
NEUROCOMPUTINC

Neurocomputing 17 (1997) 167-194

Coupling weight elimination with genetic algorithms to
reduce network size and preserve generalization

George Bebis*, Michael Georgiopoulos, Takis Kasparis

Department of Electrical & Computer Engineering, University of Central Florida, Orlando,

FL 32816, USA

Received 23 January 1997; accepted 5 May 1997

Abstract

Recent theoretical results support that decreasing the number of free parameters in a neural
network (i.e., weights) can improve generalization. These results have triggered the development
of many approaches which try to determine an “appropriate” network size for a given problem.
The main goal has been to find a network size just large enough to capture the general class
properties of the data. In some cases, however, network size is not reduced significantly or the
reduction is satisfactory but generalization is affected. In this paper, we propose the coupling of
genetic algorithms with weight elimination. Our objective is not only to significantly reduce
network size, by pruning larger size networks, but also to preserve generalization, that is, to
come up with pruned networks which generalize as good or even better than their unpruned
counterparts. The innovation of our work relies on a fitness function which uses an adaptive
parameter to encourage reproduction of networks having small size and good generalization.
The proposed approach has been tested using both artificial and real databases demonstrating
good performance.

Keywords: Neural networks; Genetic algorithms; Weight elimination; Pruning

1. Introduction

One of the most critical problems in neural network design is the problem of
choosing an appropriate network size for a given application [2,3, 181. Network size

_
* Correspondence address: Department of Mathematics and Computer Science, University of

Missouri-St. Louis, 312 Computer Center Building, 8001 Natural Bridge Rd., St. Louis, MO 63121-4499,

USA. Tel.: + 1314 516-6342; fax: + 1314 516-5400; e-mail: bebis@mayura.cs.umsl.edu.

0925-2312/97/$17.00 Copyright 0 1997 Elsevier Science B.V. All rights reserved

PII so925-2312(97)00050-7

168 G. Bebis ct 01. ,‘Neurocomptirly I7 (I 997) 167-l 94

in the case of layered, feed-forward, neural networks depends on the number of layers,

the number of nodes per layer and the number of incoming connections onto a node
(fan-in). Here, we express network size in terms of the number of connections in the

network. In general, network size affects network complexity and learning time, but
most importantly. it affects the generalization capabilities of the network; i.e., its
ability to produce accurate results on data outside its training set. Given a set of
training examples, there is probably a large number of different size networks that can

learn to perform the underlying mapping (i.e., achieve a small enough training error).

However, the generalization capabilities of each one of these networks will not be the
same (i.e., the generalization error will be different from one network to the other).

A network having a structure more complicated than necessary, “overfits” the training

data, that is, it performs nicely on patterns included in the training set but performs
very poorly on unknown patterns. On the other hand, a network having a structure
simpler than necessary cannot give good results even for patterns included in its
training set.

Major emphasis has been given in the last few years to the development of
techniques which try to reduce network size by modifying not only the connection

weights but also the network structure during training. These techniques can be

divided into three main categories. The first category includes methods that start with

a big network and gradually eliminate the unnecessary nodes or connections. These
methods are called pr-uning [18, 221. Pruning based methods remove unnecessary

nodes or connections using a sensitivity based measure to indicate how the solution is
affected from this change [21, 25, 301, or modifying the error function of the network
in such a way that unnecessary connection weights are driven to zero during training

(weight decay) [7, 19, 35, 23, 131. The second category includes the constructive

methods [22], which start with a small network and gradually add nodes or connec-
tions during training [27, 9, 10, 36, 11. The last category includes the weight sharing

methods [lS]. In weight sharing: many connections share the same weight so that the
number of free parameters in the network becomes much less than the number of
connections. Hidden nodes are divided into groups and a local receptive field defines

the input to each hidden node. Weight sharing is achieved by assigning an identical set

of weights to each node within the same group [24, 321.
Although reducing network size is very important, it should be attempted under the

assumption that generalization is not affected. In some studies where generalization
was addressed, improvements were observed using artificial data sets only [19,8, 341,

while the same or even worse generalization has been reported in some other studies
where real data sets were used [16, 23, 37, 1.5, 201. Our interest in this paper is to
improve the performance of weight pruning techniques. Weight pruning techniques
are very sensitive to the selection of certain parameter values which determine when
pruning should start and when it should stop. If pruning starts too early, the network
might not be able to learn the desired mapping. On the other hand, if pruning stops
early, it might not be possible to sufficiently prune the network. Also, if pruning does
not stop at the right point, it might be possible to overprune and this will deteriorate
generalization. Determining appropriate pruning parameter values to control the
beginning and the end of the pruning process is usually done by trial and error.

G. Bebis et al. /Neurocomputing I7 11997) 167-194 16’)

Recently, there has been some work in order to determine these parameters in
advance [26] using probabilistic approaches.

In this paper, we propose the coupling of genetic algorithms [11] and weight

pruning. In particular, the weight elimination technique [35], a representative weight
pruning technique and the most general of weight decay approaches, has been chosen
to be coupled with the genetic algorithm. However, the framework of the approach we

propose is more general and other pruning techniques can also be coupled with
genetic algorithms. The goal of the proposed approach is to prune oversized networks
without affecting generalization. Genetic algorithms are a class of optimization

procedures inspired by the biological mechanisms of reproduction. Research on
combining genetic algorithms and neural networks has lately attracted a lot of

attention [38]. The most common approaches within this context use a genetic

algorithm in order to: (1) select features used by a neural net; (2) select the parameters
that control the learning in a neural net; (3) analyze the solution achieved by a neural

net; (4) determine the neural network weights; and (5) determine the neural network

architecture (see [38] for an excellent review). Our approach belongs to the last
category; our primary interest is not only to determine an appropriate network size by

pruning oversized networks but also to demonstrate that the pruned networks
improve generalization. Some preliminary results of our work have been presented

in [4].
Genetic algorithms operate iteratively on a population of structures, each one of

which represents a candidate solution to the problem at hand. When genetic algo-
rithms are used in the context of neural networks, an important issue to be addressed

is how the architecture should be represented (encoded) into a structure (string of

symbols) that can be handled by the genetic algorithm. Once an encoding scheme has
been chosen, a number of networks are encoded to form the initial population. In our

approach, we start with an oversized network and we consider a number of copies of
this network with different initial weights and pruning parameters, to form the initial

population. The encoding scheme we are using is a local scheme presented in [29]. On
each iteration, a new population is formed by first applying a number of genetic
operations (reproduction, crossover, and mutation) on the old population. Then, each

member of the population is decoded into a legitimate network and is evaluated. The
evaluation is performed by first training each network for a small number of epochs

using weight elimination. Then, a fitness function is used to measure the performance
of each member in the population. This process is repeated until the genetic algorithm

converges to a final population. The criterion used for convergence is based on the
average improvement of the genetic algorithm and is described in Section 4.

