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Abstmct -The focus of this paper is semi-supervised learning in 
the context of pattern recognition. Semi-supervised learning 
(SSL) refers to the semi-supervised construction of clusters 
during the training phase of exemplar-based classifiers. Using 
artificially generated data sets we present experimental results 
of classifiers that follow the SSL paradigm and we show that, 
especially for difficult pattern recognition problems featuring 
high class overlap, for exemplar-based classifiers implementing 
SSL i) the generalization performance improves, while ii) the 
number of necessary exemplars decreases significantly, when 
compared to the original versions of the Classifiers. 

1. INTRODUCTION 

Exemplar-based classifiers (EBC) are pattem recognizers 
that encode their accumulated evidence with the use of 
exemplars. These exemplars, whose geometric representation 
is usually a geometric shape (like a hyper-rectangle, a hyper- 
sphere, a hyper-ellipsoid and others) embedded in the 
classification problem's input domain, are formulated via 
clustering of training patterns attributed with the same class 
label. In essence, these classifiers use exemplars to 
summarize training data belonging to the same class and then 
utilize a similarity or proximity measure to classify a 
previously unseen test pattern. The associations of exemplars 
to class labels are typically one-to-one and in exemplar-based 
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neural networks they are recorded via interconnection 
weights wir relating the neuron containing the information of 
the jth exemplar to the kth class label, whenever wj,bO. 

The aforementioned summarization of input patterns 
corresponds to a form of local learning, since the information 
regarding a cluster of patterns is represented by a single 
exemplar rather than being distributed. Therefore, EBCs 
readily lend themselves to efficient, incremental, online 
leaming. An example of exemplar-based recognizers is the 
family of ART neural classifiers that are based on the 
principle of adaptive resonance theory (ART) studied in [I]. 
In the context of ART, exemplars are called categories. 

Typically, EBCs featurefinite, stable learning, with a zera 
post-training error, that is, their training phase completes 
after a finite number of epochs and, if the training set is 
propagated one more time through the classifiers after 
training has completed, they classify all training patterns 
correctly. This occurs because of the supervised learning 
scheme they employ, when forming and expanding exemplars 
to signify clusters of similar data. Apart from the satisfaction 
of a similarity or proximity condition, a specific training 
pattem can influence the formation of a specific exemplar 
only if both of them are associated with the same class label. 
Therefore, it is not unusual that for some classification tasks 
EBCs are forced to employ a large number of exemplars to 
attain the final, zero post-training error (referred to as 
categoryproliferation problem in the ART literature). 
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In this paper we introduce the concept of semi-supervised 
learning (SSL) for EBCs, which aims to conserve the 
property of stable learning, while achieving a non-zero post- 
training error to avoid training over-fitting and, thus, loss of 
good generalization performance. As it will he demonstrated 
via our experimental results, EBCs following the SSL 
paradigm not only exhibit improved classification accuracy 
over their fully supervised counterparts, hut also utilize less 
exemplars in order to cope with their classification tasks, 
especially when dealing with problems of high class overlap. 
Moreover, additional advantages that SSL provides are the 
capability of dealing with inconsistent training patterns and 
the capability of coping with non-stationary classification 
environments. 

The rest of the paper is organized as follows: Section I1 
provides more material on the motivation behind SSL, how it 
can be implemented in general and, finally, the three neural 
architectures that we have considered equipping with SSL 
capabilities. Section Ill details our experimental setting using 
artificial data sets, reports comparative experimental results 
related to the latter architectures and states some major 
observations regarding the utility of SSL. Finally, Section IV 
summarizes our findings and underlines the discovered 
importance of SSL. 

11. SEMI-SUPERVISED LEARNTNG 

A .  Motivation behind Semi-supervised Learning 

Semi-supervised learning (SSL) refers to the semi- 
supervised manner, according to which exemplars are formed 
during training to identify clusters. According to the typical, 
fully supervised learning scheme of EBCs, training patterns 
that are rendered to he pertinent to an exemplar by virtue of 
their position in the feature domain can he associated with or 
can influence the structure of this exemplar only if both of 
them correspond to the same class label. Furthermore, 
training is considered incomplete, if there is at least one 
exemplar that mispredicts the class label of a training pattern. 
Therefore, while in fully supervised learning mode, an 
exemplar is not allowed to commit any misclassification 
error. Eventually, after completion of the learning process, a 
typical EBC will feature a zero post-training error. 

