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Abstract—This paper considers the problem ofmultiple-source resolution algorithms is that they require extensive computation
tracking with neural network-based smart antennas for wireless and as a result they are difficult to implement in real time. Re-
terrestrial and satellite mobile communications. The neural mul- cently, neural networks-based direction finding algorithms have

tiple-source tracking (N-MUST) algorithm is based on an architec- been proposed for single and multiple source direction findin
ture of a family of radial basis function neural networks (RBFNN) prop 9 P 9

to perform both detection and direction of arrival (DOA) estima-  ([4]-[6]). It has been shown that neural networks have the capa-
tion. The field of view of the antenna array is divided into spatial  bility to track sources in real time. In [7], a radial basis function

angular sectors, which are in turn assigned to a different pair of neural network has been used to track the locations of mobile
RBFNN's. When a network detects one or more sources inthe first ;a5 However, a different network had to be used for different

stage, the corresponding second stage network(s) are activated to b f ith fixed | tion. Thi
perform the DOA estimation. Simulation results are performed to number ot users with some fixed anguiar separation. this paper

investigate the performance of the algorithm for various angular Presents a generalization of the algorithm introduced in [7] in
separations, with sources of random relative signal-to-noise ratio such a way that the system would be able to track an arbitrary

and when the system suffers from a doppler spread. number of sources with any angular separatathout prior
Index Terms—Direction-of-arrival  estimation, mulibeam Knowledgef the number of sources. The neural multiple source
antennas, neural networks. tracking (N-MUST) algorithm is based on an architecture of a

family of radial basis function neural networks that perform both
detection and DOA estimation. The new approach is based on
dividing the field of view of the antenna array into angular spa-
T HE concept of frequency reuse has been successfully itial sectors, then train each network in the first stage of the al-
plemented in modern cellular communications systems gorithm to detect signals emanating from sources in that sector.
order to increase the system capacity. Extensive research Oage this first step is performed, one or more networks of the
showed that further improvement can be achieved by employisgcond stage (DOA estimation stage) can be activated so as to
adaptive arrays at the base station [1], [2]. In order to accomplisktimate the exact location of the sources.
tracking of desired users, direction finding algorithms are usedThe main advantage of this new approach is a dramatic reduc-
to locate the positions of the mobile users as they move withion in the size of the training set required to train each smaller
or between cells. On the other hand, as a growing numberr@gfural network. Results for the DOA estimation of multiple
mobile satellite communication systems are being introducedurces using this new approach are presented and discussed.
and as global positioning systems (GPS) systems become nptie organization of this paper is as follows: Section Il presents
widely used, smart antennas capable of separating signals frig problem formulation and elaborates on the use of neural net-
multiple sources can substantially improve the performancewbrks for direction finding. In Section Ill, the new approach la-
those systems as well. Hence, a direction finding algorithm thagled N-MUST is detailed as well as the different detection and
can operate in real time is an integral part of any spatial diMDOA estimation steps. The simulations results are presented in
sion multiple access (SDMA) scheme for terrestrial as well &ction IV and in Section V some conclusive remarks summa-
satellite mobile communication systems. Other applications @fe the performance of the algorithm.
direction finding include target tracking and telemetry.
Superresolution algorithms [3] have been successfully ap-
plied to the problem of direction-of-arrival (DOA) estimation to
locate radiating sources with additive noise, uncorrelated, andconsider a linear array composed &f elements. Let

correlated signals. One of the main disadvantages of the SUPRT:K < A1) be the number of narrowband plane waves, cen-
tered at frequencyy, impinging on the array from directions
{6, 6 --- 8k }. Using complex signal representation,

Manuscript received Septmber 29, 1998; revised November 15, 1999.  the received signal at thi¢h array element can be written as
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Assuming that the noise signdls,(¢) i =1 : M) received
/ / /n@ Signals at the different sensors are statistically independent white noise
signals of zero mean and variang& and also independent of
S(t), then the received spatial correlation matfixof the re-

