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Abstract 

Recent theoretical results support that decreasing the number of free parameters in a neural 
network (i.e., weights) can improve generalization. These results have triggered the development 
of many approaches which try to determine an “appropriate” network size for a given problem. 
The main goal has been to find a network size just large enough to capture the general class 
properties of the data. In some cases, however, network size is not reduced significantly or the 
reduction is satisfactory but generalization is affected. In this paper, we propose the coupling of 
genetic algorithms with weight elimination. Our objective is not only to significantly reduce 
network size, by pruning larger size networks, but also to preserve generalization, that is, to 
come up with pruned networks which generalize as good or even better than their unpruned 
counterparts. The innovation of our work relies on a fitness function which uses an adaptive 
parameter to encourage reproduction of networks having small size and good generalization. 
The proposed approach has been tested using both artificial and real databases demonstrating 
good performance. 

Keywords: Neural networks; Genetic algorithms; Weight elimination; Pruning 

1. Introduction 

One of the most critical problems in neural network design is the problem of 
choosing an appropriate network size for a given application [2,3, 181. Network size 
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in the case of layered, feed-forward, neural networks depends on the number of layers, 

the number of nodes per layer and the number of incoming connections onto a node 
(fan-in). Here, we express network size in terms of the number of connections in the 

network. In general, network size affects network complexity and learning time, but 
most importantly. it affects the generalization capabilities of the network; i.e., its 
ability to produce accurate results on data outside its training set. Given a set of 
training examples, there is probably a large number of different size networks that can 

learn to perform the underlying mapping (i.e., achieve a small enough training error). 

However, the generalization capabilities of each one of these networks will not be the 
same (i.e., the generalization error will be different from one network to the other). 

A network having a structure more complicated than necessary, “overfits” the training 

data, that is, it performs nicely on patterns included in the training set but performs 
very poorly on unknown patterns. On the other hand, a network having a structure 
simpler than necessary cannot give good results even for patterns included in its 
training set. 

Major emphasis has been given in the last few years to the development of 
techniques which try to reduce network size by modifying not only the connection 

weights but also the network structure during training. These techniques can be 

divided into three main categories. The first category includes methods that start with 

a big network and gradually eliminate the unnecessary nodes or connections. These 
methods are called pr-uning [18, 221. Pruning based methods remove unnecessary 

nodes or connections using a sensitivity based measure to indicate how the solution is 
affected from this change [21, 25, 301, or modifying the error function of the network 
in such a way that unnecessary connection weights are driven to zero during training 

(weight decay) [7, 19, 35, 23, 131. The second category includes the constructive 

methods [22], which start with a small network and gradually add nodes or connec- 
tions during training [27, 9, 10, 36, 11. The last category includes the weight sharing 

methods [lS]. In weight sharing: many connections share the same weight so that the 
number of free parameters in the network becomes much less than the number of 
connections. Hidden nodes are divided into groups and a local receptive field defines 

the input to each hidden node. Weight sharing is achieved by assigning an identical set 

of weights to each node within the same group [24, 321. 
Although reducing network size is very important, it should be attempted under the 

assumption that generalization is not affected. In some studies where generalization 
was addressed, improvements were observed using artificial data sets only [19,8, 341, 

while the same or even worse generalization has been reported in some other studies 
where real data sets were used [16, 23, 37, 1.5, 201. Our interest in this paper is to 
improve the performance of weight pruning techniques. Weight pruning techniques 
are very sensitive to the selection of certain parameter values which determine when 
pruning should start and when it should stop. If pruning starts too early, the network 
might not be able to learn the desired mapping. On the other hand, if pruning stops 
early, it might not be possible to sufficiently prune the network. Also, if pruning does 
not stop at the right point, it might be possible to overprune and this will deteriorate 
generalization. Determining appropriate pruning parameter values to control the 
beginning and the end of the pruning process is usually done by trial and error. 
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Recently, there has been some work in order to determine these parameters in 
advance [26] using probabilistic approaches. 

In this paper, we propose the coupling of genetic algorithms [11] and weight 

pruning. In particular, the weight elimination technique [35], a representative weight 
pruning technique and the most general of weight decay approaches, has been chosen 
to be coupled with the genetic algorithm. However, the framework of the approach we 

propose is more general and other pruning techniques can also be coupled with 
genetic algorithms. The goal of the proposed approach is to prune oversized networks 
without affecting generalization. Genetic algorithms are a class of optimization 

procedures inspired by the biological mechanisms of reproduction. Research on 
combining genetic algorithms and neural networks has lately attracted a lot of 

attention [38]. The most common approaches within this context use a genetic 

algorithm in order to: (1) select features used by a neural net; (2) select the parameters 
that control the learning in a neural net; (3) analyze the solution achieved by a neural 

net; (4) determine the neural network weights; and (5) determine the neural network 

architecture (see [38] for an excellent review). Our approach belongs to the last 
category; our primary interest is not only to determine an appropriate network size by 

pruning oversized networks but also to demonstrate that the pruned networks 
improve generalization. Some preliminary results of our work have been presented 

in [4]. 
Genetic algorithms operate iteratively on a population of structures, each one of 

which represents a candidate solution to the problem at hand. When genetic algo- 
rithms are used in the context of neural networks, an important issue to be addressed 

is how the architecture should be represented (encoded) into a structure (string of 

symbols) that can be handled by the genetic algorithm. Once an encoding scheme has 
been chosen, a number of networks are encoded to form the initial population. In our 

approach, we start with an oversized network and we consider a number of copies of 
this network with different initial weights and pruning parameters, to form the initial 

population. The encoding scheme we are using is a local scheme presented in [29]. On 
each iteration, a new population is formed by first applying a number of genetic 
operations (reproduction, crossover, and mutation) on the old population. Then, each 

member of the population is decoded into a legitimate network and is evaluated. The 
evaluation is performed by first training each network for a small number of epochs 

using weight elimination. Then, a fitness function is used to measure the performance 
of each member in the population. This process is repeated until the genetic algorithm 

converges to a final population. The criterion used for convergence is based on the 
average improvement of the genetic algorithm and is described in Section 4. 

Choosing a “good” fitness function is probably the most critical issue in genetic 
algorithm design since it provides the mechanism for evaluating the members (en- 
coded solutions) of a population. The improvement of a solution at future generations 

depends highly on the evaluations that the population members have received at past 
generations. Members assigned a bad evaluation are discarded, while members 
assigned a good evaluation survive in future populations. The innovation of the 
proposed approach relies on the use of a fitness function which takes into considera- 
tion both network size and generalization. In particular, during the generation of new 
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genetic populations, an adaptive parameter weights the importance of network size 
versus generalization, encouraging the reproduction of networks having good gener- 
alization and a relatively small size. 

The motivation for using genetic algorithms is that as new populations are formed, 
the network structure of each member in a population changes in a different way, 
since each network is associated with different parameter values. Since the character- 
istics among different members in the population can be exchanged by applying the 
genetic operators, new, more powerful members may be discovered as evolution 
proceeds. As we mentioned before, choosing appropriate parameter values for the 
weight elimination technique (or for other weight pruning techniques) is a trial and 
error procedure. The goal of the proposed approach is to discover better solutions, 
using the same parameter settings chosen in the trial and error procedure. In other 
words, let us assume that we have decided to perform a number T of trials, using 
various parameter settings. Then, instead of training each network separately, we 
form a population of T networks, where each one of them is identical to one of the 
T independent initializations, and allow the genetic algorithm to form more powerful 
populations. Our experimental results, given in Section 4, demonstrate that following 
this approach, the genetic algorithm finally converges to a population whose best 
member is as good or better than the best solution found by training each network 
individually with weight elimination (using the same parameter values) or without 
weight elimination (unpruned network). Furthermore, the average generalization 
performance of our approach is always better. 

The organization of the paper is as follows: Section 2 reviews the weight elimination 
technique and illustrates its sensitivity to the selection of certain parameter values 
which affect network size and generalization. Section 3 discusses the genetic algorithm 
approach. The network representation scheme, the genetic operators, and the fitness 
function utilized are presented in detail. The databases used, the experiments per- 
formed, and the results obtained are presented in Section 4. Finally, our conclusions 
are given in Section 5. 