The fact that, under fully supervised learning, EBCs 
trained lo completion attain a zero post-training error may 
signify that these classifiers have been over-trained. For any 
classifier andor pattern recognition problem the difference 
between test set performance and the post-training accuracy 
is minimized, in general, for a non-zero post-training error 
(see [2] and [3]). Additionally, as we have mentioned in the 
previous section, it might be the case that for some 
classification tasks EBCs using a fully supervised learning 
mode are forced to employ a large number of exemplars to 
train to perfection. 

Instead, a learning scheme that would allow exemplars to 
occasionally misclassify training patterns by permitting 

training patterns, under certain circumstances, to modify 
exemplars associated with not necessarily the. same class, 
would also increase the post-training error, potentially 
increase the performance on the test set and, in general, 
reduce the amount of exemplars utilized by the classifier. 

While it is highly desirable to.achieve better accuracy on 
previously unseen patterns by allowing the post-training error 
to increase, it is also desirable to preserve the stable learning 
property of EBCs. A 1earning.scheme that has accomplished 
both objectives is presented in [4], where it is applied to a 
variation of the EllipsoidARTMAP (EAM) classifier (see [5 ]  
and [6]), originally named as Boosted EAM. Throughout the 
rest of text we will refer to the latter architecture as semi- 
supervised EAM (SEAM). 

B. Implementation of Semi-supervised Learning 

Semi-supervised EAM, which extends the main idea 
behind Boosted ARTMAP-S described in 171, features a 
tunable network parameter EE [O,l] called categoiyprediction 
error tolerance. This parameter regulates the amount of 
permissible misclassification error during training for all 
exemplars , (categories) maintained by the classifier. 
Whenever a category is formed it is attributed an initial class 
label, which is identical to the class label of the training 
pattern that initiated the category creation. In SEAM every 
category is guaranteed that it will not exceed a prediction 
error of 1006 % with respect to its initial class label. For & =  

0, ssEAM operates in fully supervised learning mode and 
behaves like the original EAM classifier; no misclassification 
errors are allowed. At the other extreme, when E =  1, ssEAM 
allows for every category a maximum misclassification error 
of 100% with respect to its initial class label. In other words, 
for E = 1, SEAM forms categoriesiclusters without laking 
into account the class label information of the training 
patterns. Therefore, in this case we say that SEAM operates 
in a fully unsupervised learning mode; for intermediate 
settings of E (between 0 and.1) we say that ssEAM operates 
in semi-supervised learning mode. Ultimately, the role of E is 
to determine the level of ssEAM:s post-training error and, 
consequently, the level of generalization performance, 
although this particular objective is being accomplished in a 
rather indirect manner. It is worth mentioning that ssEAM 
stores category-class label association frequencies in weights 
w,.k like the ones we have described in the previous section. 
The interested reader will find more implementation details 
regarding ssEAM in [6]. 

Semi-supervised EAM’s learning scheme is conceptually 
general enough and can be readily applied to other EBCs to 
maintain stable learning. Apart from EAM, we also 
implemented semi-supervised learning to two additional 
neural, exemplar-based classifiers: Fuzzy ARTMAP (FAM) 
[SI and the planar Restricted Coulomb Energy (RCE) 
classifier 191. The semi-supervised variations of these two 
classifiers will be denoted as ssFAM and ssRCE respectively. 
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While EAM’s exemplars are geometrically represented as 
arbitrarily oriented hyper-ellipsoids, for FAM they are axes- 
parallel hyper-rectangles and for RCE they are either hyper- 
spheres or polytopes depending on the particular geometry 
chosen. EAM and FAM feature two common network 
parameters, namely p [ O , I ]  and a>O, that primarily 
determine the maximum size of learned categories; EAM has 
an extra parameter p~[0,1] ,  which influences the shape of its 
categories. Finally, RCE features only one network 
parameter, R>O, that specifies the maximum size of its 
exemplars. Note that ssFAM and ssRCE feature E E [ O , ~ ]  as 
their category prediction error tolerance just as ssEAM does. 