Choosing a “good” fitness function is probably the most critical issue in genetic
algorithm design since it provides the mechanism for evaluating the members (en-
coded solutions) of a population. The improvement of a solution at future generations

depends highly on the evaluations that the population members have received at past
generations. Members assigned a bad evaluation are discarded, while members
assigned a good evaluation survive in future populations. The innovation of the
proposed approach relies on the use of a fitness function which takes into considera-
tion both network size and generalization. In particular, during the generation of new

170 G. Bebis et al. jNeurocomputing 17 (1997) 167-194

genetic populations, an adaptive parameter weights the importance of network size
versus generalization, encouraging the reproduction of networks having good gener-
alization and a relatively small size.

The motivation for using genetic algorithms is that as new populations are formed,
the network structure of each member in a population changes in a different way,
since each network is associated with different parameter values. Since the character-
istics among different members in the population can be exchanged by applying the
genetic operators, new, more powerful members may be discovered as evolution
proceeds. As we mentioned before, choosing appropriate parameter values for the
weight elimination technique (or for other weight pruning techniques) is a trial and
error procedure. The goal of the proposed approach is to discover better solutions,
using the same parameter settings chosen in the trial and error procedure. In other
words, let us assume that we have decided to perform a number T of trials, using
various parameter settings. Then, instead of training each network separately, we
form a population of T networks, where each one of them is identical to one of the
T independent initializations, and allow the genetic algorithm to form more powerful
populations. Our experimental results, given in Section 4, demonstrate that following
this approach, the genetic algorithm finally converges to a population whose best
member is as good or better than the best solution found by training each network
individually with weight elimination (using the same parameter values) or without
weight elimination (unpruned network). Furthermore, the average generalization
performance of our approach is always better.

The organization of the paper is as follows: Section 2 reviews the weight elimination
technique and illustrates its sensitivity to the selection of certain parameter values
which affect network size and generalization. Section 3 discusses the genetic algorithm
approach. The network representation scheme, the genetic operators, and the fitness
function utilized are presented in detail. The databases used, the experiments per-
formed, and the results obtained are presented in Section 4. Finally, our conclusions
are given in Section 5.

2. Reducing network size using weight elimination

Weight elimination is a general weight decay approach proposed by Weigend et al.
[35]. It minimizes a modified error function which is formed by adding a penalty term
to the original error function of the back-propagation algorithm. Specifically, the
modified error function has the form

EWE = E. + /IWE El = c k (tf: - 01)~ + /IWE 1 wi’j’w’
P

i, j 1 + wi”/w; ’ (1)

where the sum over p implies summation over all the training examples and the sum
over k implies summation over all the output nodes.

The first term is the original error function which is simply the sum of the squared
errors between the actual output values (ok) and the desired output values (tk). The

G. Bebis et al.lNeurocomputing 17 (1997) 167-194 171

second term represents the complexity of the network as a function of the weight
magnitudes relative to the parameter wO, The factor llWE is a weighting factor which
determines the importance of the network’s complexity with respect to the network’s
performance over the training set. The choice of w. encourages the algorithm to find
solutions with fewer large weights (w. small) or many small weights (w. large). The
distinction between small and large weights is made with respect to the magnitude of
wo. To make this clear, let us consider the ratio INJ~[/w~. If 1 Wil/Wo < 1, the cost of each
weight approaches zero and the second term of Eq. (1) approaches zero as well. On the
other hand, if 1 wil/wo 9 1, then the cost of each weight approaches lZwE and the second
term of Eq. (1) is minimized when the algorithm converges to a solution with a few
large weights.

There are several issues to be addressed during the implementation of the weight
elimination technique. The first and probably most important issue is deciding when
pruning should start affecting training. This issue is straightforward related to the
choice of the weight factor AwE. When AwE is very small or zero, pruning does not
affect training at all. When this parameter is large, small weights decay more rapidly
than large ones. However, this parameter should not be chosen too large since all the
weights will be driven to zero then. One way that this parameter is usually chosen is by
performing a number of simulations using different values and choosing the value that
gives the best performance on a validation set. However, experience has shown that
better results can be achieved if this parameter can be determined adaptively during
training. Weigend et al. [35] have proposed a procedure for this. Initially, AwE is set to
zero. Then, it increases, decreases, or stays the same according to a methodology
based on a number of parameters such as the error of the network on the training set,
the average error (exponentially weighted over the past errors of the network on the
training set), and a desired error provided externally by the user. The amount by
which AwE must be increased or decreased is another parameter specified by the user.
We have found that this procedure is not very robust. Here we have chosen an
alternative way for determining AwE, motivated by [19]. Specifically, AwE is deter-
mined as follows:

AwE = Ao_wE ePBWEEg=“, (2)

where Lo _ wE is a scaling factor (which was set equal to one in all of our experiments)
and pWE is a constant to be defined shortly. Egen is an estimation of the generalization
error of the network. When Egen is large, AwE will be small and the second term in
Eq. (1) will contribute almost nothing to the total error. When Egen starts decreasing,
the second term will start being more significant driving small weights to zero.
A common way of estimating the generalization performance of a network during
training is by using cross-validation [18]. In cross-validation, a validation set which is
different from both the training and test sets is used to estimate the performance of the
network during training. When the performance of the network on the validation set
starts decreasing, this is an indication that the network starts overfitting the data.
If Gval represents the ratio of the correctly classified patterns from the validation
set over the total number of patterns in the validation set, then we define Egen as
E g-J = 1 - G,,,. Updating Gval and AwE takes place in every epoch.

172 G. Behis et nl. lNeurocomputing I7 (1997) 167-I 94

Another important issue to be addressed is when training, and consequently
pruning, should stop. It has been reported in [35] that the exact stopping point is not

very important. However, we demonstrate in the next section that this is not consis-
tently true since it might lead us to overpruning, which can deteriorate generalization
significantly. It is also important to decide when is the appropriate time to remove the

connections associated with small weight values from the network. Obviously, we do
not want to remove any connection, even if its corresponding weight value is very

small, if the performance of the network on the training set is very poor. Usually,

connections associated with weak weights are removed when the network has

achieved some performance on the training set (i.e., the error over the training set has
become smaller than a threshold [19]). In our implementation, connections are
removed at the end of the training process. A weight Wij is removed only if 1 wijl < (w. I.
It should be mentioned that approaches based on sensitivity analysis [30, 151 might
be more appropriate in order to remove redundant weights. However, we have
decided to use the above approach because it is simpler, faster, and it does not affect

the ideas we are trying to demonstrate here. To account for the resulting increment of
the error due to the elimination of the weaker weights, we train the pruned network

for a few additional epochs using the standard back-propagation algorithm.
The modified version of weight elimination that we have described depends mainly

on the choice of Pwe w,,, and the weights assigned to the network in the beginning of
the training process. The sensitivity of weight elimination on the selection of these

parameters is considered in the next subsection through an experimental study. The
conclusions of this experimental study are useful in the development of our proposed
approach.