2. Reducing network size using weight elimination 

Weight elimination is a general weight decay approach proposed by Weigend et al. 
[35]. It minimizes a modified error function which is formed by adding a penalty term 
to the original error function of the back-propagation algorithm. Specifically, the 
modified error function has the form 

EWE = E. + /IWE El = c k (tf: - 01)~ + /IWE 1 wi’j’w’ 
P 

i, j 1 + wi”/w; ’ (1) 

where the sum over p implies summation over all the training examples and the sum 
over k implies summation over all the output nodes. 

The first term is the original error function which is simply the sum of the squared 
errors between the actual output values (ok) and the desired output values (tk). The 
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second term represents the complexity of the network as a function of the weight 
magnitudes relative to the parameter wO, The factor llWE is a weighting factor which 
determines the importance of the network’s complexity with respect to the network’s 
performance over the training set. The choice of w. encourages the algorithm to find 
solutions with fewer large weights (w. small) or many small weights (w. large). The 
distinction between small and large weights is made with respect to the magnitude of 
wo. To make this clear, let us consider the ratio INJ~[/w~. If 1 Wil/Wo < 1, the cost of each 
weight approaches zero and the second term of Eq. (1) approaches zero as well. On the 
other hand, if 1 wil/wo 9 1, then the cost of each weight approaches lZwE and the second 
term of Eq. (1) is minimized when the algorithm converges to a solution with a few 
large weights. 

There are several issues to be addressed during the implementation of the weight 
elimination technique. The first and probably most important issue is deciding when 
pruning should start affecting training. This issue is straightforward related to the 
choice of the weight factor AwE. When AwE is very small or zero, pruning does not 
affect training at all. When this parameter is large, small weights decay more rapidly 
than large ones. However, this parameter should not be chosen too large since all the 
weights will be driven to zero then. One way that this parameter is usually chosen is by 
performing a number of simulations using different values and choosing the value that 
gives the best performance on a validation set. However, experience has shown that 
better results can be achieved if this parameter can be determined adaptively during 
training. Weigend et al. [35] have proposed a procedure for this. Initially, AwE is set to 
zero. Then, it increases, decreases, or stays the same according to a methodology 
based on a number of parameters such as the error of the network on the training set, 
the average error (exponentially weighted over the past errors of the network on the 
training set), and a desired error provided externally by the user. The amount by 
which AwE must be increased or decreased is another parameter specified by the user. 
We have found that this procedure is not very robust. Here we have chosen an 
alternative way for determining AwE, motivated by [19]. Specifically, AwE is deter- 
mined as follows: 

AwE = Ao_wE ePBWEEg=“, (2) 

where Lo _ wE is a scaling factor (which was set equal to one in all of our experiments) 
and pWE is a constant to be defined shortly. Egen is an estimation of the generalization 
error of the network. When Egen is large, AwE will be small and the second term in 
Eq. (1) will contribute almost nothing to the total error. When Egen starts decreasing, 
the second term will start being more significant driving small weights to zero. 
A common way of estimating the generalization performance of a network during 
training is by using cross-validation [18]. In cross-validation, a validation set which is 
different from both the training and test sets is used to estimate the performance of the 
network during training. When the performance of the network on the validation set 
starts decreasing, this is an indication that the network starts overfitting the data. 
If Gval represents the ratio of the correctly classified patterns from the validation 
set over the total number of patterns in the validation set, then we define Egen as 
E g-J = 1 - G,,,. Updating Gval and AwE takes place in every epoch. 
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Another important issue to be addressed is when training, and consequently 
pruning, should stop. It has been reported in [35] that the exact stopping point is not 

very important. However, we demonstrate in the next section that this is not consis- 
tently true since it might lead us to overpruning, which can deteriorate generalization 
significantly. It is also important to decide when is the appropriate time to remove the 

connections associated with small weight values from the network. Obviously, we do 
not want to remove any connection, even if its corresponding weight value is very 

small, if the performance of the network on the training set is very poor. Usually, 

connections associated with weak weights are removed when the network has 

achieved some performance on the training set (i.e., the error over the training set has 
become smaller than a threshold [19]). In our implementation, connections are 
removed at the end of the training process. A weight Wij is removed only if 1 wijl < ( w. I. 
It should be mentioned that approaches based on sensitivity analysis [30, 151 might 
be more appropriate in order to remove redundant weights. However, we have 
decided to use the above approach because it is simpler, faster, and it does not affect 

the ideas we are trying to demonstrate here. To account for the resulting increment of 
the error due to the elimination of the weaker weights, we train the pruned network 

for a few additional epochs using the standard back-propagation algorithm. 
The modified version of weight elimination that we have described depends mainly 

on the choice of Pwe w,,, and the weights assigned to the network in the beginning of 
the training process. The sensitivity of weight elimination on the selection of these 

parameters is considered in the next subsection through an experimental study. The 
conclusions of this experimental study are useful in the development of our proposed 
approach. 

2. I. Sensitizjity of weight elimination 

Choosing appropriate parameter values for the weight elimination technique i in- 
volves some experimentation. Usually, we start with a network whose size has been 

chosen large enough to ensure convergence and we train it a number of times using 
different parameter values each time (i.e., different initial weights and different values 

for the parameters controlling weight elimination). Then, we choose the best solution 

in terms of size and generalization. In this subsection we present a number of 
experiments in order to investigate the dependence of weight elimination on the 
choice of these parameter values. Four different databases have been used in the 
experiments reported in this subsection: the Numbers, the Ionosphere, the Wine, and 

the Breast-cancer databases. Details about the databases are given in Section 4. 
Initially we investigated the dependence of weight elimination on the stopping point 

used during training. Some experimental results obtained in [35] demonstrate that 
the exact point at which training must be terminated is not very important. In 
fact, generalization was shown to be good even for training times four times longer 
than the training time required to train a network without using weight elimination. 
However, a number of experiments performed by us using different data sets demon- 
strated that the stopping point is indeed important. Fig. 1 shows results obtained 
using the Wine database. The parameters used were /?wE = 80 and w. = 1.0. 
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Fig. 1. An example illustrating the effects of overpruning. The continuous line represents the generalization 

performance of the network while the dashed line represents the percentage of connections whose absolute 

weight value is greater than 1 w,,I. The horizontal axis represents the number of epochs. 

Obviously, generalization starts decreasing as soon as excessive weight elimination 
takes place. Thus, stopping weight elimination before overpruning occurs is 
important. 

Next, we examined the sensitivity of weight elimination on the selection of the 
PWE parameter. Thus, we fixed w0 (wO = 0.25) and the initial weights and we per- 
formed 20 different experiments using different fiwE values each time (from pwE = 10 
to jWE = 100 in increments of 5). Fig. 2 demonstrates the results for each one of the 
four databases. The horizontal axis represents different PwE values. It is clear that 
different BWE’s are more appropriate for different databases, making the choice of 
appropriate BWE values problem dependent. For each database, there is a specific 
range of ,!& values which reduce network size significantly while good generalization 
can be achieved within this range. For the Numbers database, the best PWE’s seems to 
be in the range of [20-301, for the Ionosphere database in the range of [15-501, for the 
Wine database in the range of [25-351 and for the Breast-cancer database in the range 
of [30-1001. 

In the next set of experiments, we tested the dependence of weight elimination on 
the selection of the w. parameter. For this reason, we fixed PWE (jwE = 30) and the 
initial weights and we performed 20 different experiments using different w. values 
each time (from w. = 0.1 to w. = 1.0 in increments of 0.05). Fig. 3 shows the results. 
The horizontal axis represents in this case different w. values. The results demonstrate 
that the choice of we’s value is not quite problem dependent and that choosing 
w0 close to 1.0 gives good results both in terms of network size and generalization. 
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Fig. 2. Different pws values: (a) the Numbers database, (b) the Ionosphere database,(c) the Wine database, 
and (d) the Breast cancer database. The continuous line represents the generalization performance of the 
network while the dashed line represents the percentage of connections whose absolute weight value is 
greater than Iwo\. The horizontal axis represents different /IWE values. 