Since by varying the value of E one can obtain a semi- 
supervised classifier exhibiting different degrees of post- 
training error, a natural question arises: how should the best 
value of E be chosen so that we get an optimal test set 
classification accuracy? For the experiments presented in the 
next section we employ cross-validation (see [lo]) as the 
procedure to identify the optimal E value. The exploration of 
various E choices and their effect on classification 
performance in conjunction with cross-validation-based 
parameter selection will lead us to the identification of the 
best performing classifiers that utilize a minimal amount of 
exemplars (classifiers of low hypothesis complexity). 
Therefore, this procedure can be viewed as a structural risk 
minimizafion process (see again [2] and 131). 

Before leaving this section, it is worth mentioning a few 
additional advantages that are gained via the utilization of an 
SSL scheme. Consider the case, where the training set 
contains two identical patterns with conflicting class labels 
(inconsistent patterns). It is shown in [6] that for E >0.5 
BEAM can successfully deal with this issue. Slated more 
generally, SSL is able to accommodate the case, where 
inconsistent patterns are present in the training set. 
Additionally, consider the case, where the classification 
problem at hand is of non-stationary nature, i.e., decision 
boundaries between classes are changing over time. Again, 
for &>OS, classifiers such as SEAM, ssFAM and ssRCE will 
be able track this change, since for this particular value of E 

exemplars are allowed to adjust class label associations 
accordingly. 

111. EXPERIMENTS 

In order to show the utility of SSL we conducted a 
collection of experiments using ssEAM, ssFAM and ssRCE 
on artificially generated data sets. The advantage of using 
artificial databases is that we can generate as many training, 
cross-validation, and test data, as we desire. We 
experimented with various values of the network parameter 
including 11 values for E ranging from 0 to 1 with the 
extreme values corresponding to the fully supervised and the 
fully unsupervised learning modes respectively. Through this 
extensive experimentation we chose the network that 
achieved the maximum generalization performance on the 

cross-validation set. Working with simulated data allowed us 
to generate enough validation data-points so that we can 
safely state that the hest (with respect to generalization) 
network parameter values found are indeed optimal. The 
other advantage of the artificial databases is that we can 
experiment with different input domain dimensionalities, the 
number of output classes and the amount of inter-class 
overlap. Specifically, as it will become apparent from the 
experimental results, the optimum epsilon value is dependent 
on the amount of inter-class overlap that is present in the 
data. 

A .  Artijicial Databases 

In this paper we kept the dimensionality of the input 
patterns fixed, and equal to 2, and we experimented with the 
number of output classes (2, 4, or 6) and the amount of 
overlap amongst data belonging to different classes (overlap 
values of 5%, 15%, 30% and 40% were used). The artificial 
databases consist of Gaussianly distributed data. Input 
patterns were drawn from either 2 or 4 or 6 classes. 
Qualitatively the overlap can he classified as low (5%), 
medium (15%) or high (30% or 40%). The amount of overlap 
of the simulated data was defined to be the error rate of the 
optimum Bayes classifier designed as pertinent to the data. 
For instance, if the Bayes classifier for a simulated data set 
exhibited a misclassification rate of x%, then the amount of 
overlap corresponding to this data-set was defined to be x%. 
For each one of the above 12 sets of artificial data (3 different 
number of classes x 4 different degrees of class overlap) we 
generated a training set, a validation set and a test set of 500, 
5,000 and 5,000 data-points respectively. In Fig. 1 we show a 

scatter plot of the training data used for a 2, 4 and 6 class 
problem with 5% overlap. 

- .  

Fig. I .  Scatterplots of data points for 2 class, 4 class and 6 class problems 
with 5% overlap. 

E. Observations 

The major observations from our experiments are 
identified and elaborated below. 

Higher overlap data domains are well suited for the semi- 
supervised learning approach. The validity of the above 
statement can be gathered from the plots in Fig. 2, where the 
x-coordinate represents the PCC XV (percent correct 
classification on the cross-validation set) value, while the y- 
coordinate represents the corresponding PCC Train (percent 
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Fig. 2. The plots rcprcsent the Pcrccnlage of Cancct Classification on the Cross-validation sct (PCC XV) versus thc Percentage ofConcct Classificalian 
ovcr the training set (PCC Train). The best PCC XV values occur at PCC Train values that arc less than 100%. ' I lk  effect i s  amplified whcn the data 

avcrlap in data increases. Gencralizatian pcrfarmance is cnhanccd whcn thcre is some rcsidual training error prescnt aflcr training is complctcd. 

