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Abstract. An integral component of Fuzzy ARTMAP's training phase
is the use of Match Tracking (MT), whose functionality is to search for
an appropriate category that will correctly classify a presented training
pattern in case this particular pattern was originally misclassified. In
this paper we explain the MT's role in detail, why it actually works and
finally we put its usefulness to the test by comparing it to the simpler,
faster alternative of not using MT at all during training. Finally, we pre-
sent a series of experimental results that eventually raise questions
about the MT's utility. More specifically, we show that in the absence
of MT the resulting, trained FAM networks are of reasonable size and
exhibit better generalization performance.

1 Introduction

Fuzzy ARTMAP (FAM) [1] is a neural network architecture based on the principle of
adaptive resonance theory developed in [2]. The network is capable of learning in-
put-output domain associations in an on-line or an off-line fashion. As a special case,
when the output domain consists of a collection of class labels, FAM can be used as a
classifier. In the sequel, when we refer to FAM, we will actually be referring to the
FAM classifier. FAM enjoys several desirable properties of learning including the
dual support for off-line (batch) and on-line (incremental) learning as well as the
property of learning stability: using fast learning its training phase completes in a
finite number of list presentations (epochs). FAM follows an exemplar-based learn-
ing paradigm and crystallizes its acquired knowledge in the form of categories,
whose geometric representations are hyper-boxes embedded into the input domain.
Learning in the presence of new data evidence occurs when either existing categories
are updated or new categories are created.

An integral part of FAM's training phase is the Match Tracking (MT) mechanism.
When an already-existing, chosen category initially misclassifies a training pattern,
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MT initiates a new search of the category pool with the hope of eventually finding an
appropriate category that will correctly classify the presented pattern. In other words,
MT attempts to avoid the unnecessary creation of new categories during the learning
process and therefore controls the structural complexity of the resulting FAM net-
work by inducing an extra computational cost.

In this paper we will first elucidate MT's role and explain how and why it actually
works (see Section 3). In order to test the utility of MT we compare it to the alterna-
tive of immediately creating a new category, when the training pattern has been mis-
classified in the early stages of learning. Although this last strategy does not directly
control the structural complexity of the resulting classifier as MT does, it is computa-
tionally simpler. We need to note here that the idea of removing and/or replacing MT
with other approaches is not new (for example, see [3], [4] and [5] to a name a few).
In Section 4 we present experimental results on both simulated and real data that raise
questions about MT's usefulness in FAM training. Our results in all cases indicate
that not using MT and immediately creating categories in the previously described
scenario can be less computationally intensive, produces comparable-in-size archi-
tectures and, to our surprise, may improve generalization performance as well. In the
next section we provide some background on how FAM's fast learning is being ac-
complished, when a training pattern is being presented.

2 Learning in Fuzzy ARTMAP

Let N be the set containing the indices of all already-formed categories, ρ ∈[0,1] be
the baseline vigilance parameter value, a>0 be the choice parameter value,
wj∈[0,1]2M be the template vector of category j, L(j) be the class label associated with
category j, x∈[0,1]M be the presented training pattern, xc∈[0,1]2M  be the training
pattern in complement-coded form, L(x) be the class label of pattern x, 1∈[0,1]M be
the all-ones row vector, ∧ be the fuzzy-min operator, ρ(wj|x) and T(wj|x) be the cate-
gory match function (CMF) value and the category choice function (CCF) value re-
spectively of category j with respect to x, and Tu be the CCF value corresponding to
uncommitted F2-layer nodes. The pseudo-code depicted on the next page shows how
FAM learns a training pattern.

