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Abstract—The problem of direction of arrival (DOA) estimation
of mobile users using linear antenna arrays is addressed. To re-
duce the computational complexity of superresolution algorithms,
e.g. multiple signal classification (MUSIC), the DOA problem
is approached as a mapping which can be modeled using a
suitable artificial neural network trained with input output pairs.
This paper discusses the application of a three-layer radial-basis
function neural network (RBFNN), which can learn multiple
source-direction findings of a six-element array. The network
weights are modified using the normalized cumulative delta rule.
The performance of this network is compared to that of the
MUSIC algorithm for both uncorrelated and correlated signals.
It is also shown that the RBFNN substantially reduced the CPU
time for the DOA estimation computations.

Index Terms—Antenna arrys, direction of arrival estimation.

I. INTRODUCTION

M OBILE satellite communication systems using fre-
quency division multiple access (FDMA) are facing

an increasing number of potential users to be served in the
same allocated bandwidth. Multiple reuse of each channel,
accomplished by the spatial separation of channels assigned
the same narrow frequency band, is used to avoid co-channel
interference. Cells with the same frequency are separated by
the reuse distance which is directly related to the cluster
size . Increasing allows more users to be served in the
same geographic area, increases the carrier to interference
ratio but also yields larger reuse distances. Closer proximity
of cofrequency cells or beams allows additional frequency
reuse [1]–[3] . This can be accomplished through two steps.
First, a superresolution angle of arrival (DOA) algorithm,
multiple signal classification (MUSIC) [4], is used to locate
desired as well as cochannel mobile users. This algorithm
has the advantage of high resolution for signals with small
angular separation (few degrees to few tenths of a degree in
many mobile satellite systems) and is known to perform well
under low signal-to-noise ratios (SNR’s). Once the direction
of the users are specified, this information can be used in
conjunction with any adaptive array technique [5] so that
the radiation pattern of the array is adapted to allocate
the maximum toward the mobiles of interest while other
sources of interference in the same frequency slot are nulled
and the system is able to track these mobiles in real time.
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Superresolution algorithms have been successfully applied to
the problem of DOA estimation to locate radiating sources
with additive noise, uncorrelated, and correlated signals. One
of the main disadvantages of the superresolution algorithms
is that they require extensive computation and as a result
they are difficult to implement in real-time. Recently, neural
networks have been proposed as successful candidates to
carry on the computational tasks required in several array
processing applications [6], [7]. Also, in the DOA estimation
problem [8], [9], neural network are used in the estimation
of the noise subspace necessary for the computation of the
MUSIC spectrum by mapping the problem to the quadratic
energy function of the network. In this paper, the application
of neural networks to handle the computational problem of
the DOA estimation step is treated from a different point of
view. The DOA problem is approached as a mapping which
can be modeled using a suitable artificial neural network
trained with input output pairs [10]. The network is then
capable of estimating or predicting outputs not included in
the learning phase through generalization. Moreover, one of
the main advantages of neural networks is that they can be
implemented in analog circuits with time constants in the
order of nanoseconds [6], [14] and consequently they have
fast convergence rates. In Section II, the architecture of a
radial-basis function neural network (RBFNN) is presented as
well as the input preprocessing and output post-processing.
The MUSIC algorithm is briefly described in Section III.
In Section IV the training algorithm used in this paper
is discussed. Section V presents results obtained from the
application of the RBFNN to the DOA estimation for multiple
sources with comparisons to the performance of the MUSIC
algorithm for uncorrelated and correlated signals.

II. RADIAL -BASIS FUNCTION NEURAL NETWORK

RBFNN’s [11], [12] are a member of a class of general-
purpose method for approximating nonlinear mappings since
the DOA problem is of nonlinear nature. Unlike the backprop-
agation networks which can be viewed as an application of an
optimization problem, RBFNN can be considered as designing
neural networks as a curve fitting (or interpolation) problem in
a high-dimensional space. The mapping from the input space
to the output space may be thought of as a hypersurface
representing a multidimensional function of the input. During
the training phase, the input–output patterns presented to the
network are used to perform a fitting for. The generalization
phase represents an interpolation of the input data points along
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Fig. 1. Architecture of a three-layered radial-basis function network.

the surface built as an approximation for. The architecture
considered in this paper involves three layers, the input layer
(sensory nodes), a hidden layer of high dimension, and an
output layer, as shown in Fig. 1. The transformation from the
input space to the hidden-unit space is nonlinear, whereas the
transformation from the hidden layer to the output space is
linear.

The array performs the mapping from the
space of DOA, to the space of sensor
output namely

(1)

where is the number of signals, is the number of
elements of a linear array, represents the complex amplitude
of the th signal, the initial phase and is the center

frequency. Based on the information theoretic criteria for
model selection [13], one can estimate the number of signals

a priori. A neural network approach to this problem may be
the subject of further investigation. A neural network is used
to perform the inverse mapping . The network
is to be trained by patterns generated from (1) so that
it can associate the output vectors with
the corresponding DOA vectors . Input
vectors are mapped through the hidden layer then each
output node computes a weighted sum of the hidden layer
outputs. Thus, we can write for a set of data

(2)

where represents theth weight of the network. Using the
Gaussian function for we can rewrite (2) as

(3)

The parameter controls the influence of each basis
function. Using matrix notation (3) becomes

(4)

where and (the weight matrix) are matrices and
is matrix.

