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Abstract—This paper considers the problem ofmultiple-source
tracking with neural network-based smart antennas for wireless
terrestrial and satellite mobile communications. The neural mul-
tiple-source tracking (N-MUST) algorithm is based on an architec-
ture of a family of radial basis function neural networks (RBFNN)
to perform both detection and direction of arrival (DOA) estima-
tion. The field of view of the antenna array is divided into spatial
angular sectors, which are in turn assigned to a different pair of
RBFNN’s. When a network detects one or more sources in the first
stage, the corresponding second stage network(s) are activated to
perform the DOA estimation. Simulation results are performed to
investigate the performance of the algorithm for various angular
separations, with sources of random relative signal-to-noise ratio
and when the system suffers from a doppler spread.

Index Terms—Direction-of-arrival estimation, multibeam
antennas, neural networks.

I. INTRODUCTION

T HE concept of frequency reuse has been successfully im-
plemented in modern cellular communications systems in

order to increase the system capacity. Extensive research has
showed that further improvement can be achieved by employing
adaptive arrays at the base station [1], [2]. In order to accomplish
tracking of desired users, direction finding algorithms are used
to locate the positions of the mobile users as they move within
or between cells. On the other hand, as a growing number of
mobile satellite communication systems are being introduced
and as global positioning systems (GPS) systems become more
widely used, smart antennas capable of separating signals from
multiple sources can substantially improve the performance of
those systems as well. Hence, a direction finding algorithm that
can operate in real time is an integral part of any spatial divi-
sion multiple access (SDMA) scheme for terrestrial as well as
satellite mobile communication systems. Other applications of
direction finding include target tracking and telemetry.

Superresolution algorithms [3] have been successfully ap-
plied to the problem of direction-of-arrival (DOA) estimation to
locate radiating sources with additive noise, uncorrelated, and
correlated signals. One of the main disadvantages of the super-
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resolution algorithms is that they require extensive computation
and as a result they are difficult to implement in real time. Re-
cently, neural networks-based direction finding algorithms have
been proposed for single and multiple source direction finding
([4]–[6]). It has been shown that neural networks have the capa-
bility to track sources in real time. In [7], a radial basis function
neural network has been used to track the locations of mobile
users. However, a different network had to be used for different
number of users with some fixed angular separation. This paper
presents a generalization of the algorithm introduced in [7] in
such a way that the system would be able to track an arbitrary
number of sources with any angular separationwithout prior
knowledgeof the number of sources. The neural multiple source
tracking (N-MUST) algorithm is based on an architecture of a
family of radial basis function neural networks that perform both
detection and DOA estimation. The new approach is based on
dividing the field of view of the antenna array into angular spa-
tial sectors, then train each network in the first stage of the al-
gorithm to detect signals emanating from sources in that sector.
Once this first step is performed, one or more networks of the
second stage (DOA estimation stage) can be activated so as to
estimate the exact location of the sources.

The main advantage of this new approach is a dramatic reduc-
tion in the size of the training set required to train each smaller
neural network. Results for the DOA estimation of multiple
sources using this new approach are presented and discussed.
The organization of this paper is as follows: Section II presents
the problem formulation and elaborates on the use of neural net-
works for direction finding. In Section III, the new approach la-
beled N-MUST is detailed as well as the different detection and
DOA estimation steps. The simulations results are presented in
Section IV and in Section V some conclusive remarks summa-
rize the performance of the algorithm.

II. NEURAL NETWORK-BASED DIRECTION FINDING

Consider a linear array composed of elements. Let
be the number of narrowband plane waves, cen-

tered at frequency impinging on the array from directions
. Using complex signal representation,

the received signal at theth array element can be written as

(1)
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Fig. 1. The block diagram of an RBFNN with pre- and postprocessing stages.

where is the signal of the th wave, is the noise
signal received at theth sensor and

(2)

where is the spacing between the elements of the array, and
is the speed of light in free-space. Using vector notation we can
write the array output in a matrix form

(3)

where , , and are given by

(4)

(5)

(6)

In (4)–(6) the superscript “” indicates the transpose of the
matrix. Also in (3) is the steering matrix of the array
toward the direction of the incoming signals defined as