2. I. Sensitizjity of weight elimination

Choosing appropriate parameter values for the weight elimination technique i in-
volves some experimentation. Usually, we start with a network whose size has been

chosen large enough to ensure convergence and we train it a number of times using
different parameter values each time (i.e., different initial weights and different values

for the parameters controlling weight elimination). Then, we choose the best solution

in terms of size and generalization. In this subsection we present a number of
experiments in order to investigate the dependence of weight elimination on the
choice of these parameter values. Four different databases have been used in the
experiments reported in this subsection: the Numbers, the Ionosphere, the Wine, and

the Breast-cancer databases. Details about the databases are given in Section 4.
Initially we investigated the dependence of weight elimination on the stopping point

used during training. Some experimental results obtained in [35] demonstrate that
the exact point at which training must be terminated is not very important. In
fact, generalization was shown to be good even for training times four times longer
than the training time required to train a network without using weight elimination.
However, a number of experiments performed by us using different data sets demon-
strated that the stopping point is indeed important. Fig. 1 shows results obtained
using the Wine database. The parameters used were /?wE = 80 and w. = 1.0.

G. Bebis et al. JNeurocomputing 17 (1997j 167-194 173

1

'Generalization' -
‘Network Size’ ----

0.9 - _,

0
0 100 200 300 400 500 6w

Fig. 1. An example illustrating the effects of overpruning. The continuous line represents the generalization

performance of the network while the dashed line represents the percentage of connections whose absolute

weight value is greater than 1 w,,I. The horizontal axis represents the number of epochs.

Obviously, generalization starts decreasing as soon as excessive weight elimination
takes place. Thus, stopping weight elimination before overpruning occurs is
important.

Next, we examined the sensitivity of weight elimination on the selection of the
PWE parameter. Thus, we fixed w0 (wO = 0.25) and the initial weights and we per-
formed 20 different experiments using different fiwE values each time (from pwE = 10
to jWE = 100 in increments of 5). Fig. 2 demonstrates the results for each one of the
four databases. The horizontal axis represents different PwE values. It is clear that
different BWE’s are more appropriate for different databases, making the choice of
appropriate BWE values problem dependent. For each database, there is a specific
range of ,!& values which reduce network size significantly while good generalization
can be achieved within this range. For the Numbers database, the best PWE’s seems to
be in the range of [20-301, for the Ionosphere database in the range of [15-501, for the
Wine database in the range of [25-351 and for the Breast-cancer database in the range
of [30-1001.

In the next set of experiments, we tested the dependence of weight elimination on
the selection of the w. parameter. For this reason, we fixed PWE (jwE = 30) and the
initial weights and we performed 20 different experiments using different w. values
each time (from w. = 0.1 to w. = 1.0 in increments of 0.05). Fig. 3 shows the results.
The horizontal axis represents in this case different w. values. The results demonstrate
that the choice of we’s value is not quite problem dependent and that choosing
w0 close to 1.0 gives good results both in terms of network size and generalization.

174 G. Bebis et al./Neurocomputing 17 (1997) 167-194

01 ’ ’ ’
10 20 30 ‘lo M Ml 70 60 90

(bl

0.7

0.6

0.5

0.4 -

0.3

0.2 -

0.1 - ‘i, ____ ..__ .~ ---.--.- -.---
‘. ..-.. ~.... ,,______ _,,. ._.._......

0
10 20 30 40 50 60 70 60 xl

(d)

Fig. 2. Different pws values: (a) the Numbers database, (b) the Ionosphere database,(c) the Wine database,
and (d) the Breast cancer database. The continuous line represents the generalization performance of the
network while the dashed line represents the percentage of connections whose absolute weight value is
greater than Iwo\. The horizontal axis represents different /IWE values.

This is also in agreement with [35] where it is suggested that choosing w0 close to 1.0
is best for networks where activation functions in the range of [O.&l.O] are used.

In the last set of the experiments, we tested the sensitivity of weight elimination on
the selection of different initial weights. This time, we fixed /IWE and w. (PWE = 30 and
w. = 0.25) and we performed 20 different experiments using different random initial
weights each time (randomly chosen in the range of [- 0.1 to 0.11). Fig. 4 shows the
results for the different databases used. The horizontal axis represents in this case the
different experiments performed. It is clear that the choice of the initial weights is very
critical since both generalization and network size are affected in an unpredictable
way.

In conclusion, weight elimination depends mostly on the choice of the initial
weights and the value of parameter PWE. The choice of the value of the parameter
w. does not seem to significantly affect the performance of the method and good
results can be achieved by choosing w. close to 1.0.

G. Bebis et al./Neurocomputing 17 (1997) 167-194 175

0.4; ’ ’ ’ ’ J 0.1 0.2 0.3 04 0.6 0.6 0.7 0.8 0.9 1

0.7 i

0.6 - ‘i

0.5 _ !

0.4 -

0.3

0.2

0.1 - :---.-x
_..” .,,\

. __

00
. :.~ . *

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09

(a) (bl

(cl W

Fig. 3. Different wO values: (a) the Numbers database, (b) the Ionosphere database, (c) the Wine database,

and (d) the Breast-cancer database. The continuous line represents the generalization performance of the

network while the dashed line represents the percentage of connections whose absolute weight value is

greater than Iwo/. The horizontal axis represents different w. values.

3. The genetic algorithm approach

As we indicate in the previous section, weight elimination is quite sensitive to the
selection of certain parameters and differences in terms of generalization and network
size can be observed by changing these parameter values. Finding good parameter
values requires an extensive experimentation. Here, we propose not to perform each
experiment independently. Instead of this, we form a population of networks by
choosing the same exactly networks chosen for the individual experiments, and apply
genetic algorithms. It should be clear that we do not choose new parameter values
(initial weights and /IWE) for the networks in the population but we use the same
choices we made for the independent experiments. Our experimental results demon-
strate that this approach leads to as good or better solutions in terms of both network
size and generalization. Most importantly, the solutions found by the genetic algo-
rithm approach may correspond to parameter settings not chosen in the initial set of

176 G. Bebis et al. /Neurocomputing I7 (I 997) 16 7-194

0.6 t
i

0.7

06

0.5 -

,,.“..
. x.__--.,

.\” ,,_. I’,. ..,,,.‘~
,.. -\

. ------

._,..
‘.,____

._

0.4 -

0.8

0.7 -

0.6 -

0.5 -

0.4

0.3

0.2 -

:-\
0 1 ;" "X.. . ..__

00 2 4 6 ;b, 'O I2 l4

0.6 -

0.7 -

Fig. 4. Different initial weights: (a) the Numbers database, (b) the Ionosphere database, (c) the Wine
database, and (d) the Breast cancer database. The continuous line represents the generalization perfor-
mance of the network while the dashed line represents the percentage of connections whose absolute weight
value is greater than (woj. The horizontal axis represents different experiments, using different set of initial
weights.

networks. Consequently, training each network separately will not lead to the same
solution found by the genetic algorithm approach.