Since a large matrix is highly likely to be ill-conditioned,
the dimension of may be reduced by selecting the number
of centers to be lower than the number of data points.
Let the number of centers be where ; it follows that

and are now and matrices. To derive
the optimal solution for the network weights the least squares
(LS) approach can be used [10] to obtain

(5)

where is the pseudo-inverse given by

(6)

The estimate of the DOA can thus be given as

(7)

A. Data Preprocessing

First, the array output vectors are generated then trans-
formed into appropriate input vectors to be presented to the
network. The estimation phase consists of transforming the
sensor output vector into an input vector and producing the
DOA estimate. Since in the DOA problem, the initial phase

contains no information about the direction of the incoming
signals, it is eliminated from the training data by forming the
spatial correlation matrix

(8)
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The last term of the right-hand side of this equation contains
all the cross-correlated terms between signals. Since for

does not carry any information on the DOA
, we can rearrange the rest of the elements into a

new input vector given as

(9)
It follows that the number of input units is given by

. Note that we need twice as many input nodes
for the neural network since it does not deal with complex
numbers. Hence, the total number of input nodes needed is

. The dimension of the hidden layer is equal to
the number of the Gaussian functionsthat can be chosen
to be equal to if perfect recall is desired. Obviously, the
number of output node is equal to the number of signals.
In the simulations performed later, the relative signal power
is taken as unity though different power levels do not affect
the procedure of detecting the DOA. The input vector is then
normalized by its norm in the training, testing, and estimation
phases, i.e.,

(10)

B. Network Training

1) Generate array output vectors .
2) Evaluate the correlation matrix of theth array output

vector .
3) Form the vectors .
4) Normalize the input vectors using (4).
5) Generate the training set .
6) Employ an appropriate RBFNN training procedure to

learn the training set generated in step 5).

The main advantage of using an RBFNN over other ap-
proaches is that it does not require training the network with
all possible combinations of input vectors. For the network to
generalize it is sufficient to perform the training with vectors
that span the expected range of input data, e.g., uniformly
distributed from 90 to 90 in the simulations reported in
this paper.

C. DOA Estimation or Generalization Phase

1) Evaluate the sample correlation matrix using the col-
lected array output measurements.

2) Form the vectors.
3) Produce the normalized input vectors.
4) Present input vectors to the RBFNN and obtain the

estimate of DOA.

III. M USIC ALGORITHM

Assuming that the signals received at the different sensors
are contaminated with statistically independent white noise of
variance , it follows that the received spatial correlation
matrix of the noisy signals can be rewritten as

(11)

with is the signal covariance matrix, the
superscript “ ” denotes the conjugate transpose, andis
the unit matrix. Note that has dimension , while

has dimension
are the eigenvalues of and are its orthonormal

eigenvectors. The eigenvectors corresponding to the first
largest eigenvalues are referred to as the signal eigenvectors
and those corresponding to the minimum eigenvalues are
referred to as the noise eigenvectors. The subspace spanned
by the signal eigenvectors is called thesignal subspace, and
its orthogonal complement spanned by the noise eigenvectors
is called thenoise subspace.The matrix
has the same eigenvectors aswith eigenvalues for

and for . It follows that

(12)

Therefore, the signal direction vectors and the signal eigen-
vectors span the same subspace. This implies that all signal
direction vectors are orthogonal to the noise subspace. The
MUSIC algorithm estimates the DOA of the signals by
finding the values of corresponding to the maxima of the
function

(13)

where is the matrix whose columns are the
eigenvectors spanning the noise subspace of, i.e.,

(14)

IV. NORMALIZED CUMULATIVE DELTA RULE

After experimenting with various learning algorithms, the
Norm–Cum [11] was used to perform the training. In the
standard delta rule the error is backpropagated to prior layers
where it is accumulated until the first layer is reached and
then the weights are updated after each training presentation.
A momentum term is used to smooth out the weight changes.
In the Norm–Cum rule, the weight changes are accumulated
over several training presentations (specified by the Epoch)
and the application of the weight updates is made all at once.
When a learning counter reaches an integer multiple of the
accumulation period in the epoch, the accumulated weight
changes are applied to the connecting weight. The learning
rate is normalized (divided by the square root of the epoch
size).