(7)

where corresponds to

(8)

Assuming that the noise signals received
at the different sensors are statistically independent white noise
signals of zero mean and variance and also independent of

, then the received spatial correlation matrixof the re-
ceived noisy signals can be expressed as

(9)

In the above equation, “ ” denotes the conjugate trans-
pose. The antenna array can be thought of as performing
a mapping from the space of the DOA’s,

to the space of sensor output
. A neural network

is used to perform the inverse mapping . The
algorithm described in this paper for the problem of direction
finding is based on using radial basis function neural networks
to approximate this inverse mapping. Note that an RBFNN
can approximate an arbitrary function from an input space
of arbitrary dimensionality to an output space of arbitrary
dimensionality ([8]–[10]). The reason for choosing a RBFNN
is because it trains faster than its backprop NN counterpart.
The block diagram of an RBFNN is shown in Fig. 1. In
between the blocks designated “sample data processing” and
“postprocessing,” as can be seen from Fig. 1, the RBFNN
consists of three layers of nodes: the input layer, the output
layer, and the hidden layer. The input layer is the layer where
the inputs are applied; the output layer is the layer where the
outputs are produced. As is the case with most neural networks,
the RBFNN is designed to perform an input/output mapping
trained with examples. The purpose of the hidden layer in
an RBFNN is to transform input data from an input space
of some dimensionality to a new space of possibly higher
dimensionality (see Fig. 1). The rationale behind this transfor-
mation is based on Cover’s theorem [11], which states that an
input/output mapping problem cast in a high-dimensionality
space nonlinearly is easier to solve. The nonlinear functions
(the ’s in Fig. 1) that perform this transformation are usually
taken to be Gaussian functions of appropriately chosen means
and variances. There are a lot of learning strategies that have
appeared in the literature to train a RBFNN. The one used
in this paper was introduced in [12], where an unsupervised
learning algorithm (such as the -means [13]) is initially
used to identify the centers of the Gaussian functions used
in the hidden layer. Then, anad-hoc procedure is used to
determine the widths (standard deviations) of these Gaussian
functions. According to this procedure, the standard deviation
of a Gaussian function of a certain mean is the average distance
to the first few nearest neighbors of the means of the other
Gaussian functions. The aforementioned unsupervised learning
procedure allows you to identify the weights (means and stan-
dard deviations of the Gaussian functions) from the input layer
to the hidden layer. The weights from the hidden layer to the
output layer are identified by following a supervised learning
procedure, applied to a single layer network (the network from
hidden to output layer). This supervised rule is referred to as
the delta rule. The delta rule is essentially a gradient decent
procedure applied to an appropriately defined optimization
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Fig. 2. The neural multiple source tracking architecture.

problem. For more details about thedelta rule and how it is
applied to single layer networks, see [9].

It should be mentioned here that although we could have
used the -foldout technique for training, our training approach
proved to be less time consuming and yielded fairly accurate
results. In the -foldout technique the training set is split into

subsets. Then an RBFFN is trained on all subsets except for
one and the error is measured on the subset left out. This pro-
cedure is repeated for a total oftimes, each time using a dif-
ferent subset for error measurement and the remaining subsets
for training. Although, this statistical technique of measuring
the error is more reliable than our procedure, it is extremely time
consuming . Since, in our problem, the data can be of large size
the -fold holdout technique can be even more time consuming.
This is the main reason why we have avoided the-fold holdout
technique.

Once training of the RBFNN is accomplished, the training
phase is complete, and the trained neural network can operate
in the performance mode (phase). In theperformance (testing)
phase, the neural network is expected to generalize, that is re-
spond to inputs that it has never seen before, but drawn from
the same distribution as the inputs used in the training set. One
way of explaining the generalization exhibited by the network
during the performance phase is by remembering that after the
training phase is complete the RBFNN has established an ap-
proximation of the desired input/output mapping. Hence, during
the performance phase the RBFNN produces outputs to previ-
ously unseen inputs by interpolating between the inputs used
(seen) in the training phase.