Initially, we start with two-layer networks (i.e., one hidden and one output layer),
having enough nodes in the hidden layer to ensure convergence. The reason we have
restricted ourselves to two-layer networks is because a single hidden layerfeed-forward
network with arbitrary sigmoid hidden layer activation functions can approximate
arbitrarily well an arbitrary mapping from one finite dimensional space to another [17].
After an oversized network has been chosen, we encode it into a structure that can be
handled by the genetic algorithm and we create P copies of it, where P represents the
population size. Each of these copies is assigned a different set of parameter values
which are the initial weights and /IWE. This choice was based on the experimental
results presented in Section 2.1, which indicated that these parameters affect general-
ization and network size the most. New populations are generated by applying the

G. Bebis et al. JNeurocomputing 17 (1997) 167-194 177

genetic operators of reproduction, crossover and mutation on the weights of the
networks.

The fitness of each member is measured by first decoding it into a network. Then,
we train the network for a number of epochs using weight elimination in order to
record its performance in terms of generalization and size. The evaluation function
consists of two terms: the first term returns an evaluation with respect to the
generalization performance of the network, while the second term returns an evalu-
ation with respect to its size. A factor 1oA weights the importance of generalization
versus network size. Each network in the population is associated with its own
IWE parameter. After the first few generations members in the same population will
have totally different characteristics. This variety in network sizes and generalization
performances will allow the genetic algorithm to search and probably discover better
solutions.

It should be emphasized that pruning takes place not only due to weight elimina-
tion, which is applied during the evaluation phase, but also due to the application of
the genetic operators and in particular the crossover operator. When crossover is
applied, groups of weights between different networks are exchanged, and as a result
larger weights may be replaced by smaller weights. Thus, the solutions obtained by
combining the genetic algorithm with weight elimination might not be possiblt: to
replicate using weight elimination by itself. Next, we describe the network representa-
tion scheme, the genetic operators, and the fitness evaluation function used.

3.1. Network representation scheme

There are two main categories of network representation schemes: the weak and the
strong specification schemes [38]. The main advantage of the weak specification
scheme is that the architecture can be represented globally in terms of the number of
layers, the number of nodes, and the degree of connectivity from one layer to another.
However, quite complex encoding and decoding procedures are required (see, e.g.,
[38]). On the other hand, the strong specification scheme uses a more local repre-
sentation by representing each node and connection of the network directly. Very
simple encoding and decoding procedures are used in this case (see, e.g., [14]). Since
our approach considers a large predefined, two-layer network, with the objective to
reduce the number of connections, we do not really require encoding of the number of
layers and the number of nodes per layer. The quantity which is important to encode
is the number of connections between successive layers. Thus, the strong specificatron
scheme is adequate for our purpose.

A popular strong specification scheme has been proposed by Miller et al. [28],
where the network architecture is represented as a connection matrix mapped directly
into a bit-string. Although this scheme satisfies our requirements, it has the disadvan-
tage that it creates very long strings. For example, assuming a network with N nodes,
its connection matrix becomes a N x N array. The existence of a connection between
node i and node j in the network is indicated by a nonzero element in the ith row and
jth column of the connection matrix. By simply concatenating the rows the rows of the
connection matrix, a bit-strings of length N* is obtained, slowing down the speed of

178 G. Bebis et al.lNeuvocomputing 17 (1997) 167-194

(0.3,0.1, -2.0,0.4,0.2,0.1,0.2, -0.2,0.2, 1.5, -1.2)

Fig. 5. An example of the encoding scheme. The internal thresholds associated with the nodes of the first
layer are placed first in the string. Next, we record the weight values associated with the connections of the
first layer. The same procedure is applied for the second layer.

the algorithm. Here, we have adopted another approach proposed by Montana and
Davis [29]. According to this approach, the weights and biases of a network are
encoded in a straightforward way as a string of real numbers. Decoding is also
straightforward. Fig. 5 shows an example of this encoding scheme.

3.2. Genetic operators

The genetic operators used in this work are the most commonly used operators: the
reproduction, the crossover, and the mutation operators. The purpose of the repro-
duction operator is to create a new population based on the evaluation (fitness) of the
members of the old population. Each member of the old population produces
a number of exact copies with the objective that the most fit members will produce the
most copies. Our implementation uses the roulette wheel selection scheme described
in [111. This scheme allocates new members based on the ratio of a member’s fitness
to the population’s average fitness. Experience has shown that this kind of reproduc-
tion can cause premature convergence, since members with high fitnesses can over-
power a population, eliminating its diversity. For this reason, fitness scaling has also
been implemented [111. The purpose of fitness scaling is to control the number of
copies that members with high fitness value will receive in future populations. This is
because a few members with high fitness values in the initial populations can take over
a significant proportion of the population in a single generation, affecting the diversity
of the population seriously, leading to premature convergence. Linear scaling is
a quite popular fitness scaling procedure and we have also used it in our study. Linear
scaling computes the scaled fitness value as

f’=uf+b,

G. Bebis et al.lNeurocomputing I7 (1997) 167-194 179

where f is the fitness value andf’ is the scaled fitness value. The coefficients a and
h are calculated in each generation to ensure that the maximum value of the scaled
fitness value is a small number, say, 1.2-2.0 times the average fitness value of the
population. More details are given in [ll]. In addition to fitness scaling, two more
heuristics have been incorporated in our implementation: the elitism strategy and
the generation gap [12]. The elitism strategy guarantees that the members with the
best fitness value in a population will survive in the next generation. This is performed
by sorting the members of a population according to their fitness value and choosing
the best of them to survive intact in the next generation. The generation gap is
a parameter which controls the percentage of the population to be replaced during
each generation. Thus, if P is the population size and G is the generation gap,
then P(l-G) members are chosen to survive intact in the next generation.
Usually, these members are chosen in random, however, in our implementation we
choose the best P(l-G) members. Both of the above heuristics seem to be quite
beneficial.

Crossover is applied after reproduction. Traditionally, crossover works as follows:
pairs of members are selected at random and portions of them are exchanged to form
new members. Here, we are using a modified crossover operator which we call the
crossover-nodes operator. The idea is to swap groups of weights feeding into the same
node. The reason is quite plausible; each node in the network contributes to the
solution that the network tries to find. Thus, weights feeding into a node serve a role in
finding a solution for the problem at hand. Swapping weights arbitrarily may not
make a lot of sense while swapping groups of weights feeding into nodes is more
sensible. This operator has also been used in [28]. Although crossover is one of the
most powerful genetic operators, it may have disruptive effects to the solution
a network tries to find. This is because different nodes in a network play a different
role, as mentioned above. The nodes in the first hidden layer for instance, serve as
feature detectors, while the nodes at higher layers serve for knowledge representation.
Swapping weights feeding nodes located at hidden layers higher than the first may be
disruptive, since the internal knowledge representations between two different net-
works are probably quite different. However, swapping weights feeding nodes only
located at the first hidden layer, may be less disruptive for the networks, since it
can be considered as an exchange of feature detectors. We have therefore decided to
use this modified operator, which we call the crossover_jirst_layer_nodes operator.
Both of the operators have been tested in our experiments and results are reported in
Section 4.