correct classification on the training set) value. It is worth 
noting from these figures that, as the amount of overlap 
amongst the data increases, the best PCC XV values occurs at 
values of PCC Train that are further away from the 100% 
training performance that completely supervised networks 
(such as EAM) enforce. This is a manifestation of the over- 
training issue associated with neural networks that has been 
oAeu been reported in the literature. As we see from Fig. 2 
the issue of over-training and its detrimental effects gradually 
becomes more pronounced as the amount of overlap in a 
problem increases. In other words, training the network to 
perfection affects the generalization performance of the 
network more severely for higher overlap values than for 
lower overlap values. It is worth mentioning that although the 
results in Fig. 2 correspond to EAM, similar type of results 
and associated conclusions correspond to FAM and RCE 
networks (they are omitted due to lack of space). 

The "best epsilon value" migrates from lower to higher 
values for  increasing data overlap. In Fig. 3 we depict the 
PCC Test and the PCC XV for epsilon values ranging from 0 
to 1 with step 0.1. Note that a value of &equal to 0 represents 
EAM. As it can be seen from the figure the hest E value for 
the low overlap case (overlap of 5%) is equal to 0.1, while the 
best E value for the high overlap case (overlap of 40%) is 
equal to 0.8. This result is intuitively pleasing. For low 
overlap data overlapping data are scarcely witnessed. As a 
result, there is a lesser need for categories to expand and 
allow high errors in the training, in an effort to avoid over- 
training. On the other hand high overlap data cause over- 
training. By incorporating higher E values when data overlap 
is high, categories are allowed to expand in a way that 
patterns of the erroneous label are incorporated within them, 
thus sidestepping the'over-training issue. Hence, by avoiding 
over-training, higher generalization performances are 
observed for higher E values when the data overlap is high. 
Once more, although the figures depict the results pertaining 
to EAM networks, similar types of results are valid for FAM 

and RCE networks (again, they are omitted due to lack of 
space). 

Ep.b"".PCC T.. P"0mU- lor EIU I0rlCh.d.k O l n d n g  0I.n.p. 

s5 

~- 
Do I as%* 
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Fig. 3. Pcrccnlage of Correct Classification on Tcst set (PCC Tcst) versus 
cpsilon far SEAM. As thc data ovcrlap increases, thc best epsilon value 

migratcs towards I ,  indicating the nced for less supcrvision. 

Better compression rates are achieved at higher epsilon 
values. This is an obvious result because higher E values 
allow more error during training with the direct effect of 
creating fewer categories. In Fig. 4 we depict the number of 
categories created by SEAM for different E values and for 
the 2 class 40% overlap dataset. What is worth mentioning 
regarding this figure is that the E value that achieves the 
highest generalization performance on the test set does not 
necessarily create a network with the highest number of 
categories. On the contraly, the number of categories created 
at the value of E that maximizes generalization is relatively 
small, at times amongst the smallest number observed for all 
&values. 
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Fig. 4. Categories crcatcd and Pcrccntage Correct Classification over Tcsting 
set (PCC Tcst) against epsilon. Note thc drastic fall in the number of 

catcgarics created from 241 by EAM to 35 by the best SEAM. The epsilon 
paramctcr ushers not only better classification but also good comprcssion 

Performance gains are universal In the previous plots we 
have depicted the performance of the best possible network 
for each specific E (the one achieving the highest 
generalization performance on the validation set with respect 
to the remaining network parameters; e.g., p, a, ,LI and order 
of training pattem presentation for EAM). Fig. 5 depicts the 
generalization performance of the best network, and the 
average performance of all the networks that we have 
experimented with. What is worth mentioning from this 
figure is that the peak average performance of all the 
networks coincides with the performance of the best network 
at the optimal &value. 

, i 
0 0 1  0 %  0 1  0 4  o s  o a  01 0 8  o s  I 

EO- 

Fig. 5 .  PCC Tcst of best ssEAM network and average PCC XV vcrsus 
epsilon. The peaks coincide, assuring that thc gains witnessed arc universal 

and not limited to the best network alone. 

Eplm 

Fig. 6 .  Pcrccntagc Concct Classification on Test set (PCC Test) of SEAM 
and ssFAM against epsilon. An optimum epsilon value for one 'ypc of 

ncrwork is generally a good epsilon value for anothcr 'ypc of network too. 