A. Sample Data Preprocessing

In general, array processing algorithms utilize the correlation
matrix for direction of arrival estimation purposes instead of the

actual array output since it contains sufficient information
about the received signals. The input vector to the input layer of
the network (see Fig. 1) is the spatial correlation matrixthat
can be organized as an -dimensional vector denoted by. It
then follows that the number of input units at the input layer
is given by . This is due to the fact that we need twice
as many input nodes for the neural network since the network
does not deal directly with complex numbers. The dimension of
the hidden layer is equal to the number of the Gaussian func-
tions , which can be chosen to be equal to the number of total
input/output pairs in the training set if perfect recall is desired.
The input vector is normalized by its norm prior to being ap-
plied at the input layer of the neural network, i.e.,

(10)

In order to reduce the dimension of the input layer, other pre-
processing schemes have been suggested by researchers. The
sum of the diagonal of the correlation matrix helps reduce the
number of input nodes needed to for an element linear
array. However, this comes with the price of reduced network
generalization performance. By exploiting the symmetry in the
correlation matrix one need only consider either the upper or
lower triangular part of the matrix. In our design, the upper tri-
angular half of is used. An spatial correlation matrix

can organized in an -dimensional vector of real
and imaginary parts denoted. This procedure is illustrated in
the following:
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Fig. 3. A ten-element linear array and sources in a 10wide sector [�25
�35 ]. Trained with two sources and tested with four sources separated by 2
in space.

It should be noted here that training a single neural network
to detect the angle of arrival of multiple sources is not an easy
task. To get an idea of how much training is required, consider
the problem of tracking two sources only. First, we start with
training the network with a 2angular separation from90 to
90 . That means you set the first source at and the
next source at , next you set the first source at89
and the second to 87 , and so on until you cover the region
of interest (assuming 90 to 90 ). Next you repeat the same
training procedure with 3difference between the two sources
( 90 and 87, 89 and 86, 88 and 85 87, and 90).
Then 5 ( 90 and 85, 89, and 84, 88 and 83, etc.), then
10 degrees apart: 15, 20, 30, 40, 50, and 60. Thus, the training set
consists of sources with angle of arrivals that cover a wide range
possibilities. The testing is done by presenting to the network
data corresponding to two sources with angles of separation that
it has not seen before. For example, if two sources that are sep-
arated by 12 apart are presented, the network can detect these
two sources accurately by quickly interpolating between the re-
sponses it was trained to produce during the training phase. This
kind of exhaustive training becomes prohibitive for more than
three or four sources since the number of possible training data
combinations is enormous. To circumvent this problem, mul-
tiple, but smaller, neural networks are employed. Each network
then tracks a smaller number of sources within a smaller angular
sector.

III. N EURAL MULTIPLE SOURCE TRACKING (N-MUST)
ALGORITHM

The N-MUST algorithm is also based on the RBFNN, but it
is composed of two stages—the detection stage and theestima-
tion stage—as shown in Fig. 2. In the first stage, a number of
RBFNN’s are trained to perform the detection phase, while in
the second stage another set of networks is trained for the direc-
tion of arrival estimation phase. When networks detect one or

more sources in the first stage, the corresponding second stage
networks are activated to perform the direction of arrival (DOA)
estimation step. No prior knowledge of the number of present
sources is required.

A. Detection Stage

In this approach, labeled the N-MUST algorithm, an arbitrary
number of mobile users (sources) can be tracked and no prior
knowledge of the number of mobile users is required. As shown
in Fig. 2, there are two stages of RBFNN’s. The first stage is the
“detection stage,” which consists ofRBFNN’s, each of width

. The entire angular spectrum (field of view of the antenna
array) is divided in sectors. The th RBFNN
is trained to determine if one or more signals exist within the

sector. If there are any signals present in
the corresponding sector, the neural network will give the value
one for an answer. Otherwise, the network will register a zero as
its output value. This information is then passed to the second
stage, the “direction of arrival” stage, which estimates the angles
of these signals.

Each one of the neural networks of the detection stage, has
input nodes representing the correlation matrix

and one output node. The number of hidden nodes in the second
layer is also . The training procedure for a network
in the detection stage is outlined below.

1) Network Training in the Detection Stage:

1) Evaluate the correlation matrix of theth array output
vector using equation (9) .