This is also in agreement with [35] where it is suggested that choosing w0 close to 1.0 
is best for networks where activation functions in the range of [O.&l.O] are used. 

In the last set of the experiments, we tested the sensitivity of weight elimination on 
the selection of different initial weights. This time, we fixed /IWE and w. (PWE = 30 and 
w. = 0.25) and we performed 20 different experiments using different random initial 
weights each time (randomly chosen in the range of [ - 0.1 to 0.11). Fig. 4 shows the 
results for the different databases used. The horizontal axis represents in this case the 
different experiments performed. It is clear that the choice of the initial weights is very 
critical since both generalization and network size are affected in an unpredictable 
way. 

In conclusion, weight elimination depends mostly on the choice of the initial 
weights and the value of parameter PWE. The choice of the value of the parameter 
w. does not seem to significantly affect the performance of the method and good 
results can be achieved by choosing w. close to 1.0. 
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Fig. 3. Different wO values: (a) the Numbers database, (b) the Ionosphere database, (c) the Wine database, 

and (d) the Breast-cancer database. The continuous line represents the generalization performance of the 

network while the dashed line represents the percentage of connections whose absolute weight value is 

greater than Iwo/. The horizontal axis represents different w. values. 

3. The genetic algorithm approach 

As we indicate in the previous section, weight elimination is quite sensitive to the 
selection of certain parameters and differences in terms of generalization and network 
size can be observed by changing these parameter values. Finding good parameter 
values requires an extensive experimentation. Here, we propose not to perform each 
experiment independently. Instead of this, we form a population of networks by 
choosing the same exactly networks chosen for the individual experiments, and apply 
genetic algorithms. It should be clear that we do not choose new parameter values 
(initial weights and /IWE) for the networks in the population but we use the same 
choices we made for the independent experiments. Our experimental results demon- 
strate that this approach leads to as good or better solutions in terms of both network 
size and generalization. Most importantly, the solutions found by the genetic algo- 
rithm approach may correspond to parameter settings not chosen in the initial set of 
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Fig. 4. Different initial weights: (a) the Numbers database, (b) the Ionosphere database, (c) the Wine 
database, and (d) the Breast cancer database. The continuous line represents the generalization perfor- 
mance of the network while the dashed line represents the percentage of connections whose absolute weight 
value is greater than ( woj. The horizontal axis represents different experiments, using different set of initial 
weights. 

networks. Consequently, training each network separately will not lead to the same 
solution found by the genetic algorithm approach. 

Initially, we start with two-layer networks (i.e., one hidden and one output layer), 
having enough nodes in the hidden layer to ensure convergence. The reason we have 
restricted ourselves to two-layer networks is because a single hidden layerfeed-forward 
network with arbitrary sigmoid hidden layer activation functions can approximate 
arbitrarily well an arbitrary mapping from one finite dimensional space to another [17]. 
After an oversized network has been chosen, we encode it into a structure that can be 
handled by the genetic algorithm and we create P copies of it, where P represents the 
population size. Each of these copies is assigned a different set of parameter values 
which are the initial weights and /IWE. This choice was based on the experimental 
results presented in Section 2.1, which indicated that these parameters affect general- 
ization and network size the most. New populations are generated by applying the 
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genetic operators of reproduction, crossover and mutation on the weights of the 
networks. 

The fitness of each member is measured by first decoding it into a network. Then, 
we train the network for a number of epochs using weight elimination in order to 
record its performance in terms of generalization and size. The evaluation function 
consists of two terms: the first term returns an evaluation with respect to the 
generalization performance of the network, while the second term returns an evalu- 
ation with respect to its size. A factor 1oA weights the importance of generalization 
versus network size. Each network in the population is associated with its own 
IWE parameter. After the first few generations members in the same population will 
have totally different characteristics. This variety in network sizes and generalization 
performances will allow the genetic algorithm to search and probably discover better 
solutions. 

It should be emphasized that pruning takes place not only due to weight elimina- 
tion, which is applied during the evaluation phase, but also due to the application of 
the genetic operators and in particular the crossover operator. When crossover is 
applied, groups of weights between different networks are exchanged, and as a result 
larger weights may be replaced by smaller weights. Thus, the solutions obtained by 
combining the genetic algorithm with weight elimination might not be possiblt: to 
replicate using weight elimination by itself. Next, we describe the network representa- 
tion scheme, the genetic operators, and the fitness evaluation function used. 

3.1. Network representation scheme 

There are two main categories of network representation schemes: the weak and the 
strong specification schemes [38]. The main advantage of the weak specification 
scheme is that the architecture can be represented globally in terms of the number of 
layers, the number of nodes, and the degree of connectivity from one layer to another. 
However, quite complex encoding and decoding procedures are required (see, e.g., 
[38]). On the other hand, the strong specification scheme uses a more local repre- 
sentation by representing each node and connection of the network directly. Very 
simple encoding and decoding procedures are used in this case (see, e.g., [14]). Since 
our approach considers a large predefined, two-layer network, with the objective to 
reduce the number of connections, we do not really require encoding of the number of 
layers and the number of nodes per layer. The quantity which is important to encode 
is the number of connections between successive layers. Thus, the strong specificatron 
scheme is adequate for our purpose. 

A popular strong specification scheme has been proposed by Miller et al. [28], 
where the network architecture is represented as a connection matrix mapped directly 
into a bit-string. Although this scheme satisfies our requirements, it has the disadvan- 
tage that it creates very long strings. For example, assuming a network with N nodes, 
its connection matrix becomes a N x N array. The existence of a connection between 
node i and node j in the network is indicated by a nonzero element in the ith row and 
jth column of the connection matrix. By simply concatenating the rows the rows of the 
connection matrix, a bit-strings of length N* is obtained, slowing down the speed of 
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(0.3,0.1, -2.0,0.4,0.2,0.1,0.2, -0.2,0.2, 1.5, -1.2) 

Fig. 5. An example of the encoding scheme. The internal thresholds associated with the nodes of the first 
layer are placed first in the string. Next, we record the weight values associated with the connections of the 
first layer. The same procedure is applied for the second layer. 

the algorithm. Here, we have adopted another approach proposed by Montana and 
Davis [29]. According to this approach, the weights and biases of a network are 
encoded in a straightforward way as a string of real numbers. Decoding is also 
straightforward. Fig. 5 shows an example of this encoding scheme. 

3.2. Genetic operators 

The genetic operators used in this work are the most commonly used operators: the 
reproduction, the crossover, and the mutation operators. The purpose of the repro- 
duction operator is to create a new population based on the evaluation (fitness) of the 
members of the old population. Each member of the old population produces 
a number of exact copies with the objective that the most fit members will produce the 
most copies. Our implementation uses the roulette wheel selection scheme described 
in [ 111. This scheme allocates new members based on the ratio of a member’s fitness 
to the population’s average fitness. Experience has shown that this kind of reproduc- 
tion can cause premature convergence, since members with high fitnesses can over- 
power a population, eliminating its diversity. For this reason, fitness scaling has also 
been implemented [ 111. The purpose of fitness scaling is to control the number of 
copies that members with high fitness value will receive in future populations. This is 
because a few members with high fitness values in the initial populations can take over 
a significant proportion of the population in a single generation, affecting the diversity 
of the population seriously, leading to premature convergence. Linear scaling is 
a quite popular fitness scaling procedure and we have also used it in our study. Linear 
scaling computes the scaled fitness value as 

f’=uf+b, 
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where f is the fitness value andf’ is the scaled fitness value. The coefficients a and 
h are calculated in each generation to ensure that the maximum value of the scaled 
fitness value is a small number, say, 1.2-2.0 times the average fitness value of the 
population. More details are given in [ll]. In addition to fitness scaling, two more 
heuristics have been incorporated in our implementation: the elitism strategy and 
the generation gap [12]. The elitism strategy guarantees that the members with the 
best fitness value in a population will survive in the next generation. This is performed 
by sorting the members of a population according to their fitness value and choosing 
the best of them to survive intact in the next generation. The generation gap is 
a parameter which controls the percentage of the population to be replaced during 
each generation. Thus, if P is the population size and G is the generation gap, 
then P(l-G) members are chosen to survive intact in the next generation. 
Usually, these members are chosen in random, however, in our implementation we 
choose the best P(l-G) members. Both of the above heuristics seem to be quite 
beneficial. 

