pp. 210-215, 1990. 
3.  Park and I. W. Sandberg, “Universal approximation using 
radial-basis-function networks,” Neuml Computation, vol. 3, 
pp. 245-257,1991. 
L. Marti, A. Policriti, and L. Garcia, “AppART: An ART 
hybrid stable learning neural network for universal function 
approximation,” in Hybr id  Information Systems, A .  Abraham 
and M. Koeppen, Eds., Heidelberg, Jul2002, pp. 92-120, Phys- 
ica Verlag. 
G. A. Carpenter, S. Grassberg, N. Markuzon, J .  H. Reynolds, 
and D. B. Rosen, “Fuzzy ARTMAP: A neural network ar- 
chitecture for incremental supervised learning of analog multi- 
dimensional maps,” IEEE Thnsoctions on Neuml Networks, 
vol. 3, no. 5, pp. 698-713, 1992. 
G. A. Carpenter, S. Grossberg, and D. B. Rosen, “ l z z y  ART. 
Fast stable learning and categorization of analog patterns by 
an adaptive resonance system,“ Neuml Networks, vol. 4, no. 
5, pp. 759-771, 1991. 
B. Moore, “ART 1 and pattern clustering,” in Proceedings 
of the 1988 Connectionist Summer School. 1988, pp. 174-185, 
Morgan Kaufmann. 
M. Georgiopoulos, J. Huang, and G. L. Heileman, “Properties 
of IearninR in ARTMAP,” Neuml Networks, vol. 7, no. 3 ,  pp. 
495-506, i994. 
W. Rudin, Reo1 ond Complez Analysis, McGraw-Hill, New 
York, second edition, 1974. 
E. DiBenedetto, Iienl Analysis, BirkhBuser, Boston, 2001. 
S. J. Verzi, G .  L. Heileman, M. Georgiopoulos, and G .  C. 
Anagnostopoulos, “Off-line structural risk minimization and 
BARTMAP-S,” in Proceedings of the Internationol Joint Con- 
ference on Neuml Networks, 2002. 
H. White, Artificial Neuml Networks: Appmzimation and 
Learning Theory, Blackwell, Cambridge MA, 1992. 
S .  J. Verzi, Boasted ART ond Boosted ARTMAP: Eztensions 
of Fuzzy ART and Fuzzy ARTMAP, Ph.D. thesis, University 
of New Mexico, Albuquerque, New Mexico, 2002. 

1992 