2) Form the vectors .
3) Normalize the input vectors using equation (10).
4) Generate input output pairs for sources located

in the sector, and for sources located outside the
sector where .

5) Employ an appropriate RBFNN in the detection to learn
the training set generated in step 4).

2) Test (Generalization) Phase in the Detection Stage:

1) Evaluate the sample correlation matrix using the collected
array output measurements using equation (9).

2) Form the vectors.
3) Produce the normalized input vectorsusing equation

(10).
4) Present input vectorsto the RBFNN’s of the detection

stage and obtain an output or from each one.

To illustrate how a network is trained in the detection
stage, let us consider a case where the network is required
to track sources in the [10 20 ] sector with some an-
gular separation . We start the training with sources at

. We use this
vector of DOA to generate the correlation matrixand the
normalized vector . Since the sources are outside the sector of
interest, the target output is “0” in this case. We then select the
subsequent DOA vectors as

and so on. The target output of the network is set to “1” only
when one or more of the angles in the DOA vector lies in the
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Fig. 4. Comparison between the desired and actual response of a ten-element array trained with two equipower sources of 2angular separation and tested with
three sources of 3angular separation and different SNR’s.

Fig. 5. Response of an eight-element linear array(d = �=2) tracking four sources of 2angular separation in the sector [�30 �11 ]. The sources are of equal
power, 5 dB higher than the noise power.

[10 20 ] range. In the simulations performed, a network was
tested with number of sources and angular separations different
than it had seen in the training. The network was able to
detect the presence of the sources correctly. This suggests that
considering all possible combinations of number of sources
and separations need not be considered for the detection phase.

B. DOA Estimation Stage

The second stage of neural networks is trained to perform
the actual direction of arrival estimation. Thenetworks of the
DOA estimation stage are assigned to the same spatial sectors
as in the detection stage (see Fig. 2). When the output of one

or more networks from the first stage is 1, the corresponding
second stage network(s) are activated. The input information to
each second stage network is the correlation matrix, while
the output is the actual DOA of the sources. The number of
hidden nodes is the same as the number of input nodes given
by . The optimum size of hidden nodes is not always
easy to determine. In this work, after extensive experimentation,
it was found that by choosing the number of hidden nodes to be
equal to or larger than the number of input nodes, good results
can be obtained.

Consider a system with minimum source resolution of 2, a
single neural network trained to track sources over the antenna’s
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Fig. 6. Response of a 12-element array which was trained withd=� ranging from 0.4–0.6 and with three sources 4�, 4.5�, 5�, � � �, 7� of angular separation in the
sector [10 29 ].

field of view (e.g., wide) could be trained for angular sep-
arations of up to some . This results in
such a huge training set that the single neural network approach
becomes impractical. However, by assigning different networks
for different angular spatial sectors, smaller training sets are
sufficient since the network is only required to track sources
in a limited spatial region. For sectors 10, 20 wide, it fol-
lows that the number of distinct locations of possible sources
as well as the size of the training set are significantly reduced.
Whereas most direction finding algorithms require the knowl-
edge of the number of sources, in our approach we only need
to specify the minimum angular resolution that the system is
required to achieve. Rather than designing the network with
number of output nodes equal to (number of sources), for a
sector of width and minimum angular resolution of ,
the number of output nodes is given by

(11)

DOA estimates are obtained by postprocessing the neural net-
work outputs of the second stage.output nodes represent bins
in a discrete angular spatial region centered at intervals.
The output nodes are trained to produce values between “0” and
“1.” An output of “1”indicates the presence of a source exactly
on the bin and a “0” represents no source. Sources located be-
tween the bin angles are represented by values between “0” and
“1.”

1) Network Training Phase for the DOA Estimation Stage:

1) Evaluate the correlation matrix of theth array output
vector using equation (9).

2) Form the vectors .
3) Normalize the input vectors using equation (10).

4) Generate input output pairs
.

5) Employ an appropriate RBFNN training procedure to
learn the training set generated in step 4).

2) Generalization (Testing) Phase for the DOA Estimation
Stage:

1) Evaluate the sample correlation matrix using the collected
array output measurements and equation (9).

2) Form the vectors.
3) Produce the normalized input vectorsfrom equation

(10).
4) Present input vectorsto the RBFNN and obtain a vector

of values between 0 and 1 whose further processing will
give you an estimate .