Crossover is applied after reproduction. Traditionally, crossover works as follows: 
pairs of members are selected at random and portions of them are exchanged to form 
new members. Here, we are using a modified crossover operator which we call the 
crossover-nodes operator. The idea is to swap groups of weights feeding into the same 
node. The reason is quite plausible; each node in the network contributes to the 
solution that the network tries to find. Thus, weights feeding into a node serve a role in 
finding a solution for the problem at hand. Swapping weights arbitrarily may not 
make a lot of sense while swapping groups of weights feeding into nodes is more 
sensible. This operator has also been used in [28]. Although crossover is one of the 
most powerful genetic operators, it may have disruptive effects to the solution 
a network tries to find. This is because different nodes in a network play a different 
role, as mentioned above. The nodes in the first hidden layer for instance, serve as 
feature detectors, while the nodes at higher layers serve for knowledge representation. 
Swapping weights feeding nodes located at hidden layers higher than the first may be 
disruptive, since the internal knowledge representations between two different net- 
works are probably quite different. However, swapping weights feeding nodes only 
located at the first hidden layer, may be less disruptive for the networks, since it 
can be considered as an exchange of feature detectors. We have therefore decided to 
use this modified operator, which we call the crossover_jirst_layer_nodes operator. 
Both of the operators have been tested in our experiments and results are reported in 
Section 4. 

The last genetic operator used is the mutation operator. This operator picks 
randomly a member from the population and changes it slightly. In its simplest form, 
mutation changes the value of a weight by adding a small random value. Following 
our discussion regarding the crossover-nodes operator, the mutation operator used in 
this study does not change single weights but groups of weights feeding into a node. It 
should be clear that we do not change each weight by the same amount. In fact, 
a different small random value is added to each of the weights. This modified operator 
which we call the mutate-nodes operator, has also been used in other studies [28], 
leading to good performance. 
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3.3. Fitness evaluation 

The choice of a fitness function is problem dependent and is probably the most 
critical issue in genetic algorithm design. When genetic algorithms are combined with 

neural networks, the most commonly used approach to evaluate the performance of 
a member in the population is to train the network represented by this member and 
record its mean squared error. This is quite inappropriate for our purpose, since it 

does not account for the network’s generalization performance and size. To perform 
an evaluation based on network size and generalization, we have considered a fitness 

function having the following form: 

Erit = G,,, _ vai + &A (1 - En,, _ size) (3) 

The first term (G,,t_V,l = 1 - L_& accounts for generalization, while the sec- 

ond term (1 - Let _ size) accounts for the network size. The parameter %oA is a weigh- 
ing factor which controls the importance of the two terms. If 1oA is very small, the 
fitness of a member is mostly determined by its generalization performance only. 
However, when LGA assumes large values, both generalization, and size influence the 
fitness of a member. The value of the weighing factor AGA is determined adaptively, in 

a similar manner that iWE is determined in weight elimination. Specifically, LGA is 

determined as follows: 

iGA = i0 _ oA e - /LA L-,.” ) (41 

where Lo _oA and floA are constants specified by the user, and Enet_s,, denotes the 
generalization error of the network. The goal of the genetic algorithm is to find 

solutions which maximize the above fitness function. It is clear from the definition of 
the fitness function that reproduction favors members with good generalization 
performance and a relatively small network size. In early generations, network size 
does not play an important role in reproduction and the fittest members are the 

members which generalize best. However, in future generations both network size and 
generalization affect reproduction. Cross-validation is used for an estimation of 

E net_gen. As in Section 2, E,,, _gen is defined to be 1 - Gnet_.a,, where Gnet_,,=, is the 
generalization performance of a network over the validation set. The network size 

E net_size is defined to be the number of effective connections of the network (connec- 

tions whose associated absolute weight values are greater than I wol) over the total 

number of connections. Both Enet_s,n and Enet_size take values between 0 and 1. 

4. Simulations and results 

In order to evaluate our approach, an extensive experimental study has been 
performed using one artificial and seven real databases. The experiments were run on 
SPARC-2 and SPARC-5 Workstations and the implementation of the algorithms was 
made using C. The total amount of cpu time needed to complete all the experiments 
was about three months. The real databases were selected from the collection of the 
databases distributed by the machine learning group at the University of California at 
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Table 1 

Data sets used and network architectures chosen 

Data set Training 

set 

Validation 

set 

Test set Classes Architecture 

Numbers 150 50 150 10 63-40-10 

Ionosphere 200 31 120 2 34-30-2 

Soybean 254 53 255 15 35-60-15 

Breast-cancer 200 99 400 2 1 O-40-2 

Wine 75 28 75 3 13-35-3 

Iris 90 15 45 3 4-35-3 

Balance 250 125 250 3 4-60-3 

Cars 400 100 346 4 18-80-4 

Irvine [31], while a similar artificial database to the one we use here has previously 
been utilized by us in a character recognition experiment [S]. For each problem, data 
was normalized in the interval [O,l]. Assuming that each datapoint within a data set 
conists of m features x1, x2, . . . ,x,, normalization is performed using the following 
formula: 

x; = 
Xi - min, 

(5) 
max, - min,, 

where xi is the normalized value of the ith feature, xi is the original value, while min, 
and max, are the minimum and maximum values of the ith feature over the whole 
data set. Then data was divided into a training, a validation, and a test set. Details are 
provided in Table 1. Four approaches have been compared: the original back- 
propagation (BP), the back-propagation with weight elimination (BP-WE), the ge- 
netic algorithm approach using the crossover-nodes and mutate-nodes operators 
(GABP-WE), and the genetic algorithm approach using the crossover,firs_layel 

-nodes and mutate-nodes operators (GAl_BP_WE). 
For each problem considered, a two-layer network was chosen (see Table 1). The 

size of the networks chosen for each problem was considered to be big enough since 
we were able to successfully train smaller size networks for the same problems without 
any particular difficulty. In the case of the BP and BP-WE techniques, experimental 
results were obtained by running 20 experiments with each method for each database. 
For each experiment, a different set of initial weights was used (randomly chosen in 
the range of [ - 0.1 to 0.11). For comparison purposes, both the BP and BP-WE 
techniques used the same 20 initial weight configurations for each database. In the 
case of the BP-WE technique, we had also to choose values for the parameters 
PWE and w0 (see Eqs. (1) and (2)). The parameter w0 was set to 1.0 as mentioned in 
Section 2. The range of appropriate BWE values is usually different from database to 

database, as shown in Section 2.1. Since we do not usually have any apriori knowledge 
about the best range of flWE values, in practice we choose various parameter settings 
and we perform simulations until we get some satisfactory results. Here, we have 
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chosen a different PwE value (in the range of [lo-1001) for each of the 20 experiments 

performed per database. To challenge the genetic algorithm approach (which uses the 
same flwE values as we will explain later), the same 20 PWE values have been used for all 

the databases. 
To determine when to stop training in the case of the BP and BP-WE algorithms, 

we used the maximum output error over the training and validation sets. The 

maximum error over the validation set was computed by presenting all the validation 
examples to the network, recording the error associated with each output node, and 
choosing the maximum error over all the validation examples. Similarly we computed 
the maximum error over the training set. The algorithms were considered to have 

converged if the maximum output over the validation set at epoch t + 1 was greater 
than the maximum error at epoch t, and the maximum error over the training set at 

step t + 1 was less than 0.25. The last condition was added to our stopping criterion to 

ensure well trained networks. In the case of the weight elimination approach, we also 
set a maximum number of epochs, since training was rather long in some cases. The 

maximum number of epochs allowed was three times the average number of epochs 
needed by the BP approach to converge on the same problem (averaged over the 20 
experiments performed using BP). After training had been completed, testing was 

performed by applying the following methodology. First, we apply a test example at 
the inputs of the network and we compute the difference between the two largest 
output values of the network. If that difference is less than a threshold H, the 

classification of the input pattern is rejected due to insufficient evidence. Otherwise, 
the maximum of the two largest values determines the classification of the input. In 
our implementation, H was set to 0.1. 