Y Y 3? X ceived noisy signals can be expressed as

_ H
SAMPLE DATA PREPROCESSING : R=E{X()X(t)"}
; ; . 1 = AE[S(HS" (1) A + EIN@NT(8)].  (9)
7N N e N
L/ / () . _JINPUT LAYER In the above equation, " denotes the conjugate trans-

pose. The antenna array can be thought of as performing
a mappingG: RX — ¢* from the space of the DOAs,
{©® = [0, 6., ---, 0x]") to the space of sensor output
{X(@#) = [x1(t) w2(t) -+ xp(t)]F}. A neural network
is used to perform the inverse mappify ¢ — RX. The
. L { JouTpuTLAYER algorithm described in this paper for the problem of direction
I T T T finding is based on using radial basis function neural networks
to approximate this inverse mappidg Note that an RBFNN
POSTPROCESSING can approximate an arbitrary function from an input space
l l l 1 of arbitrary dimensionality to an output space of arbitrary
dimensionality ([8]-[10]). The reason for choosing a RBFNN
is because it trains faster than its backprop NN counterpart.
Fig. 1. The block diagram of an RBFNN with pre- and postprocessing stagTshe block diagram of "_m RBFNN is shown in Fig. _1' In
etween the blocks designated “sample data processing” and
“postprocessing,” as can be seen from Fig. 1, the RBFNN
wheres,,(t) is the signal of thenth wave,n;(t) is the noise consists of three layers of nodes: the input layer, the output

OUTPUT

signal received at théh sensor and layer, and the hidden layer. The input layer is the layer where
the inputs are applied; the output layer is the layer where the
km = wod sin(6,,) ) outputs are produced. As is the case with most neural networks,

c the RBFNN is designed to perform an input/output mapping

Hained with examples. The purpose of the hidden layer in
an RBFNN is to transform input data from an input space
&F some dimensionality to a new space of possibly higher
dimensionality (see Fig. 1). The rationale behind this transfor-
mation is based on Cover's theorem [11], which states that an
input/output mapping problem cast in a high-dimensionality
space nonlinearly is easier to solve. The nonlinear functions
(the h’s in Fig. 1) that perform this transformation are usually
taken to be Gaussian functions of appropriately chosen means
X(t)=[aa(t) @20t) - au®] (4)  and variances. There are a lot of learning strategies that have
appeared in the literature to train a RBFNN. The one used
in this paper was introduced in [12], where an unsupervised
learning algorithm (such as th& -means [13]) is initially
N(t)=[na(t) n2(t) --- nm(®)]” (5) used to identify the centers of the Gaussian functions used
in the hidden layer. Then, aad-hoc procedure is used to
determine the widths (standard deviations) of these Gaussian
functions. According to this procedure, the standard deviation
St =[s:(t) s208) - sx(@®)]" (6)  of a Gaussian function of a certain mean is the average distance
) o to the first few nearest neighbors of the means of the other
In (4)—(6) the superscriptl™ indicates the transpose of thegayssjan functions. The aforementioned unsupervised learning
matrix. Also in (3)A is the M x K steering matrix of the array procedure allows you to identify the weights (means and stan-
toward the direction of the incoming signals defined as dard deviations of the Gaussian functions) from the input layer
to the hidden layer. The weights from the hidden layer to the

whered is the spacing between the elements of the arraycan
is the speed of light in free-space. Using vector notation we ¢
write the array output in a matrix form

X(t) = AS(t) + N(1) ®3)

whereX (t), N(t), andS(¢) are given by

A=la(b1) - albm) - a(fx)] (7)  output layer are identified by following a supervised learning
procedure, applied to a single layer network (the network from
wherea(6,,,) corresponds to hidden to output layer). This supervised rule is referred to as

the delta rule. The delta rule is essentially a gradient decent
alfp) =[1 e km  mi2km .. emi(M=Dks] - (8) procedure applied to an appropriately defined optimization
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Fig. 2. The neural multiple source tracking architecture.