The reader may notice that the provided pseudo-code differs from the one de-
scribed in [1], but he/she should be assured that it reflects FAM's correct operation.
The pseudo-code was re-written in a form that is more suitable for a software imple-
mentation of the training procedure. For example, it uses expressions (1) and (2)
instead of ρ:= ρ(wJ|x)+ε and S:=S-{j∈S | ρ(wj|x)<ρ} respectively to avoid the in-
volvement of the arbitrary, small, positive value ε mentioned in [1]. Also, CMF val-
ues are calculated prior to CCF values, which contrasts the description in [1], but is
computationally more efficient as is shown in [6]. The interested reader can refer to
[1] and [7] for more details on the involved concepts and other details regarding
FAM's training phase.
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Set S:=N and ρ:= ρ
If S=∅, set J:=none; otherwise
   Compute CMF values ρ(wj|x) ∀j∈S
   Perform Vigilance Test: S:=S-{j∈S|ρ(wj|x)<ρ}
If S=∅, set J:=none; otherwise
   Compute CCF values T(wj|x) ∀j∈S
   Select wining category )|(maxarginf: xw j

Sj
TJ

∈
=

   Perform Commitment Test: If T(wJ|x)<Tu, set J:=none
While J≠none do
   Perform Prediction Test:
   If L(J)=L(x), set wJ:=x

c∧wJ and exit the while-loop.
   If L(J)≠L(x)
      Perform Match Tracking: Set ρ:=ρ(wJ|x) (1)
      Perform Vigilance Test: S:=S-{j∈S|ρ(wj|x)≤ρ} (2)
      If S=∅, set J:=none; otherwise

         Select wining category )|(maxarginf: xw j
Sj

TJ
∈

=

         Perform Commitment Test:
         If T(wJ|x)<Tu, set J:=none
If J=none
   Create a new category K with wK:=[x 1-x]
   Set L(K):=L(x) and N:=N ∪{K}

3 The Role of Match Tracking

FAM is designed to support both off-line and on-line (incremental) learning. In order
to accommodate the latter learning mode, FAM's training phase has been designed to
adhere to the following principle:

FAM's Incremental Learning Principal (ILP): Assume that a training pattern x has
been presented and has been learnt by a FAM network during its training phase. If
we present again the same pattern x immediately after it has been learnt, the network
will classify it correctly.

Assume that a training pattern x is being presented and category J is being se-
lected, where L(J)≠L(x). In other words, FAM initially misclassifies x. In this case
there would be two possibilities: a) Try to search for an already existing category I
with L(I)=L(x) such that the ILP holds. Only if the search fails, then create a new
category K with L(K)=L(x). This approach, although being computationally more
involved, avoids increasing the structural complexity of the classifier, whenever this
is possible, and is being followed in FAM training via the use of MT. b) Immediately
create a new category K with L(K)=L(x). This approach, of course, although putting
no effort to control the increase in structural complexity, is faster in a computational
sense than the former one. Here we need to note that the creation of a new category
during training adheres to the ILP, but we omit a more detailed explanation.
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During MT the value of ρ is being increased and a new search for a winning cate-
gory is initiated. The search involves filtering out those categories that do not pass the
Vigilance Test and then selecting the category of highest CCF value (if there is more
than one, then the one featuring the lowest category index) is being chosen. Assum-
ing that the Commitment Test has been passed, a new application of the Prediction
Test will determine if MT has to be applied once again or if an appropriate category
has been found. Let J be the category that was initially chosen with L(J)≠L(x) and I
be the category found after MT has been invoked with L(I)=L(x). Due to MT it will
hold that ρ(wI|x )> ρ(wJ|x). In order to preserve the ILP we must have that T(xc∧wI|x )
>T(wJ|x). It can be shown that MT achieves exactly this goal:

Proposition: For any a>0 and any input pattern x, if it holds that ρ(wI|x)>ρ(wJ|x),
where I and J are any two categories of a FAM network, then it also holds that
T(xc∧wI|x)>T(wJ|x).

Proof: It can be shown that, if ρ(wI|x)>ρ(wJ|x) and a>0, then T(xc∧wI|x )>T(xc∧wJ|x).
The result follows immediately from the fact that T(xc∧wJ|x)≥T(wJ|x), which holds
for any x and any category J.