The population size P of the genetic algorithm approach was set equal to 20, that is, 

equal to the number of individual experiments performed for each database. The 
architecture utilized for each database was the same as that utilized in the experi- 
mentation with the BP and BP-WE approaches. The initial population was formed 

by first encoding the initial network and then copying it P times (the initial encoding is 
going to be the same for each network since the same network architecture is used for 
all of them). The parameter values of each network (PWE, wO, and initial weights) were 
chosen exactly the same as those used in the individual experiments using the BP and 

BP-WE approaches. In other words, the setting of the initial population was exactly 
the same as the initial setting of the networks used in the 20 individual experiments 
performed for each database using the BP and BP-WE approaches. It should be 

mentioned that although we could have chosen the PWE values from a much smaller 
range of values for each dataset (our experimental results of Section 2.1 show that 

given a set of initial weights, the optimimum range of /JWE values might be quite 

different from database to database), we have intentionally made the problem more 
difficult, in order to challenge the genetic algorithm approach, by choosing the 

B wE values from the broader interval of [lO~lOO] for all the databases. In fact, we use 
the same flwE values for all the databases. 

The evaluation of each network from the population was performed by first 
training each network for a number of epochs using the weight elimination technique. 
The number of epochs used to train each network was about 10% of the average 
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number of epochs required by the BP approach to converge for the same problem 
(average over 20 different experiments performed for each database using the BP 
approach). This decision was based on the ideas presented in [6]. After a network in 

the population has been trained for a number of epochs, we compute its classification 

performance (Gnet _ val - classification performance over the validation set) and its size 
(E,l,t_,i,,-effective number of connections over the total number of connections). 
Connections with small weights are not removed before the genetic algorithm has 

converged, as for the BP-WE approach. After the genetic algorithm had converged, 
we removed all the weak connections and we trained each network for a few more 

epochs (334) using the BP approach to account for any error increase due to the 
removal of the weak connections. This is again the same procedure followed in the 

case of the BP-WE approach. 
The convergence of the genetic algorithm was determined by considering the 

improvement I, at each generation. The improvement I, at the nth generation is 

defined as the average fitness at the nth generation over the average fitness at the 

(n - 1)th generation. Using this definition, we can allow the formation of a new 
population at step (n + 1) if the improvement at step n is better or equal than the 

improvement at step (n - 1). To avoid early convergence, we have used a more robust 
criterion based on the average improvement A, defined as follows: 

A,=yA,_1+(1 -y)Zn. (6) 

A, is the average improvement at step y1 and 1’ is a constant usually chosen very 

close to 1.0. Here, 7 was set equal to 0.9. A0 can be computed by evaluating each 
member of the initial population before evolution begins. New populations are 
allowed to form as far as the average improvement keeps increasing, that is while 

A, 2 A,_ r. After the genetic algorithm had converged, each member of the final 
population was tested on the test set, using the methodology described earlier in the 

case of the BP and BP-WE approaches. 

In all the simulations performed the learning rate and momentum were both set 
equal to 0.1. Sigmoidal activation functions and weight updates after every pattern 

presentation were also used. The generation gap in the genetic algorithm approach 
was set equal to 0.9 while the parameter which determines the number of best 

fit copies in future populations (called Cmulf in [ll]) was set equal to 1.5. The 
crossover and mutation probabilities were chosen 0.6 and 0.001 correspondingly. 

&-WE and &-GA were set equal to 1 (we did not experiment with different values 
since both & _wE and i,, _oA are simply scaling constants). Different /&, values 
(Eq. (4)) were used during our experimentation. The best solutions obtained 
correspond to &_, values in the range of [l.O-lO.O], For /I&., values much greater 
than 10.0, we did not observe a great reduction in terms of network size. Although 
our initial goal was to use the same fi oA value for all the databases (see also the 
related discussion in the conclusion), we observed variations in our results using 
different PGA values from database to database. However, the deviation of the results 
for different PGA values within this range was not very large in most cases. The 

B GA values that yielded the best results for each database are given in the next 
subsections. 
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The experimental results for each one of the databases are presented next. For each 
database, the results are summarized in a table where the first column indicates the 
method used while the next columns indicate the performance of the method on the 
training and test sets as well as the reduction in network size achieved by each 
method. For each approach, we report the average performance and standard devi- 
ation as well as the best and worst solutions found. It is important for the reader to 
keep in mind that the criterion used for choosing the best and worst networks is their 
performance on the test set (columns eight and nine). The best and worst results in the 
case of the training set (columns four and five) correspond to the performance of the 
best and worst networks (in terms of test set) on the training set. Similarly, the best and 
worst number of weights (last two columns) correspond to the size of the best and 
worst networks (in terms of the test set) found. Thus, the reader should not be 
confused when, for example, the size of a network reported under the “best” column in 
the network size field (column before the last), is larger than the size of the network 
reported under the “worst” column (last column). This is because the larger size 
network has better performance on the test set than the smaller size network. The 
same applies when the performance of the networks on the train set is considered. The 
reader though can get an idea of the actual best-worst network sizes and perfor- 
mances on the training set by considering the reported averages and standard 
deviations for each case. 

4.1. Numbers database 

This is an artificial database which consists of noisy versions of machine printed 
numbers, digitized in a 7 x 9 grid. There are 10 classes. The training set consists of 150 
examples, the validation set of 50 examples and the test set of 150 examples. The 
architecture chosen for this experiment was a fully connected two-layer network with 
63 nodes in the input layer, 40 nodes in the hidden layer and 10 nodes in the output 
layer. The total number of weights and biases for this architecture is 2970. Table 2 
illustrates the results. 

The best solution was obtained by the GAl_BP_WE method (85.3% correct on the 
test set), while the best solution obtained by the GA-BP-WE method was also better 
than the best solutions obtained by the BP and BP-WE methods. Note also that the 

Table 2 
Results using the Numbers database 

Method Train Test Network size 

ave sd best worst ave sd best worst ave sd best worst 

BP 1.0 0.0 1.0 1.0 0.813 0.01 0.833 0.787 2970.0 0.0 2970 2970 
BP-WE 1.0 0.0 I.0 1.0 0.815 0.02 0.833 0.793 1926.4 1303.5 912 1872 
GABP_WE I .O 0.0 1.0 1.0 0.82 0.019 0.84 0.807 912.2 49.4 949 882 
GALBP-WE 1.0 0.0 1.0 1.0 0.835 0.03 0.853 0.8 1013.9 220.9 922 1267 
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Table 3 

Results using the Ionosphere database 

Method Train 

ave. sd 

Test 

best worst ave. sd 

Network size 

best worst ave. sd best worst 

BP 1.0 0.0 I.0 1.0 0.936 0.01 0.942 0.925 11 12.0 0.0 1112 III? 

BP-WE 0.988 0.07 0.985 1.0 0.943 0.026 0.960 0.925 264.9 446.0 37 1187 

G.4BP_WE 0.977 0.01 0.99 0.97 0.974 0.005 0.975 0.967 87.2 8.7 83 ‘79 

GAlLBP-WE 0.972 0.01 0.985 0.95 0.973 0.01 0.983 0.958 68.5 32.2 70 4.3 

worst performance solutions obtained by the genetic approaches are a little better 
than the worst solutions found by the other two methods. In terms of network size, the 
best solutions obtained by the genetic algorithm approaches were comparable to the 
best solutions obtained by the BP and BP-WE approaches. On the average, the size of 
the networks obtained by the genetic approaches is much smaller (see also the 
corresponding standard deviations). The best results in the case of both GA-BP-WE 
and GAl_BP_WE were obtained with PGA = 2.0. 

4.2. Ionosphere database 

This database consists of radar data. It contains 2 classes and 351 instances. The 
number of attributes is 34. The database is distributed into two different files, 
a training file including 200 instances and a test file including 15 1 instances. In order 
to create a validation set we split the test file into two different files. The first consisted 
of 120 examples and was our actual test set, while the second consisted of 31 examples 
and was our validation set. The architecture chosen for this experiment was a fully 
connected, two-layer network with 34 nodes in the input layer, 30 nodes in the hidden 
layer and 2 nodes in the output layer. The total number of weights and biases for this 
architecture is 1112. 