problem. For more details about tidelta rule and how it is actual array outpuX (¢) since it contains sufficient information
applied to single layer networks, see [9]. about the received signals. The input vector to the input layer of
It should be mentioned here that although we could hatlee network (see Fig. 1) is the spatial correlation maRtithat
used thex-foldout technique for training, our training approacttan be organized as dd?-dimensional vector denoted Iyt
proved to be less time consuming and yielded fairly accurateen follows that the number of input units at the input layer
results. In then-foldout technique the training set is split intois given by2A4Z2. This is due to the fact that we need twice
n subsets. Then an RBFFN is trained on all subsets except &rmany input nodes for the neural network since the network
one and the error is measured on the subset left out. This pdoes not deal directly with complex numbers. The dimension of
cedure is repeated for a total oftimes, each time using a dif- the hidden layer is equal to the number of the Gaussian func-
ferent subset for error measurement and the remaining subsietss L, which can be chosen to be equal to the number of total
for training. Although, this statistical technique of measuringpput/output pairs in the training set if perfect recall is desired.
the error is more reliable than our procedure, itis extremely tinfde input vectoib is normalized by its norm prior to being ap-
consuming . Since, in our problem, the data can be of large sied at the input layer of the neural network, i.e.,
then-fold holdout technique can be even more time consuming.
This is the main reason why we have avoideditHeld holdout 2= i (10)
technique. 18]

Once training of the RBFNN is accomplished, the training |, 5rger to reduce the dimension of the input layer, other pre-
phase is complete, and the trained neural network Can_Oper&I(?cessing schemes have been suggested by researchers. The
in the performance mode (phase). In esformance (testing) g,m of the diagonal of the correlation matrix helps reduce the
phase the_ neural network is expected to generalize, that is r&amber of input nodes needed2o7 for an M element linear
spond to m_put_s th_at it has never seen b_efore, bL_'t _drawn ff%fﬂay. However, this comes with the price of reduced network
the same d|sFr|_but|on as the |n.put.s used in _the training set. eralization performance. By exploiting the symmetry in the
way of explaining the generalization exhibited by the network, e|ation matrixz one need only consider either the upper or
d“f”_‘g the perf(_)rmance phase is by remembering Fhat after {Bger triangular part of the matrix. In our design, the upper tri-
training phase is complete the RBFNN has established an apg oy half ofR is used. AnM x M spatial correlation matrix
proximation of the desired input/output mapping. Hence, dur”ﬁ_can organized in ad/(M + 1)-dimensional vector of real

the performance phase the RBENN produces outputs 10 preyiiy imaginary parts denotéd This procedure is illustrated in
ously unseen inputs by interpolating between the inputs usmg following:

(seen) in the training phase.
11 Ti2 T13
A. Sample Data Preprocessing R=|ry 79 793
In general, array processing algorithms utilize the correlation 31 T32 733
matrix for direction of arrival estimation purposes instead of the b=[run 72 713 722 723 T33]
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1.2 , . . . , more sources in the first stage, the corresponding second stage
. networks are activated to perform the direction of arrival (DOA)
1k S ] estimation step. No prior knowledge of the number of present
Solid:Desired

= sources is required.
Dotted:RBFNN

o
®

A. Detection Stage

In this approach, labeled the N-MUST algorithm, an arbitrary
number of mobile users (sources) can be tracked and no prior
knowledge of the number of mobile users is required. As shown
in Fig. 2, there are two stages of RBFNN's. The first stage is the
“detection stage,” which consists BfRBFNN’s, each of width

o
[=)]
T

Network Output
o
S

0.2 fw . The entire angular spectrum (field of view of the antenna
e array) is divided inP sectors. Theith (1 < p < P) RBFNN
0 is trained to determine if one or more signals exist within the
[(p — 1)8w , phw )] sector. If there are any signals present in
-0.2 ' : . L ' the corresponding sector, the neural network will give the value
60 -40 -20 0 20 40 60

AOA in one for an answer. Otherwise, the network will register a zero as
' its output value. This information is then passed to the second
Fig. 3. A ten-element linear array and sources in & Wde sector {_250 Stage, the "dil‘eCtiOI’l Of arriValn Stage, Wh|Ch eStimateS the ang|eS
—35°]. Trained with two sources and tested with four sources separatet! by @f these signals.
In space. Each one of thé® neural networks of the detection stage, has
M(M + 1) input nodes representing the correlation mafix