The last genetic operator used is the mutation operator. This operator picks
randomly a member from the population and changes it slightly. In its simplest form,
mutation changes the value of a weight by adding a small random value. Following
our discussion regarding the crossover-nodes operator, the mutation operator used in
this study does not change single weights but groups of weights feeding into a node. It
should be clear that we do not change each weight by the same amount. In fact,
a different small random value is added to each of the weights. This modified operator
which we call the mutate-nodes operator, has also been used in other studies [28],
leading to good performance.

180 G. Bebis et al.lNeurocomputing 17 (1997) 167-194

3.3. Fitness evaluation

The choice of a fitness function is problem dependent and is probably the most
critical issue in genetic algorithm design. When genetic algorithms are combined with

neural networks, the most commonly used approach to evaluate the performance of
a member in the population is to train the network represented by this member and
record its mean squared error. This is quite inappropriate for our purpose, since it

does not account for the network’s generalization performance and size. To perform
an evaluation based on network size and generalization, we have considered a fitness

function having the following form:

Erit = G,,, _ vai + &A (1 - En,, _ size) (3)

The first term (G,,t_V,l = 1 - L_& accounts for generalization, while the sec-

ond term (1 - Let _ size) accounts for the network size. The parameter %oA is a weigh-
ing factor which controls the importance of the two terms. If 1oA is very small, the
fitness of a member is mostly determined by its generalization performance only.
However, when LGA assumes large values, both generalization, and size influence the
fitness of a member. The value of the weighing factor AGA is determined adaptively, in

a similar manner that iWE is determined in weight elimination. Specifically, LGA is

determined as follows:

iGA = i0 _ oA e - /LA L-,.”) (41

where Lo _oA and floA are constants specified by the user, and Enet_s,, denotes the
generalization error of the network. The goal of the genetic algorithm is to find

solutions which maximize the above fitness function. It is clear from the definition of
the fitness function that reproduction favors members with good generalization
performance and a relatively small network size. In early generations, network size
does not play an important role in reproduction and the fittest members are the

members which generalize best. However, in future generations both network size and
generalization affect reproduction. Cross-validation is used for an estimation of

E net_gen. As in Section 2, E,,, _gen is defined to be 1 - Gnet_.a,, where Gnet_,,=, is the
generalization performance of a network over the validation set. The network size

E net_size is defined to be the number of effective connections of the network (connec-

tions whose associated absolute weight values are greater than I wol) over the total

number of connections. Both Enet_s,n and Enet_size take values between 0 and 1.

4. Simulations and results

In order to evaluate our approach, an extensive experimental study has been
performed using one artificial and seven real databases. The experiments were run on
SPARC-2 and SPARC-5 Workstations and the implementation of the algorithms was
made using C. The total amount of cpu time needed to complete all the experiments
was about three months. The real databases were selected from the collection of the
databases distributed by the machine learning group at the University of California at

G. Bebis et al.lNeurocomputing 17 (1997) 367-194 181

Table 1

Data sets used and network architectures chosen

Data set Training

set

Validation

set

Test set Classes Architecture

Numbers 150 50 150 10 63-40-10

Ionosphere 200 31 120 2 34-30-2

Soybean 254 53 255 15 35-60-15

Breast-cancer 200 99 400 2 1 O-40-2

Wine 75 28 75 3 13-35-3

Iris 90 15 45 3 4-35-3

Balance 250 125 250 3 4-60-3

Cars 400 100 346 4 18-80-4

Irvine [31], while a similar artificial database to the one we use here has previously
been utilized by us in a character recognition experiment [S]. For each problem, data
was normalized in the interval [O,l]. Assuming that each datapoint within a data set
conists of m features x1, x2, . . . ,x,, normalization is performed using the following
formula:

x; =
Xi - min,

(5)
max, - min,,

where xi is the normalized value of the ith feature, xi is the original value, while min,
and max, are the minimum and maximum values of the ith feature over the whole
data set. Then data was divided into a training, a validation, and a test set. Details are
provided in Table 1. Four approaches have been compared: the original back-
propagation (BP), the back-propagation with weight elimination (BP-WE), the ge-
netic algorithm approach using the crossover-nodes and mutate-nodes operators
(GABP-WE), and the genetic algorithm approach using the crossover,firs_layel

-nodes and mutate-nodes operators (GAl_BP_WE).
For each problem considered, a two-layer network was chosen (see Table 1). The

size of the networks chosen for each problem was considered to be big enough since
we were able to successfully train smaller size networks for the same problems without
any particular difficulty. In the case of the BP and BP-WE techniques, experimental
results were obtained by running 20 experiments with each method for each database.
For each experiment, a different set of initial weights was used (randomly chosen in
the range of [- 0.1 to 0.11). For comparison purposes, both the BP and BP-WE
techniques used the same 20 initial weight configurations for each database. In the
case of the BP-WE technique, we had also to choose values for the parameters
PWE and w0 (see Eqs. (1) and (2)). The parameter w0 was set to 1.0 as mentioned in
Section 2. The range of appropriate BWE values is usually different from database to

database, as shown in Section 2.1. Since we do not usually have any apriori knowledge
about the best range of flWE values, in practice we choose various parameter settings
and we perform simulations until we get some satisfactory results. Here, we have

182 G. Behis et al. !Neurocomputing I7 (I 997) 167-194

chosen a different PwE value (in the range of [lo-1001) for each of the 20 experiments

performed per database. To challenge the genetic algorithm approach (which uses the
same flwE values as we will explain later), the same 20 PWE values have been used for all

the databases.
To determine when to stop training in the case of the BP and BP-WE algorithms,

we used the maximum output error over the training and validation sets. The

maximum error over the validation set was computed by presenting all the validation
examples to the network, recording the error associated with each output node, and
choosing the maximum error over all the validation examples. Similarly we computed
the maximum error over the training set. The algorithms were considered to have

converged if the maximum output over the validation set at epoch t + 1 was greater
than the maximum error at epoch t, and the maximum error over the training set at

step t + 1 was less than 0.25. The last condition was added to our stopping criterion to

ensure well trained networks. In the case of the weight elimination approach, we also
set a maximum number of epochs, since training was rather long in some cases. The

maximum number of epochs allowed was three times the average number of epochs
needed by the BP approach to converge on the same problem (averaged over the 20
experiments performed using BP). After training had been completed, testing was

performed by applying the following methodology. First, we apply a test example at
the inputs of the network and we compute the difference between the two largest
output values of the network. If that difference is less than a threshold H, the

classification of the input pattern is rejected due to insufficient evidence. Otherwise,
the maximum of the two largest values determines the classification of the input. In
our implementation, H was set to 0.1.

The population size P of the genetic algorithm approach was set equal to 20, that is,

equal to the number of individual experiments performed for each database. The
architecture utilized for each database was the same as that utilized in the experi-
mentation with the BP and BP-WE approaches. The initial population was formed

by first encoding the initial network and then copying it P times (the initial encoding is
going to be the same for each network since the same network architecture is used for
all of them). The parameter values of each network (PWE, wO, and initial weights) were
chosen exactly the same as those used in the individual experiments using the BP and

BP-WE approaches. In other words, the setting of the initial population was exactly
the same as the initial setting of the networks used in the 20 individual experiments
performed for each database using the BP and BP-WE approaches. It should be

mentioned that although we could have chosen the PWE values from a much smaller
range of values for each dataset (our experimental results of Section 2.1 show that

given a set of initial weights, the optimimum range of /JWE values might be quite

different from database to database), we have intentionally made the problem more
difficult, in order to challenge the genetic algorithm approach, by choosing the

B wE values from the broader interval of [lO~lOO] for all the databases. In fact, we use
the same flwE values for all the databases.