The results obtained are illustrated in Table 3. The GAl_BP_WE approach has 
improved generalization by 2.3% and the GA-BP-WE approach by 1.5% (best 
solutions). It should be mentioned that the best solution obtained by the BP-WE 
method has almost half the weights of the best solutions found by the GA-BP-WE 
and GAl-BP-WE approaches. However, this may have caused by overpruning, 
which may have prevented BP-WE from further improving its generalization perfor- 
mance. On the average, the network sizes obtained by the genetic approaches are 
again much smaller. The best results in the case of GA-BP-WE method were 
obtained using PoA = 2.0, while in the case of GAl_BP_WE using /))oA = 10.0. 

4.3. Soybean database 

The Soybean disea ses database is well known in the field of machine learning. 
There are different versions of this database. Here we have used the soybean-large 
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Table 4 

Results using the Soybean database 

Method Train Test Network size 

ave. sd best worst ave. sd best worst ave. sd best worst 

BP 1.0 0.0 1.0 1.0 0.812 0.01 0.830 0.79 3075.0 0.0 3075 3075 

BP-WE 0.999 0.006 1.0 1.0 0.816 0.002 0.827 0.80 2209.6 1335.8 2213 2493 

GABP-WE 0.998 0.004 1.0 1.0 0.823 0.015 0.839 0.81 1203.9 235.6 1116 1460 

GAlLBP-WE 1.0 0.0 1.0 1.0 0.833 0.004 0.835 0.83 1323.0 63.7 1309 1348 

data set which consists of 562 instances. The number of attributes is 35 while the 
number of classes is 15. For the training set we selected 254 examples, 53 examples 
were selected for the validation set, and the rest 255 examples were put aside for the 
test set. The architecture chosen for this experiment was a fully connected network 
again with 35 nodes in the input layer, 60 nodes in the hidden layer, and 15 nodes in 
the output layer. The total number of weights and biases for this architecture is 3075. 
The results shown in Table 4 demonstrate that the generalization performance of the 
best genetic solutions is very close to these of the BP and BP-WE approaches. 

However, the size of the networks obtained by the genetic approaches are much 
smaller than the size of the networks obtained using the BP-WE approach. This may 
have been caused by an early stopping of the pruning process in the BP-WE 
approach; it may also be the reason that BP-WE did not achieve a good general- 
ization. Note also that BP (unpruned network) generalizes better than BP-WE. The 
best results in the case of GA-BP-WE were obtained with flGA = 4.0, while in the case 
of GAl_BP_WE using /30A = 10.0. 

4.4. Breast-cancer database 

This database consists of 699 examples. The number of attributes is 10 while the 
number of classes is 2. Since this database is distributed again into a single file, we split 
the data into three different sets: a training set (200 instances), a validation set (99 
instances), and a test set (400 instances). The architecture chosen for this experiment 
was a fully connected network with 10 nodes in the input layer, 40 nodes in the hidden 
layer, and 2 nodes in the output layer. The total number of weights and biases for this 
architecture is 522. The genetic algorithm approaches have here also shown some 
improvement in terms of generalization. The results are shown in Table 5. It is worth 
noting that here the worst performance achieved by the BP-WE method was only 
25%. Note also the standard deviation of the performance of the BP-WE method on 
the test set (0.553) due to excessive overpruning (in the worst solution found, only 
9 weights remained after pruning). However, the genetic approaches avoided such 
solutions (the generalization performance of the worst solutions found by both 
approaches was 72%). The size of the best networks obtained are almost the same in 
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Table 5 

Results using the Breast-cancer database 

Method Train Test 

ave. sd best worst ave. sd 

Network size 

best worst ave. sd best worst 

BP I .o 0.0 1.0 1.0 0.957 0.007 0.97 0.94 522.0 0.0 522 522 

BP-WE 0.926 0.256 0.975 0.9 0.865 0.553 0.975 0.25 17.3 14.0 19 9 

GPLBP-WE 0.930 0.260 0.98 0.56 0.950 0.160 0.98 0.72 22.1 16.1 16 14 

GAlLBP_WE 0.930 0.260 0.975 0.56 0.940 0.160 0.98 0.72 17.2 6.2 13 14 

all methods. The best results in the case of both GABP_WE and GAlLBP-WE were 

obtained using PGA = 2.0. 

4.5. Wine database 

The Wine database is a relatively “easy” to train database. It consists of 178 
instances. The number of attributes is 13 while the number of classes is 3. The data are 
distributed into a single file and thus we split it into three different files: a training file 

(75 instances), a validation file (28 instances), and a test file (75 instances). The 

architecture chosen for this experiment was a fully connected network with 13 nodes 

in the input layer, 35 nodes in the hidden layer, and 3 nodes in the output layer. The 
total number of weights and biases for this architecture is 598. Significant generaliza- 
tion improvement has been achieved by the genetic approaches as is illustrated in 

Table 6. The GA-BP-WE approach has improved generalization by 2.7%, while the 
GAlLBP_WE approach by 1.4% (best solutions). The best network sizes are almost 
the same for the BP-WE and the genetic approaches, while a much smaller average 

network size was obtained by the genetic approaches. The best results in the case of 
both GA-BP-WE and GAlLBP_WE were obtained using ljcA = 2.0, 

4.6. Iris database 

The Iris database is perhaps the best known database in the pattern recognition 
literature. It contains 3 classes of 50 instances each (total number of instances is 150) 

where each class refers to a type of iris plant. One class is linearly separable from the 

other 2; the latter are not linearly separable from each other. The number of attributes 
is 4, all of which are real valued. Since this database is distributed into a single file, we 
have randomly chosen 90 instances for training, 15 instances for validation, and the 
rest 45 instances for testing. The architecture chosen for this experiment was a fully 
connected network with 4 nodes in the input layer, 35 nodes in the hidden layer, and 

3 nodes in the output layer. The total number of weights and biases for this 
architecture is 283. The results illustrated in Table 7 show that the generalization 
performance of all the methods is perfect (100%). However, the average size of the 
networks obtained using the genetic approaches is much smaller than the average size 



188 G. Behis et al. INeurocomputing I7 (I 997) 167-I 94 

Table 6 

Results using the Wine database 

Method Train 

ave. sd 

Test 

best worst ave. sd 

Network size 

best worst ave. sd best worst 

BP 1.0 0.0 I.0 1.0 0.919 0.006 0.92 0.907 598.0 0.0 598 598 

BP-WE 1.0 0.0 1.0 1.0 0.907 0.027 0.933 0.88 183.0 159.35 56 238 

G&BP-WE 1 .o 0.0 1.0 I.0 0.948 0.028 0.96 0.933 67.95 12.9 55 74 

GAl-BP-WE 1.0 0.0 1 .o 1.0 0.91 0.035 0.947 0.89 81.56 11.65 81 89 

Table 7 

Results using the Iris database 

Method Train 

ave. sd 

Test 

best worst ave. sd 

Network size 

best worst ave. sd best worst 

BP 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 283.0 0.0 283 283 

BP-WE 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 105.6 97 36 196 

GABP-WE 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 36.2 2.1 34 36 

GAl_BP-WE 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 34.2 1.2 33 35 

of the networks obtained by the BP-WE approach. The best results in the case of both 
GABP-WE and GAl-BP-WE were obtained using PGA = 2.0 

4.7. Balance database 

This database consists of 625 instances. The number of attributes is 4 while the 
number of classes is 3. Since this database is also distributed into a single file, we have 
randomly chosen 250 instances for training, 125 instances for validation, and the rest 
250 instances for testing. The architecture chosen for this experiment was a fully 
connected network with 4 nodes in the input layer, 60 nodes in the hidden layer, and 
3 nodes in the output layer. The total number of weights and biases for this 
architecture is 483. We have not achieved great generalization improvements with this 
database. As shown in Table 8, the genetic approaches have comparable generaliza- 
tion with the BP and BP-WE approaches. In terms of network size, both of the 
genetic approaches have shown great improvements. The best results in the case of 
GABP-WE were obtained using /?oA = 4.0 while in the case of GAlLBP-WE using 
/Z?o* = 2.0. 