V. SIMULATION RESULTS

A. Uncorrelated Signals

In the simulations performed, an array of elements is
used, therefore, the dimension of the input layer was set to 60
nodes. A hidden layer of 50 nodes was chosen. In Fig. 2, the
array receives two uncorrelated signals with different angular
separations and where the DOA were assumed
to be uniformly distributed from 90 to 90 in both the
training and testing phases. Two hundred input vectors were
used for training. For the testing phase 50 input vectors were
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(a)

(b)

Fig. 2. DOA estimate versus number of samplesN using RBFNN. Source 1
is varied from�90 to 90, while source 2 is 5� and 2� separated from source 1.

used for the network simulated with and 100 input
vectors for all the rest of the networks. For all networks a
learning coefficient of 0.3 was used for the hidden layer and
0.15 for the output layer while the epoch size was set to 16.
The width of the Gaussian transfer function is set as the
root mean square (rms) distance of a specific cluster center to
the nearest neighbor cluster center(s). The results show that the
network successfully produced actual outputs () very close
to the desired DOA (dotted). DOA obtained from the MUSIC
algorithm are shown in Fig. 3 and compared to those obtained
from the RBFNN method for . Also, the error in the
DOA estimate of the two incoming signals (sources) is plotted.
Fig. 4 shows the results obtained from MUSIC in the case of
2 angular separation. It can be concluded from Fig. 3 that
the performance of the RBFNN method approaches that of the
MUSIC algorithm. Fig. 5 shows a network trained with input
vectors generated from two signals with angular separation
of 3 and tested with a set of data generated from signals
with This shows that the network improved its
performance through generalization and yielded satisfactory
results. Since the maximum number of signals that an array can
resolve is bounded by the number of its elements, a network
with six output nodes was trained and tested with six signals
incoming from sources at different angular separations. The
performance of this network is shown in Fig. 6 .

B. Correlated and Coherent Sources

In many applications, the signals received by the array
are correlated or coherent (perfectly correlated). To study the
effect of such cases on the performance of the neural network,
the training data was generated assuming the array receives
two signals with angular separation of 10A correlation
coefficient was assumed with a signal covariance matrix
(or the power matrix) in case of two sources given by

(15)

(a)

(b)

(c)

Fig. 3. (a) DOA estimates versus number of samplesN using MUSIC for
an array of six elements and�� = 5

�. (b) Error in the MUSIC estimates
for the two signals versusN . (c) Comparison between MUSIC and RBFNN
estimates for an array of six elements and�� = 5

�.

Moreover, the training was performed with data derived
from ideal signals (assuming the absence of noise) whereas
the testing was performed with data contaminated with ad-
ditive Gaussian noise to simulate real measurements. For
comparison, DOA obtained from MUSIC and RBFNN as
well as the error in DOA estimation for correlated signals
are plotted in Figs. 7 and 8, respectively. The RBFNN out-
performed the conventional MUSIC yielding smaller error.
In this case, the correlation matrix approaches a singular
matrix. Although the performance of the MUSIC algorithm
under correlated signal environment can be improved using
preprocessing scheme such as spatial smoothing, this technique
involves additional computational complexity to the algorithm,
whereas the RBFNN approach dealt with this situation simply
by taking into consideration the correlation between incoming
signals when the correlation matrix was generated for
training. The case of coherent signals is shown in Fig. 9 with

. To investigate the effect of the number of nodes
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Fig. 4. DOA estimates and respective errors versus number of samplesN

with MUSIC algorithm for�� = 2�.

Fig. 5. RBFNN estimates for two sources with�� = 3� for training and
1:5� for testing versus number of samplesN .

Fig. 6. RBFNN DOA estimates for an array of six elements with six
uncorrelated sources. : Exact DOA; o: RBFNN.

(a)

(b)

Fig. 7. (a) DOA estimate for an array of six elements with two correlated
sources with
 = 0:8ej�=3;�: MUSIC; o: RBFNN : Exact DOA.
�� = 10�. (b) DOA estimate for an array of six elements with two correlated
sources with
 = 0:8ej�=3;+: RBFNN : Exact DOA�� = 10�.

Fig. 8. Comparison between the error in MUSIC and RBFNN DOA esti-
mates for two correlated signals
 = 0:8ej�=3;�� = 10�.

of the hidden layer the network was trained using 50 and 100
nodes. It was expected that increasing the dimension of the
hidden layer may improve the interpolation performed by the
RBFNN by moving to higher dimensional spaces, however
the ability of the network to produce estimates closer to the
desired DOA was not improved dramatically when the number
of units was increased from 50 to 100 as shown in Fig. 10.
In Fig. 11, the CPU time taken by the MUSIC algorithm to
perform the eigendecomposition and obtain the spectrum is
plotted as a function of —the number of different pairs of
sources. For and , the RBFNN needed less than
a second to estimate the DOA.

VI. CONCLUSION

The problem of DOA estimation is dealt with as a nonlinear
mapping from the space of sensor output to that of the angles
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Fig. 9. RBFNN DOA estimate for two coherent signals�� = 10
�


 = 1ej�=4.

Fig. 10. Effect of the dimension of the hidden layer on the performance of
the RBFNN.

Fig. 11. CPU time required by the MUSIC algorithm as function of number
of samplesN .

. In this paper, the neural network approach was chosen to
solve this problem. In particular, RBFNN were used due to
their ability for data interpolation in higher dimensions. It
was found that networks implementing these functions were
indeed successful in performing the required task and yielded
good performance in the sense that the network produced
actual output very close to the desired DOA. Also it was
demonstrated that these networks are able to generalize, by
training and testing using data sets derived from different
signal conditions mainly with the effect of noise added to the
data used for testing. The main advantage of the RBFNN is
the substantial reduction in the CPU time needed to estimate
the DOA.
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