The evaluation of each network from the population was performed by first
training each network for a number of epochs using the weight elimination technique.
The number of epochs used to train each network was about 10% of the average

G. Behis et al./Neurocomputing I7 (1997) 167-194 183

number of epochs required by the BP approach to converge for the same problem
(average over 20 different experiments performed for each database using the BP
approach). This decision was based on the ideas presented in [6]. After a network in

the population has been trained for a number of epochs, we compute its classification

performance (Gnet _ val - classification performance over the validation set) and its size
(E,l,t_,i,,-effective number of connections over the total number of connections).
Connections with small weights are not removed before the genetic algorithm has

converged, as for the BP-WE approach. After the genetic algorithm had converged,
we removed all the weak connections and we trained each network for a few more

epochs (334) using the BP approach to account for any error increase due to the
removal of the weak connections. This is again the same procedure followed in the

case of the BP-WE approach.
The convergence of the genetic algorithm was determined by considering the

improvement I, at each generation. The improvement I, at the nth generation is

defined as the average fitness at the nth generation over the average fitness at the

(n - 1)th generation. Using this definition, we can allow the formation of a new
population at step (n + 1) if the improvement at step n is better or equal than the

improvement at step (n - 1). To avoid early convergence, we have used a more robust
criterion based on the average improvement A, defined as follows:

A,=yA,_1+(1 -y)Zn. (6)

A, is the average improvement at step y1 and 1’ is a constant usually chosen very

close to 1.0. Here, 7 was set equal to 0.9. A0 can be computed by evaluating each
member of the initial population before evolution begins. New populations are
allowed to form as far as the average improvement keeps increasing, that is while

A, 2 A,_ r. After the genetic algorithm had converged, each member of the final
population was tested on the test set, using the methodology described earlier in the

case of the BP and BP-WE approaches.

In all the simulations performed the learning rate and momentum were both set
equal to 0.1. Sigmoidal activation functions and weight updates after every pattern

presentation were also used. The generation gap in the genetic algorithm approach
was set equal to 0.9 while the parameter which determines the number of best

fit copies in future populations (called Cmulf in [ll]) was set equal to 1.5. The
crossover and mutation probabilities were chosen 0.6 and 0.001 correspondingly.

&-WE and &-GA were set equal to 1 (we did not experiment with different values
since both & _wE and i,, _oA are simply scaling constants). Different /&, values
(Eq. (4)) were used during our experimentation. The best solutions obtained
correspond to &_, values in the range of [l.O-lO.O], For /I&., values much greater
than 10.0, we did not observe a great reduction in terms of network size. Although
our initial goal was to use the same fi oA value for all the databases (see also the
related discussion in the conclusion), we observed variations in our results using
different PGA values from database to database. However, the deviation of the results
for different PGA values within this range was not very large in most cases. The

B GA values that yielded the best results for each database are given in the next
subsections.

184 G. Behis et al. /Neurocomputing I7 (I 997) 167-I 94

The experimental results for each one of the databases are presented next. For each
database, the results are summarized in a table where the first column indicates the
method used while the next columns indicate the performance of the method on the
training and test sets as well as the reduction in network size achieved by each
method. For each approach, we report the average performance and standard devi-
ation as well as the best and worst solutions found. It is important for the reader to
keep in mind that the criterion used for choosing the best and worst networks is their
performance on the test set (columns eight and nine). The best and worst results in the
case of the training set (columns four and five) correspond to the performance of the
best and worst networks (in terms of test set) on the training set. Similarly, the best and
worst number of weights (last two columns) correspond to the size of the best and
worst networks (in terms of the test set) found. Thus, the reader should not be
confused when, for example, the size of a network reported under the “best” column in
the network size field (column before the last), is larger than the size of the network
reported under the “worst” column (last column). This is because the larger size
network has better performance on the test set than the smaller size network. The
same applies when the performance of the networks on the train set is considered. The
reader though can get an idea of the actual best-worst network sizes and perfor-
mances on the training set by considering the reported averages and standard
deviations for each case.

4.1. Numbers database

This is an artificial database which consists of noisy versions of machine printed
numbers, digitized in a 7 x 9 grid. There are 10 classes. The training set consists of 150
examples, the validation set of 50 examples and the test set of 150 examples. The
architecture chosen for this experiment was a fully connected two-layer network with
63 nodes in the input layer, 40 nodes in the hidden layer and 10 nodes in the output
layer. The total number of weights and biases for this architecture is 2970. Table 2
illustrates the results.

The best solution was obtained by the GAl_BP_WE method (85.3% correct on the
test set), while the best solution obtained by the GA-BP-WE method was also better
than the best solutions obtained by the BP and BP-WE methods. Note also that the

Table 2
Results using the Numbers database

Method Train Test Network size

ave sd best worst ave sd best worst ave sd best worst

BP 1.0 0.0 1.0 1.0 0.813 0.01 0.833 0.787 2970.0 0.0 2970 2970
BP-WE 1.0 0.0 I.0 1.0 0.815 0.02 0.833 0.793 1926.4 1303.5 912 1872
GABP_WE I .O 0.0 1.0 1.0 0.82 0.019 0.84 0.807 912.2 49.4 949 882
GALBP-WE 1.0 0.0 1.0 1.0 0.835 0.03 0.853 0.8 1013.9 220.9 922 1267

G. Bebis et al./Neurocomputing 17 (1997) 167-194 185

Table 3

Results using the Ionosphere database

Method Train

ave. sd

Test

best worst ave. sd

Network size

best worst ave. sd best worst

BP 1.0 0.0 I.0 1.0 0.936 0.01 0.942 0.925 11 12.0 0.0 1112 III?

BP-WE 0.988 0.07 0.985 1.0 0.943 0.026 0.960 0.925 264.9 446.0 37 1187

G.4BP_WE 0.977 0.01 0.99 0.97 0.974 0.005 0.975 0.967 87.2 8.7 83 ‘79

GAlLBP-WE 0.972 0.01 0.985 0.95 0.973 0.01 0.983 0.958 68.5 32.2 70 4.3

worst performance solutions obtained by the genetic approaches are a little better
than the worst solutions found by the other two methods. In terms of network size, the
best solutions obtained by the genetic algorithm approaches were comparable to the
best solutions obtained by the BP and BP-WE approaches. On the average, the size of
the networks obtained by the genetic approaches is much smaller (see also the
corresponding standard deviations). The best results in the case of both GA-BP-WE
and GAl_BP_WE were obtained with PGA = 2.0.