The above proof implicitly assumes the usage of the Weber Law CCF, although the
proposition holds also for the Choice-By-Difference CCF (see [8]). Having explained
what MT's role is and why it actually works, we return back to the two approaches (a)
and (b) we've mentioned earlier to elaborate further. Approach (a) that subscribes to
the use of MT tries to avoid creating new categories, whenever this is possible, by
paying an extra computational cost. From the provided pseudo code it is easy to see
that the computational complexity of FAM's training phase is O(N2) per presented
pattern, where N stands for the number of existing categories when a pattern is pre-
sented. On the other hand, we have approach (b), where no MT is being practiced and
a new category is immediately created. It is easy to show (but, again, the details are
omitted) that this behavior is equivalent to performing MT by setting ρ:=1 instead of
ρ:=ρ(wJ|x) in the pseudo-code. It can also be shown that approach (b) would result in
a computational complexity of O(N) per presented pattern.

In order to assess the effectiveness or the utility of MT, we need to first find out
how does the presence or absence of MT affect the i) overall computational cost of
FAM's training phase ii) the total number of categories created after training has
completed (FAM's structural complexity) and iii) FAM's generalization performance.
In the following section we make an attempt to provide an answer for these questions.

4 Experimental Results & Conclusions

Our experimentations dealt with 4 sets of data, the first 3 being artificially produced
by sampling with equal prior probabilities from mixtures of 4 2-dimensional, iso-
tropic and equidistant Gaussian distributions of Bayes error rates 10%, 25% and 40%
respectively. The last data set we used was the Abalone database from the UCI Ma-
chine Learning Repository [9]. In order to assess the generalization performance of
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the two approaches (usage of MT versus not using it) as they apply to FAM learning,
for each data set and for each of the two approaches we trained to completion FAM
classifiers using off-line fast learning, 100 different presentation orders of training
patterns, 40 values for ρ (0.0, 0.025, …, 0.975), 4 values of a (0.001, 0.01, 0.1, 1.0)
and wu→∞ (which implies that Tu→2/(4+a)). This resulted in a total of
100×40×4=1600 FAM architectures. For each data set and each approach (FAM with
and without MT), out of the 16000 networks we selected via cross-validation the best
100 performing classifiers, which we then tested using a separate collection of test
patterns. In specific, for the artificially generated data sets we used 500 training pat-
terns, 5000 patterns for cross-validation and 5000 patterns for testing. On the other
hand, for the Abalone database we used 1000 training patterns, 2133 patterns for
cross-validation and 1044 patterns for testing. The collections of patterns for cross-
validation and testing were chosen large so that the classification performance com-
parisons would yield statistically significant results.

Due to the lack of space, only selected results are depicted in Tables 1 and 2.
Similar results to the ones illustrated in Table 1 were also found for the other two
Gaussian mixture data sets. PCC stands for percent correct classification, Categories
for the number of categories employed in the trained networks and FLOPs stands for
the number of floating point operations that were performed during the training
phase.

From the tables we observe that refraining from MT and immediately creating new
categories to correct initial pattern misclassifications during training may be far supe-
rior to actually employing MT in terms of generalization performance. The best net-
works trained without the use of MT are approximately by 5% to 6% better on the
collection of test patterns, while being of somewhat larger size (a difference of 60 to
70 categories). Taking into account that more than 1000 patterns were used in testing,
these differences in performance are statistically significant at a significance level of
0.05. Furthermore, these “best” classifiers required less computational effort (meas-
ured in FLOPs) to be trained than their homologues (that were trained using MT)
despite their larger size.

Table 1. Test results for the Gaussian Mixture (Bayes error 40%) data set

Using MT Not using MT
Best Average Best Average

PCC 54.90% 49.37% 60.24% 51.47%
Categories 179 230 220 284
FLOPs 5.6×106 6.73×106 2.3×106 6.5×106

Table 2. Test results for the Abalone data set

Using MT Not using MT
Best Average Best Average

PCC 49.56% 45.39% 56.87% 45.10%
Categories 367 230 541 569
FLOPs 63.6×106 61×106 40.2×106 96×106
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On balance, we have demonstrated with our experimental results that the useful-
ness of MT may be questionable. We have presented indications that MT may hinder
a FAM classifier to achieve higher correct classification rates, while requiring in
some cases more computations during training to control the classifier's size.
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