IV. RESULTS

A linear array of ten elements was trained to detect the pres-
ence of sources in a 10wide sector. Different training and
testing sets were generated from sources with equal SNR of
10 dB. The correlation matrix was calculated from 400 snap-
shots of simulated array measurements. In Fig. 3, the array was
trained to detect the presence of two sources separated by 2in
space and then was tested with four sources in the sector with
the same angular separation. The actual output of the detection
stage shows the ability of the network to generalize and detect
more sources than it was trained for. To investigate the behavior
of the network for different angular separations a ten-element
array was trained with two sources of 2angular separation and
tested with three sources of 3angular separation. Fig. 4 shows
a comparison between the desired and actual response for this
array with sources with different SNR, respectively.

Choosing sectors 19wide , and minimum angular res-
olution of 2 , the dimension of the output layer of
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Fig. 7. An array of ten elements is shown tracking two sources in the sector [�40 �21 ] with angular separations 2�4.5 and different sets of random SNR
in the training and testing phases.

Fig. 8. Comparison between the actual and the DOA estimated by the neural network for a four-element linear array receiving eight sources located in the sector
[10 49 ] with 2 and 4 angular separation and random SNR.

individual networks in the estimation stage becomes ten nodes.
Fig. 5 shows a linear array of eight elements tracking
four sources of 2angular separation in the sector [30 11 ].
The input layer consisted of 72 nodes and the sources were as-
sumed to be of equal power—5 dB higher than the noise power.
The estimated and the theoretical angles of arrivals were very
close. Since in practice, due to some tuning imperfections or

Doppler spread, the operating frequency often changes, a 12-el-
ement array was trained with ranging from 0.4 to 0.6 and
with three sources 4 7 of angular separation in the sector
[10 29 ]. The number of points in the abcissa refers to the index
of the testing set. This is true for Figs. 6–8 as well. Fig. 6 shows
that the RBFNN was able to estimate the DOA of the sources
accurately. The dimension of the input layer in this case was 156
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nodes. Since the sources do not normally have the same power,
in Fig. 7 an array of ten elements is shown tracking two sources
in the sector [ 40 21 ] with angular separations 2 4.5
and different sets of random SNR in the training and testing
phases. It is observed that the RBFNN successfully resolved
those sources. To study the performance of the algorithm when
the number of signals is larger than the number of the array ele-
ments, Fig. 8 compares the actual and the DOA estimated by the
neural network for a four-element linear array receiving eight
sources located in the sector [1049 ] with 2 and 4 angular
separation and random SNR. The ability of the network to deter-
mine the angles of arrival of a number of sources that is greater
than the number of array elementsmay be interpreted by the
fact that unlike signal subspace based algorithms, (e.g., MUSIC
algorithm) no eigendecomposition is necessary and no search is
performed in a subspace with dimension less than.

It should be mentioned here that in all examples presented
above, isotropic elements we used. This allows us to assume
broad patterns which do not affect the response across the sec-
tors. Also, although we did not experiment extensively with dif-
ferent noise levels, our experience has been that if we train the
network with noisy data, it will respond satisfactorily to noisy
test data. Finally, in all cases, a network needs an average of
1–15 minutes to train for the DOA estimation stage and about 5
min for the detection stage.

V. CONCLUSION

A new algorithm is presented for locating and tracking the
angles of arrival of multiple sources. This algorithm is based on
a family of neural networks operating in two distinct stages. The
new approach is based on dividing the field of view of the an-
tenna array into spatial sectors, then each network is trained in
the first stage to detect signals emanating from sources in that
sector. According to the outputs of the first stage, one or more
networks of the second stage can be activated so as to estimate
the exact location of the sources. Noa priori knowledge is re-
quired about the number of sources, and the networks can be de-
signed to arbitrary angular resolution. The results demonstrated
the high accuracy of the algorithm. The main advantage of this
new technique is a dramatical reduction in the size of the training
set since much fewer training possibilities need to be considered
by sectoring the antenna field of view. It was also demonstrated
that neural network based direction finding algorithms possess
the ability of locating sources that are greater than the number
of the array elements.
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