It should be noted here that training a single neural netwo#d one output node. The number of hidden nodes in the second
to detect the angle of arrival of multiple sources is not an eakgyer is alsaM (A + 1). The training procedure for a network
task. To get an idea of how much training is required, considérthe detection stage is outlined below.
the problem of tracking two sources only. First, we start with
training the network with a?2angular separation from90° to
9(°. That means you set the first sourcefat —90° and the
next source af = —88°, next you set the first source at89°
and the second te-87°, and so on until you cover the region
of interest (assuming-90° to 90°). Next you repeat the same
training procedure with 3difference between the two sources
(—90 and—87, —89 and—86, —88 and—85 - - - 87, and 90).
Then % (—90 and—85,—89, and-84,—88 and—83, etc.), then
10 degrees apart: 15, 20, 30, 40, 50, and 60. Thus, the training se?
consists of sources with angle of arrivals that cover a wide range
possibilities. The testing is done by presenting to the network

data corresponding to two sources with angles of separation thap) Test (Generalization) Phase in the Detection Stage:

it has not seen before. For example, if two sources that are Sep'1) Evaluate the sample correlation matrix using the collected
arated by 12 apart are presented, the network can detect these array output measurements using equation (9)

two sources accurately by quickly interpolating between the re- 2) Form the vectord.

sponses it was trained to produce during the training phase.Thiss) Produce the normalized input vectdraising equation
kind of exhaustive training becomes prohibitive for more than (10).

three or four sources since the number of possible training data4) Present input vectosto the RBENN's of the detection
combinations is enormous. To circumvent this problem, mul- stage and obtain an outp{a or 1} from each one.

tiple, but smaller, neural networks are employed. Each networkl:r ' :

then tracks a smaller number of sources within a smaller angula 0 illustrate hov_v a network is trained in the Qetect|0_n
sector stage, let us consider a case where the network is required

to track N, sources in the [1020°] sector with some an-
gular separationAd. We start the training with sources at
—90°, —90° 4+ A4, ---, —90° + (N, — 1)Af. We use this
vector of DOA to generate the correlation matfikand the
The N-MUST algorithm is also based on the RBFNN, but itormalized vectog. Since the sources are outside the sector of
is composed of two stages—the detection stage anelstima- interest, the target output is “0” in this case. We then select the
tion stage—as shown in Fig. 2. In the first stage, a number sfibsequent DOA vectors asi8°, —88° + Af, ---, —88° +
RBFNN's are trained to perform the detection phase, while iV, — 1)Af8, —86°, —86° + Af, ---, —86° + (N, — 1)Af
the second stage another set of networks is trained for the dirand so on. The target output of the network is set to “1” only
tion of arrival estimation phase. When networks detect one when one or more of the angles in the DOA vector lies in the

1) Network Training in the Detection Stage:

1) Evaluate the correlation matrix of theh array output
vector using equation (PR™, n =1, 2, ---, N}.

2) Form the vectorgd™, n=1,2, ---, N}.

3) Normalize the input vectors using equation (10).

4) Generate input output paifg™, 1} for sources located
in the sector, ang=™, 0} for sources located outside the
sector wherev = 1, 2, ---, N,

) Employ an appropriate RBFNN in the detection to learn
the training set generated in step 4).

[Il. NEURAL MULTIPLE SOURCE TRACKING (N-MUST)
ALGORITHM
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Fig. 4. Comparison between the desired and actual response of a ten-element array trained with two equipower sbargslaf 8paration and tested with
three sources of®3angular separation and different SNR'’s.
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Dotted: RBFMKM

o
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Fig. 5. Response of an eight-element linear afray= A /2) tracking four sources of2angular separation in the secter30°> —11°]. The sources are of equal
power, 5 dB higher than the noise power.

[10° 20°] range. In the simulations performed, a network wasr more networks from the first stage is 1, the corresponding
tested with number of sources and angular separations differeatond stage network(s) are activated. The input information to
than it had seen in the training. The network was able &ach second stage network is the correlation magixvhile
detect the presence of the sources correctly. This suggests thatoutput is the actual DOA of the sources. The number of
considering all possible combinations of number of sourcégden nodes is the same as the number of input nodes given
and separations need not be considered for the detection phbgéd (M + 1). The optimum size of hidden nodes is not always
easy to determine. In this work, after extensive experimentation,
B. DOA Estimation Stage it was found that by choosing the number of hidden nodes to be
The second stage of neural networks is trained to perfoequal to or larger than the number of input nodes, good results
the actual direction of arrival estimation. THenetworks of the can be obtained.
DOA estimation stage are assigned to the same spatial sectofSonsider a system with minimum source resolution Qfé
as in the detection stage (see Fig. 2). When the output of gsiggle neural network trained to track sources over the antenna’s
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Fig. 6. Response of a 12-element array which was traineddjfithranging from 0.4-0.6 and with three sourc8s#45’, 5°, - - -, 7° of angular separation in the
sector [10 29°].