4.8. Cars database 

This database consists of 846 instances. The number of attributes is 18 and the 
number of classes is 4. The database is distributed into a single file. A training file was 
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Table 8 

Results using the Balance database 

Method Train 

ave. sd best worst 

BP 1.0 0.0 1.0 1.0 

BP-WE 0.99 0.036 1.0 0.952 

G&BP-WE 1.0 0.0 1.0 1.0 

GAlLBP. WE 1.0 0.0 1.0 1.0 

Test Network size 

ave. sd best worst ave. sd best worst 

0.904 0.006 0.908 0.892 483.0 0.0 483 483 

0.895 0.03 0.908 0.864 297.35 271.64 252 90 

0.908 0.0 0.908 0.908 73.61 2.5 72 7X 

0.908 0.004 0.912 0.904 72.25 4.27 71 66 

Table 9 

Results using the Cars database 

Method Train Test Network size 
- 

ave. sd best worst ave. sd best worst ave. sd best worst 

BP 1.0 0.0 1.0 1.0 0.78 0.02 0.795 0.74 1844.0 0.0 1844 1844 

BP-WE 0.99 0.01 1.0 1.0 0.77 0.025 0.792 0.74 1549.8 817.55 1804 1180 

GABP-WE 0.99 0.015 0.988 0.998 0.79 0.025 0.81 0.775 975.95 262.1 1026 968 

GAlLBP_WE 0.98 0.03 0.995 0.975 0.777 0.02 0.795 0.763 1078.0 295.5 1132 906 

created by choosing 400 instances. For the validation set we chose 100 instances, while 
the rest 346 instances were kept for the test set. The architecture chosen for this 
experiment was a fully connected network with 18 nodes in the input layer, 80 nodes 
in the hidden layer, and 4 nodes in the output layer. The total number of weights and 
biases for this architecture is 1844. 

The results are illustrated in Table 9. Note that BP-WE’s generalization perfor- 
mance is a little worst than BP’s performance (both on the average and in terms of the 
best solution found). However, the genetic approaches have retained good general- 
ization. In particular, GA-BP-WE has found a solution which is better (by 1.8%) that 
the best solution found by BP-WE. Note also that the GA-BP-WE approach has 
found solutions with a smaller network size. The GAl_BP_WE approach has not 
improve generalization it has given better results than the BP-WE approach in terms 
of network size. The best results in the case of GA-BP-WE were obtained with 
/JoA = 1.0, while in the case of GAl_BP_WE were obtained with PGA = 4.0. 

4.9. Discussion 

Table 10 presents a summary of the best results obtained through our experimenta- 
tion. The first column presents the database used while the next columns present 
the best network solutions found for each of the four methods we considered in 
our experiments. In particular, for each method we report the best generalization 
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Table 10 

Comparison of the best solutions obtained 

Generalization and network size of best solutions 

Data set BP 

test 

BP-WE GABP_WE GAlLBP_WE 

sizeereduction test sizeereduction test sizeereduction test sizeereduction 

Numbers 0.8333 0% 

Ionosphere 0.942 0% 

Soybean 0.83 0% 

Breast-cancer 0.97 0% 

Wine 0.92 0% 

Iris 1.0 0% 

Balance 0.908 0% 

Cars 0.795 0% 

0.833 69.3% 

0.96 96.67% 

0.827 28% 

0.975 96.36% 

0.933 90.6% 

1.0 87.28% 

0.908 47.83% 

0.792 2.1% 

0.84 68% 

0.975 92.54% 

0.839 63.1% 

0.98 96.93% 

0.96 90.6% 

1.0 87.98% 

0.908 85.1% 

0.81 44.36% 

0.853 68.96% 

0.983 93.7% 

0.835 57.43% 

0.98 97.51% 

0.947 86.45% 

1.0 88.34% 

0.912 85.3% 

0.795 38.6% 

performance achieved and the reduction in network size associated with this solution. 

It is obvious that the pruned networks obtained by the combination of genetic 
algorithms and weight elimination have the same or better generalization capabilities. 
In terms of network size, the results are much better in many cases (e.g., in the case of 

the Soybean database). In some cases, the solutions obtained were a little worse 
in terms of network size (Numbers and Ionosphere databases) but they had 

better generalization performance which is more critical. The use of the cross- 

over_first_layer_nodes operator seems to be beneficial in many cases. However, our 
experimental results do not give us enough evidence to conclude that it is always 
superior than the crossover_nodes operator. In fact, the GA-BP-WE approach gave 
better results than the GAl_BP_WE approach in some cases (e.g., in the case of the 

Wine database). In the case of the GABP-WE approach, the best /IGA values were 
rather small in the range of [1.04.0]. In the case of the GAl_BP_WE approach, best 
results were obtained using large /30A values (around 10.0 in some cases). 

The proposed approach can be improved in a number of ways. First of all, we 

believe that the size of the validation set is very important. In all of the experiments 
performed, the validation sets used were rather small. However, we think that results 

can be further improved by using larger size validation data sets, when a sufficient 

number of data is available of course. This is because the evaluation of a network 
during evolution is strongly based on its generalization performance, which is esti- 

mated using the validation set. If the network generalizes well then its network size 
starts having some importance in the fitness evaluation, otherwise the size does not 
have any contribution. Obviously, if the validation set is smaller than appropriate for 
obtaining a good “estimate” of the generalization performance of the network, bad 
results can be obtained. If for example, the “true” generalization of the network is bad 
while the “estimated” generalization of the network is good, then the fitness evalu- 
ation will mostly favor networks having bad generalization and small network size. 
However, encouraging network size reduction before the network has achieved some 
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good generalization performance might lead to small size networks having a very 
poor generalization. 

Another way to improve the proposed approach is by increasing the population 
size. In our experimentation, we set the population size equal to 20 in order to keep 
the time requirements of our experiments within some reasonable limits, given the fact 
that we are dealing with a large collection of databases. However, larger size popula- 

tions ( -50 or more) might allow the genetic algorithm to discover even better 

solutions. Of course, the need of using faster machines to run the experiments 
is inevitable. The above two improvements might also make the choice of appropri- 

ate /& values less data dependent. The consequence of this is very important. 
Given a problem to solve, we would be able to obtain a good solution (both in terms 
of network size and generalization) without trying different PGA values for each 

database. 

5. Conclusions 

Pruning techniques represent a broad class of methods which try to restrict the 
number of free parameters in a network (i.e., weights) in order to improve general- 

ization. Although pruning techniques reduce network size, they do not always im- 

prove generalization. In fact, smaller size networks obtained by applying weight 

pruning may have the same or even worst generalization performance than that of 
their unpruned counterparts. In this paper we proposed the coupling of genetic 
algorithms with weight elimination. Weight elimination is a well known pruning 
technique and the most general among the weight decay techniques. The objective of 
our work is to provide a method not only for reducing network size but also for 

preserving generalization. 
An extensive experimental study involving one artificial and seven real databases 

has demonstrated that the coupling of genetic algorithms with weight elimination is 
a very promising approach. Actually, the framework of our approach is more general 
since other pruning techniques can be also coupled with genetic algorithms. Weight 

elimination depends on a number of parameter values whose choice can significantly 

affect the results. We show that small size networks can be obtained; however, the 
generalization performance of these networks is not always satisfactory. On the other 
hand, the networks obtained by the proposed approach not only are small in size but 
they also have good generalization capabilities. 

The success of the proposed approach is mainly due to the interchange of informa- 
tion that takes place during evolution. Starting with a population of networks having 
various parameter settings, the genetic algorithm was capable of finding good solu- 
tions (both in terms of size and generalization) than the solutions found by training 

each one of the networks separately using the same parameter settings. To demon- 
strate the capabilities of the genetic algorithm approach, we used the same parameter 
settings for all the databases used. Although it was shown (Section 2) that the optimal 
parameter value ranges are data dependent, the genetic algorithm managed to find 
good solutions in all the cases. 



192 G. Bebis et al. JNeurocomputing 17 (1997) 167-194 

Acknowledgements 

This research was supported in part by a grant from Harris Corporation. 

References 

[l] T. Ash, Dynamic node creation, Connection Sci. 1 (4) (1989) 365-375. 