4.2. Ionosphere database

This database consists of radar data. It contains 2 classes and 351 instances. The
number of attributes is 34. The database is distributed into two different files,
a training file including 200 instances and a test file including 15 1 instances. In order
to create a validation set we split the test file into two different files. The first consisted
of 120 examples and was our actual test set, while the second consisted of 31 examples
and was our validation set. The architecture chosen for this experiment was a fully
connected, two-layer network with 34 nodes in the input layer, 30 nodes in the hidden
layer and 2 nodes in the output layer. The total number of weights and biases for this
architecture is 1112.

The results obtained are illustrated in Table 3. The GAl_BP_WE approach has
improved generalization by 2.3% and the GA-BP-WE approach by 1.5% (best
solutions). It should be mentioned that the best solution obtained by the BP-WE
method has almost half the weights of the best solutions found by the GA-BP-WE
and GAl-BP-WE approaches. However, this may have caused by overpruning,
which may have prevented BP-WE from further improving its generalization perfor-
mance. On the average, the network sizes obtained by the genetic approaches are
again much smaller. The best results in the case of GA-BP-WE method were
obtained using PoA = 2.0, while in the case of GAl_BP_WE using /))oA = 10.0.

4.3. Soybean database

The Soybean disea ses database is well known in the field of machine learning.
There are different versions of this database. Here we have used the soybean-large

186 G. Behis et al.,‘,Veurocomnputing 17 (1997) 167-394

Table 4

Results using the Soybean database

Method Train Test Network size

ave. sd best worst ave. sd best worst ave. sd best worst

BP 1.0 0.0 1.0 1.0 0.812 0.01 0.830 0.79 3075.0 0.0 3075 3075

BP-WE 0.999 0.006 1.0 1.0 0.816 0.002 0.827 0.80 2209.6 1335.8 2213 2493

GABP-WE 0.998 0.004 1.0 1.0 0.823 0.015 0.839 0.81 1203.9 235.6 1116 1460

GAlLBP-WE 1.0 0.0 1.0 1.0 0.833 0.004 0.835 0.83 1323.0 63.7 1309 1348

data set which consists of 562 instances. The number of attributes is 35 while the
number of classes is 15. For the training set we selected 254 examples, 53 examples
were selected for the validation set, and the rest 255 examples were put aside for the
test set. The architecture chosen for this experiment was a fully connected network
again with 35 nodes in the input layer, 60 nodes in the hidden layer, and 15 nodes in
the output layer. The total number of weights and biases for this architecture is 3075.
The results shown in Table 4 demonstrate that the generalization performance of the
best genetic solutions is very close to these of the BP and BP-WE approaches.

However, the size of the networks obtained by the genetic approaches are much
smaller than the size of the networks obtained using the BP-WE approach. This may
have been caused by an early stopping of the pruning process in the BP-WE
approach; it may also be the reason that BP-WE did not achieve a good general-
ization. Note also that BP (unpruned network) generalizes better than BP-WE. The
best results in the case of GA-BP-WE were obtained with flGA = 4.0, while in the case
of GAl_BP_WE using /30A = 10.0.

4.4. Breast-cancer database

This database consists of 699 examples. The number of attributes is 10 while the
number of classes is 2. Since this database is distributed again into a single file, we split
the data into three different sets: a training set (200 instances), a validation set (99
instances), and a test set (400 instances). The architecture chosen for this experiment
was a fully connected network with 10 nodes in the input layer, 40 nodes in the hidden
layer, and 2 nodes in the output layer. The total number of weights and biases for this
architecture is 522. The genetic algorithm approaches have here also shown some
improvement in terms of generalization. The results are shown in Table 5. It is worth
noting that here the worst performance achieved by the BP-WE method was only
25%. Note also the standard deviation of the performance of the BP-WE method on
the test set (0.553) due to excessive overpruning (in the worst solution found, only
9 weights remained after pruning). However, the genetic approaches avoided such
solutions (the generalization performance of the worst solutions found by both
approaches was 72%). The size of the best networks obtained are almost the same in

G. Bebis et al.lNeurocomputing 17 (1997) 167-194 187

Table 5

Results using the Breast-cancer database

Method Train Test

ave. sd best worst ave. sd

Network size

best worst ave. sd best worst

BP I .o 0.0 1.0 1.0 0.957 0.007 0.97 0.94 522.0 0.0 522 522

BP-WE 0.926 0.256 0.975 0.9 0.865 0.553 0.975 0.25 17.3 14.0 19 9

GPLBP-WE 0.930 0.260 0.98 0.56 0.950 0.160 0.98 0.72 22.1 16.1 16 14

GAlLBP_WE 0.930 0.260 0.975 0.56 0.940 0.160 0.98 0.72 17.2 6.2 13 14

all methods. The best results in the case of both GABP_WE and GAlLBP-WE were

obtained using PGA = 2.0.

4.5. Wine database

The Wine database is a relatively “easy” to train database. It consists of 178
instances. The number of attributes is 13 while the number of classes is 3. The data are
distributed into a single file and thus we split it into three different files: a training file

(75 instances), a validation file (28 instances), and a test file (75 instances). The

architecture chosen for this experiment was a fully connected network with 13 nodes

in the input layer, 35 nodes in the hidden layer, and 3 nodes in the output layer. The
total number of weights and biases for this architecture is 598. Significant generaliza-
tion improvement has been achieved by the genetic approaches as is illustrated in

Table 6. The GA-BP-WE approach has improved generalization by 2.7%, while the
GAlLBP_WE approach by 1.4% (best solutions). The best network sizes are almost
the same for the BP-WE and the genetic approaches, while a much smaller average

network size was obtained by the genetic approaches. The best results in the case of
both GA-BP-WE and GAlLBP_WE were obtained using ljcA = 2.0,

4.6. Iris database

The Iris database is perhaps the best known database in the pattern recognition
literature. It contains 3 classes of 50 instances each (total number of instances is 150)

where each class refers to a type of iris plant. One class is linearly separable from the

other 2; the latter are not linearly separable from each other. The number of attributes
is 4, all of which are real valued. Since this database is distributed into a single file, we
have randomly chosen 90 instances for training, 15 instances for validation, and the
rest 45 instances for testing. The architecture chosen for this experiment was a fully
connected network with 4 nodes in the input layer, 35 nodes in the hidden layer, and

3 nodes in the output layer. The total number of weights and biases for this
architecture is 283. The results illustrated in Table 7 show that the generalization
performance of all the methods is perfect (100%). However, the average size of the
networks obtained using the genetic approaches is much smaller than the average size