field of view (e.g.,180° wide) could be trained for angular sep- 4) Generate input output pairs
arationsAg of 2°, 4°, 6°, - -- up to someAd. This results in {z",0",n=12 -, N}

such a huge training set that the single neural network approactb) Employ an appropriate RBFNN training procedure to
becomes impractical. However, by assigning different networks  learn the training set generated in step 4).

for different angular spatial sectors, smaller training sets are2) Generalization (Testing) Phase for the DOA Estimation
sufficient since the network is only required to track sourceStage:

in a limited spatial region. For sectors?}0-20° wide, itfol- 1) Evaluate the sample correlation matrix using the collected
lows that the number of distinct locations of possible sources  array output measurements and equation (9).

as well as the size of the training set are significantly reduced. 2y Form the vectors.

Whereas most direction finding algorithms require the knowl- 3) produce the normalized input vectarsrom equation
edge of the number of sources, in our approach we only need (10).

to specify the minimum angular resolution that the system is 4) present input vectossto the RBFNN and obtain a vector
required to achieve. Rather than designing the network with ~ of yglues between 0 and 1 whose further processing will

number of output nodes equal f6 (number of sources), for a give you an estimat®.
sector of widthfy, and minimum angular resolution &X6,.,;,,,
the number of output nodes is given by IV. RESULTS

A linear array of ten elements was trained to detect the pres-
| fw ence of sources in a 10wide sector. Different training and
J= . (11) ) .
Abnin testing sets were generated from sources with equal SNR of

_ . . 10 dB. The correlation matrix was calculated from 400 snap-
DOA estimates are obtained by postprocessing the neural ng{ots of simulated array measurements. In Fig. 3, the array was

work outputs of the second stageoutput nodes represent binsrajned to detect the presence of two sources separatetliby 2
in a discrete angular spatial region centered@{,i,, intervals. space and then was tested with four sources in the sector with
The output nodes are trained to produce values between “0” 83l same angular separation. The actual output of the detection
“1.” An output of “1"indicates the presence of a source exactitage shows the ability of the network to generalize and detect
on the bin and a “0” represents no source. Sources located Rfyre sources than it was trained for. To investigate the behavior
tween the bin angles are represented by values between “0” gfghe network for different angular separations a ten-element
‘1 array was trained with two sources df@ngular separation and

1) Network Training Phase for the DOA Estimation Stage:tested with three sources of angular separation. Fig. 4 shows

1) Evaluate the correlation matrix of theh array output a comparison between the desired and actual response for this

vector{ R*, n =1, 2, ---, N} using equation (9). array with sources with different SNR, respectively.
2) Form the vectorgd™, n =1, 2, ---, N}. Choosing sectors 2wide (6w ), and minimum angular res-
3) Normalize the input vectors using equation (10). olution (A®,,i,) of 2°, the dimension of the output layer of
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Fig. 7. An array of ten elements is shown tracking two sources in the seef@P[—21°] with angular separations’2—4.5° and different sets of random SNR
in the training and testing phases.

50 L) T T L) L} 1 ¥
solid:Actual DOA '

Dotted:RBFNN
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101§
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Fig. 8. Comparison between the actual and the DOA estimated by the neural network for a four-element linear array receiving eight sources éosatéat in th
[10° 49°] with 2° and 4 angular separation and random SNR.