[2] E. Baum, D. Haussler, What size net gives valid generalization, Neural Comput. 1 (1989) 151-160. 

[3] G. Bebis, M. Georgiopoulos, Feed-forward neural networks: why network size is so important, IEEE 

Potentials (Oct/Nov.) (1994) 27-31. 

[4] G. Bebis, M. Georgiopoulos, T. Kasparis, Coupling weight elimination and genetic 

algorithms, in: Internat. Conf. on Neural Networks (ICNN-96), vol. 2, Washington, DC, June 1996, 

pp. 1115-1120. 

[5] G. Bebis, G. Papadourakis, Implementation of character recognition using neural networks and 

traditional classifiers, Proc. NEURONET Internat. Symp. on Neural Networks and Neural Comput- 

ing, Prague, 1990, pp. 33-36. 

[6] M. Caudill, Evolutionary neural network, AI Expert, (March) (1991) 29-33. 

[7] Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, Adv. Neural Inform. 

Process. Systems 1 (1989) 519-526. 

[S] J. Depenau, M. Moller, Aspects of generalization and pruning, in: Proc. World Congress on Neural 

Networks, vol. III, 1994, pp. 504509. 

[9] S. Fahlman, C. Lebiere, The Cascade-Correlation learning architecture, Adv. Neural Inform. Process. 

Systems 2 (1990) 524532. 

[lo] M. Frean, The Upstart algorithm: a method for constructing and training feed-forward networks, 

Neural Comput. 2 (1990) 198-209. 

[l l] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 

Reading, MA, 1989. 

[12] J. Grefenstette, Optimization of control parameters for genetic algorithms IEEE Trans. Systems Man 

Cybernet. 16(l) (1) (1986) 122-128. 

1131 S. Hanson, L. Pratt, Comparing biases for minimal network construction with back-propagation, 

Adv. Neural Inform. Process. Systems 1 (1989) 177-185. 

[14] S. Harp, T. Samad, A. Guha, Designing application-specific neural networks using the genetic 

algorithm, Adv. Neural Inform. Process. Systems 2 (1990) 447-454. 

[15] B. Hassibi, D. Stork, Second order derivatives for network pruning: optimal brain surgeon, Adv. 

Neural Inform. Process. Systems 5 (1993) 

[16] Y. Hirose, K. Yamashita, S. Hijiya, Back-propagation algorithm which varies the number of hidden 

units, Neural Networks 4 (1991) 61-66. 

[17] K. Hornik, M. Stinchombe, Multilayer feed-forward networks are universal approximators, in: H. 

White et al. (Eds.), Artificial Neural Networks: Approximation and Learning Theory, Blackwell Press, 

Oxford, 1992. 

[ 1 S] D. Hush, B. Horne, Progress in supervised neural networks, IEEE Signal Process. Mag. (Jan.) (1993) 

8-39. 
[19] C. Ji, R. Snapp, D. Psaltis, Generalizing smoothing constraints from discrete samples, Neural 

Comput. 2 (1990) 188-197. 

[20] R. Kamimura, S. Nakanishi, Weight-decay as a process of redundancy reduction, in: Proc. World 

Congress on Neural Networks, vol. III, 1994, pp. 48&489. 

[21] E. Karnin, A simple procedure for pruning back-propagation trained neural networks, IEEE Trans. 

Neural Networks, 1 (2) (1990) 239-242. 
[22] J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, 

Reading, MA, 1991. 

[23] A. Krogh, J. Hertz, A simple weight decay can improve generalization, Adv. Neural Inform. Process. 

Systems 4 (1992) 950-957. 



c241 

Cl51 

1261 

1271 

1281 

WI 

c301 

II311 

1321 

c331 

r341 

c351 

C361 

c371 

C381 

G. Bebis et al. /Neurocomputing I7 (1997) 167-194 193 

Y. Le Gun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Back-propagation 

applied to handwritten zip code recognition, Neural Comput. 1 (1989) 541-551. 

Y. Le Cun, J. Denker, S. Solla, Optimal brain damage, Adv. Neural Inform. Process. Systems 2 (1990) 

5988605. 

D. MacKay, A practical bayesian framework for backpropagation networks, Neural Comput. 

4 (I 992) 448472. 

M. Mezard, J. Nadal, Learning in feed-forward layered networks: the tiling algorithm, J. Phys. A 22 

(1989) 2191-2204. 

G. Miller, P. Todd, S. Hegde, “Designing neural networks using genetic algorithms“, 3rd Internat. 

Conf. on Genetic Algorithms, pp. 3799384. 

D. Montana, L. Davis, Training feed-forward neural networks using genetic algorithms, in: Proc. i I th 

Internat. Joint Conf. on Artificial Intelligence, 1989, pp. 762-767. 

M. Mozer, P. Smolensky, Skeletonization: a technique for trimming the fat from a network via 

relevance assessment, Adv. Neural Inform. Process. Systems l(198Y) 105-l 15. 

P. Murphy, D. Aha, UC1 Repository of machine learning databases, [Machine-readable data 

repository], University of California, Department of Information and Computer Science. Irvine, CA, 

1994. 

S. Nowlan, G. Hinton, Simplifying neural networks by soft weight sharing, Neural Comput. 4 (4) 

(1992) 473493. 

J. Sietsma, R. Dow, Creating artificial neural networks that generalize, Neural Networks 4 (lY91) 

67779. 

H.H. Thodberg, Improving generalization of neural networks through pruning, Internat. J. Neural 

Systems 1 (4) (1991) 317-326. 

A. Weigend, D. Rumelhart, B. Huberman, Generalization by weight elimination with application to 

forecasting, Adv. Neural Inform. Process. Systems 3 (1991) 875-882. 

M. Wynne-Jones, Node splitting: a constructive algorithm for feed-forward neural networks, Adv 

Neural Inform. Process. Systems 4 (1992) 1072-1079. 

Y. Yang, V. Honavar, Experiments with the cascade-correlation algorithm, Technical Report, Dept. of 

Computer Science, Iowa State University, Ames, IA. 

X. Yao, A review of evolutionary artificial neural networks, Internat. J. Intelligent Systems 8 (1993) 

539~ 567 

George Bebis received the B.S. degree in Mathematics and the MS. degree in 
Computer Science from the University of Crete, Greece, in 1987 and 1991, 
respectively, and the the Ph.D. degree in Electrical and Computer Engineering 
from the University of Central Florida, Orlando, in 1996,Currently, he is a Visiting 
Assistant Professor in the Department of Mathematics and Computer Science at 
the University of Missouri, St. Louis. His research interests include computer 
vision, image processing, neural networks, and genetic algorithms. 

Michael Georgiopoulos received the Diploma in electrcial engineering from the 
National Technical Universitv of Athens. Greece. in 1981. and the MSc. and 
Ph.D. degrees in electrical engineering from the University of Connecticut, Storrs, 
in 1983 and 1986. resoectivelv. In 1987, he ioined the Universitv of Central 
Florida, Orlando, where he is currently an Associate Professor at the-Department 
of Electrical and Computer Engineering. His research interests are in the area of 
pattern recognition, neural networks, fuzzy logic and genetic algorithms. He is also 
interested in applications of the above technologies in prediction, electromag- 
netics, signal/image processing and simulation. Dr. Georgiopoulos is a member of 
the IEEE, International Neural Network Society, and a member of the Techmcal 
Chamber of Greece. 



194 G. Behis et al. /Nmrocomputing I7 (I 95’7) I67- 1 Y4 

Takis KasDaris received the Dioloma of Electrical Engineering from the National 
Technical University of Athens: Greece in 1980, and th‘k MEEE and Ph.D. degrees 
in Electrical Engineerine from the Citv Colletre of New York in 1982 and 1988. 
From 1985 until-1989 hewas an electronics consultant for various firms in the New 
York area designing various single board computers and other types of digital 

i hd ar ware. In 1989 he joined the Electrical Engineering Department of the Univer- 
sity of Central Florida, Orlando, where he is presently an associate professor. His 
main research areas are non-linear adaptive median filters for image filtering and 
restoration, texture analysis and segmentation problems, computer vision and 
digital signal processing for communications and audio processing. He has pub- 
lished over 50 papers in various scientific journals and conference proceedings. 