Furthermore, beyond this optimum &value we notice that the 
average generalization performance of all the networks 
exhibits a monotonically decreasing behavior with increasing 
E values. 

The optimal epsilon value /or one network is a good 
epsilon value for the other networks too. For illustration 
purposes please refer to Fig. 6, where the performance results 
of all ssFAM and ssEAM with a 4-class problem and 25% 
overlap is depicted. This result is an additional testament to 
the goodness of the hest E value for a particular data set. 
Hence, the best E value obtained for a particular data set can 
be considered more or less independent of the semi- 
supervised classifier that is employed for classification 
purposes. 

Optimizing with respect to epsilon makes goodsense. If we 
compare the performance of semi-supervised networks with 
fully supervised networks across all the experiments that we 
have performed we observe the following: the generalization 
performance of the best semi-supervised network 
outperformed the generalization performance of the best fully 
supervised network by 0.14% in the worst case and by 
11.06% in the hest case with an average of around 6.5% 
performance enhancement. Furthermore, the ratio of utilized 
categories achieved by the hest semi-supervised networks 
compared to the best fully supervised network was around 10. 
Similar types of qualitative results were observed, when the 
best ssFAM was compared to the hest FAM and the hest 
ssRCE was compared with the hest RCE. 
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TABLE I :  
BEST EAM, SEAM, FAM AND ssFAM FOR ALL DATASETS IN 

TERMS OF PCC TEST 
Best Besf SEAM Bcsl Bcsl ssFAM 

Overlap EAM @optimum epsilon FAM @optimum epsilon 
1 dnss 

95.22 95.1 

85.24 85.02 

75.36 75.18 
25% 63.2 @ 0.6 63 @ 0.4 

70.46 70.28 
3046 62.1 a 0 . 4  61.7 @0.6 * 

60.5 60.22 
40% 54.2 @0.8 * 53.3 @ 0.7 

5% 89.3 a 0 , 4  * 89.9 a0.1 * 

IS% 76.1 @0.7 * 74.9 @ 0.2 * 

4 class 
91.8 94.14 

81.5 84.74 

70.24 72.06 

67.2 63.52 

58.32 55.64 

5% 91.3 @o. i  92.3 @O.l 

15% 75.8 @ 0.4 75.5 @ 0.2 

25% 60.8 @ 0.5 62 @ 0.5 

30% 58.6 @ 0.6 51.6 @0.5 

40% 47.3 o n x  48.6 mn7 
~~ ~ ~~~~~~~~~~~~ ~~~ 

6 class 
89.07 86.91 

78.24 74.34 

66.07 61.99 
25% 61.5 @ 0.3 58.4 @ 0.6 

62.69 60.05 

49.96 52.68 

5% 88.4 a0.l 85.6 @ O . l  

15% 78.1 @ 0.2 69.3 @ 0.2 

30% 56.7 @ 0.5 58.2 @ 0.2 

40% 46.1 @0.7 * 42.2 @ 0.3 

’ - Indicates prescncc of mort than O ~ C  oplimum Y ~ U C  of cpsilon. 

Finally, in Table I we list for every pattern recognition task 
we considered in our experiments the test performance of the 
best EAM, ssEAM, FAM and ssFAM classifier. As it can be 
witnessed, semi-supervised classifiers outperform their fully 
supervised counterparts in all experiments. The difference in 
test performance is especially pronounced, when the degree 
of class overlap is higher than low (5%). 

IV. CONCLUSIONS 

In this paper we have presented the concept of semi- 
supervised learning (SSL) as it.is applied to exemplar-based 
classifiers (EBC). SSL refers to the semi-supervised 
construction of clusters during the training phase of these 
classifiers. We have demonstrated the merits of SSL by 
conducting a series of experiments using artificially 
generated data sets and implementing SSL-variants of 
Ellipsoid ARTMAP, Fuzzy ARTMAP and the planar 
Restricted Coulomb Energy classifier. Apart from lending the 
capability of coping with inconsistent training pattems and 
non-stationary pattern recognition problem, EBCs that 
follow the SSL paradigm exhibit improved generalization 
performance, while employing only a small number of 
exemplars, when compared to their fully supervised versions. 
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