individual networks in the estimation stage becomes ten nodBsppler spread, the operating frequency often changes, a 12-el-
Fig. 5 shows alinear array of eight elemefits= \/2) tracking ement array was trained wity A ranging from 0.4 to 0.6 and
four sources of 2angular separation in the sectetd0° —11°].  with three sources°4-7° of angular separation in the sector
The input layer consisted of 72 nodes and the sources were[a§° 29°]. The number of points in the abcissa refers to the index
sumed to be of equal power—5 dB higher than the noise powefithe testing set. This is true for Figs. 6-8 as well. Fig. 6 shows
The estimated and the theoretical angles of arrivals were véimat the RBFNN was able to estimate the DOA of the sources
close. Since in practice, due to some tuning imperfections accurately. The dimension of the input layer in this case was 156
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nodes. Since the sources do not normally have the same powe] L. Long and L. Y. Da, “Real-time computation of the noise subspace for
in Fig. 7 an array of ten elements is shown tracking two sources,_ the MUSIC algorithm,” inProc. ICASSPvol. |, 1993, pp. 485-488.
in th 40° —21°1 with | ione2_4. 5 [6] D. Goryn and M. Kaveh, “Neural networks for narrowband and wide-
in the sector 40> —21°] with angular separations’2-4.5° band direction finding,” irProc. ICASSP1988, pp. 2164-2167.
and different sets of random SNR in the training and testing[7] A. H. El Zooghby, C. G. Christodoulou, and M. Georgiopoulos, “Per-
phases. It is observed that the RBENN successfully resolved forrr)ancg of radial basis function networks for direction of arrival esti-
h Ti dv th f fth | ith h mation with Antenna Arrays [EEE Trans. Antennas Propagatol. 45,
those sources. To stu _yt e performance of the algorithm when ., "1511_1617, Nov. 1997.
the number of signals is larger than the number of the array ele{8] S. Haykin, Advances in Spectrum Analysis and Array Processiig
ments, Fig. 8 compares the actual and the DOA estimated by the Haykin, Ed. -Englewood Cliffs, NJ: Prentice-Hall, 1995, vol. |Il

. . . ?9] ——, Neural Networks—A Comprehensive Foundatiohew York:
neural network for a four-element linear array receiving eight =" \1acmillan. 1994
sources located in the sector f189°] with 2° and 4 angular  [10] B. Mulgrew, “Applying radial basis functions|EEE Signal Processing
separation and random SNR. The ability of the network to deter- _ Mag. vol. 13, pp. 50-65, Mar. 1996.

. h | f ival of b f hat i éll] T. M. Cover, “Geometrical and statistical properties of systems of linear
mine the angles of arrival of a number o S(_)urces that Is greater inequalities with applications in pattern recognitiolEEE Trans. Elec-
than the number of array elemets may be interpreted by the tron. Comput,.vol. EC-14, pp. 326-344, 1965.
fact that unlike signal Subspace based aIgorithms, (e_g_, Mus|e2 T.J. Moc_)dy an_d C.J. Darken, “Fast learning in networks of locally tuned

Igorithm) no eigendecomposition is necessary and no searchyi processing units Neural Computat.vol. 1, pp. 281-294, 1989.

a g?” iy g 4 p'th g o >t}uﬁ (18] J.T. Touand R. C. GonzaleRattern Recognition Principles Reading,
performed in a subspace with dimension less than MA: Addison Wesley, 1976.

It should be mentioned here that in all examples presented
above, isotropic elements we used. This allows us to assume
broad patterns which do not affect the response across the sec-
tors. Also, although we did not experiment extensively with dif-

ferent noise levels, our experience has been that if we train th~ Ahmed H. EI Zooghby (S'91) was born in Alexan-

network with noisy data, it will respond satisfactorily to noisy
test data. Finally, in all cases, a network needs an average
1-15 minutes to train for the DOA estimation stage and abou

dria, Egypt, in 1969. He received the B.Sc. and
M.Sc. degrees, both in electrical engineering, from
Alexandria University, Egypt, in 1991 and 1994,
respectively, and the Ph.D. degree in electrical

min for the detection stage. engineering from the University of Central Florida,
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new approach s based on dividing the field of view of the affs *Sea"ierets e mat atepas neur etuorkaoplations
tenna array into spatial sectors, then each network is trainedi#fa mobile satellite communications.

the first stage to detect signals emanating from sources in thar. El Zooghby is a member of Eta Kappa Nu honor Society.

sector. According to the outputs of the first stage, one or more

networks of the second stage can be activated so as to estimate

the exact location of the sources. @riori knowledge is re-

quired about the number of sources, and the networks can be de-

signed to arbitrary angular resolution. The results demonstratod

V. CONCLUSION

Christos G. Christodoulou (S'80—M’'84—-SM’90)

the high accuracy of the algorithm. The main advantage of tt
new technique is a dramatical reduction in the size of the traini
set since much fewer training possibilities need to be considel
by sectoring the antenna field of view. It was also demonstrat
that neural network based direction finding algorithms posse
the ability of locating sources that are greater than the numk
of the array elements.
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