188 G. Behis et al. INeurocomputing I7 (I 997) 167-I 94

Table 6

Results using the Wine database

Method Train

ave. sd

Test

best worst ave. sd

Network size

best worst ave. sd best worst

BP 1.0 0.0 I.0 1.0 0.919 0.006 0.92 0.907 598.0 0.0 598 598

BP-WE 1.0 0.0 1.0 1.0 0.907 0.027 0.933 0.88 183.0 159.35 56 238

G&BP-WE 1 .o 0.0 1.0 I.0 0.948 0.028 0.96 0.933 67.95 12.9 55 74

GAl-BP-WE 1.0 0.0 1 .o 1.0 0.91 0.035 0.947 0.89 81.56 11.65 81 89

Table 7

Results using the Iris database

Method Train

ave. sd

Test

best worst ave. sd

Network size

best worst ave. sd best worst

BP 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 283.0 0.0 283 283

BP-WE 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 105.6 97 36 196

GABP-WE 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 36.2 2.1 34 36

GAl_BP-WE 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 34.2 1.2 33 35

of the networks obtained by the BP-WE approach. The best results in the case of both
GABP-WE and GAl-BP-WE were obtained using PGA = 2.0

4.7. Balance database

This database consists of 625 instances. The number of attributes is 4 while the
number of classes is 3. Since this database is also distributed into a single file, we have
randomly chosen 250 instances for training, 125 instances for validation, and the rest
250 instances for testing. The architecture chosen for this experiment was a fully
connected network with 4 nodes in the input layer, 60 nodes in the hidden layer, and
3 nodes in the output layer. The total number of weights and biases for this
architecture is 483. We have not achieved great generalization improvements with this
database. As shown in Table 8, the genetic approaches have comparable generaliza-
tion with the BP and BP-WE approaches. In terms of network size, both of the
genetic approaches have shown great improvements. The best results in the case of
GABP-WE were obtained using /?oA = 4.0 while in the case of GAlLBP-WE using
/Z?o* = 2.0.

4.8. Cars database

This database consists of 846 instances. The number of attributes is 18 and the
number of classes is 4. The database is distributed into a single file. A training file was

G. Bebis et al. /Neurocomputing I7 (1997) 167-194 189

Table 8

Results using the Balance database

Method Train

ave. sd best worst

BP 1.0 0.0 1.0 1.0

BP-WE 0.99 0.036 1.0 0.952

G&BP-WE 1.0 0.0 1.0 1.0

GAlLBP. WE 1.0 0.0 1.0 1.0

Test Network size

ave. sd best worst ave. sd best worst

0.904 0.006 0.908 0.892 483.0 0.0 483 483

0.895 0.03 0.908 0.864 297.35 271.64 252 90

0.908 0.0 0.908 0.908 73.61 2.5 72 7X

0.908 0.004 0.912 0.904 72.25 4.27 71 66

Table 9

Results using the Cars database

Method Train Test Network size
-

ave. sd best worst ave. sd best worst ave. sd best worst

BP 1.0 0.0 1.0 1.0 0.78 0.02 0.795 0.74 1844.0 0.0 1844 1844

BP-WE 0.99 0.01 1.0 1.0 0.77 0.025 0.792 0.74 1549.8 817.55 1804 1180

GABP-WE 0.99 0.015 0.988 0.998 0.79 0.025 0.81 0.775 975.95 262.1 1026 968

GAlLBP_WE 0.98 0.03 0.995 0.975 0.777 0.02 0.795 0.763 1078.0 295.5 1132 906

created by choosing 400 instances. For the validation set we chose 100 instances, while
the rest 346 instances were kept for the test set. The architecture chosen for this
experiment was a fully connected network with 18 nodes in the input layer, 80 nodes
in the hidden layer, and 4 nodes in the output layer. The total number of weights and
biases for this architecture is 1844.

The results are illustrated in Table 9. Note that BP-WE’s generalization perfor-
mance is a little worst than BP’s performance (both on the average and in terms of the
best solution found). However, the genetic approaches have retained good general-
ization. In particular, GA-BP-WE has found a solution which is better (by 1.8%) that
the best solution found by BP-WE. Note also that the GA-BP-WE approach has
found solutions with a smaller network size. The GAl_BP_WE approach has not
improve generalization it has given better results than the BP-WE approach in terms
of network size. The best results in the case of GA-BP-WE were obtained with
/JoA = 1.0, while in the case of GAl_BP_WE were obtained with PGA = 4.0.

4.9. Discussion

Table 10 presents a summary of the best results obtained through our experimenta-
tion. The first column presents the database used while the next columns present
the best network solutions found for each of the four methods we considered in
our experiments. In particular, for each method we report the best generalization

190 G. Behis et al. /.Weurocomputing I7 (1997) 167-I 94

Table 10

Comparison of the best solutions obtained

Generalization and network size of best solutions

Data set BP

test

BP-WE GABP_WE GAlLBP_WE

sizeereduction test sizeereduction test sizeereduction test sizeereduction

Numbers 0.8333 0%

Ionosphere 0.942 0%

Soybean 0.83 0%

Breast-cancer 0.97 0%

Wine 0.92 0%

Iris 1.0 0%

Balance 0.908 0%

Cars 0.795 0%

0.833 69.3%

0.96 96.67%

0.827 28%

0.975 96.36%

0.933 90.6%

1.0 87.28%

0.908 47.83%

0.792 2.1%

0.84 68%

0.975 92.54%

0.839 63.1%

0.98 96.93%

0.96 90.6%

1.0 87.98%

0.908 85.1%

0.81 44.36%

0.853 68.96%

0.983 93.7%

0.835 57.43%

0.98 97.51%

0.947 86.45%

1.0 88.34%

0.912 85.3%

0.795 38.6%

performance achieved and the reduction in network size associated with this solution.

It is obvious that the pruned networks obtained by the combination of genetic
algorithms and weight elimination have the same or better generalization capabilities.
In terms of network size, the results are much better in many cases (e.g., in the case of

the Soybean database). In some cases, the solutions obtained were a little worse
in terms of network size (Numbers and Ionosphere databases) but they had

better generalization performance which is more critical. The use of the cross-

over_first_layer_nodes operator seems to be beneficial in many cases. However, our
experimental results do not give us enough evidence to conclude that it is always
superior than the crossover_nodes operator. In fact, the GA-BP-WE approach gave
better results than the GAl_BP_WE approach in some cases (e.g., in the case of the

Wine database). In the case of the GABP-WE approach, the best /IGA values were
rather small in the range of [1.04.0]. In the case of the GAl_BP_WE approach, best
results were obtained using large /30A values (around 10.0 in some cases).

The proposed approach can be improved in a number of ways. First of all, we

believe that the size of the validation set is very important. In all of the experiments
performed, the validation sets used were rather small. However, we think that results

can be further improved by using larger size validation data sets, when a sufficient

number of data is available of course. This is because the evaluation of a network
during evolution is strongly based on its generalization performance, which is esti-

mated using the validation set. If the network generalizes well then its network size
starts having some importance in the fitness evaluation, otherwise the size does not
have any contribution. Obviously, if the validation set is smaller than appropriate for
obtaining a good “estimate” of the generalization performance of the network, bad
results can be obtained. If for example, the “true” generalization of the network is bad
while the “estimated” generalization of the network is good, then the fitness evalu-
ation will mostly favor networks having bad generalization and small network size.
However, encouraging network size reduction before the network has achieved some

G. Behis et al. INeurocomputing I7 (IY97) 167-I 94 191

good generalization performance might lead to small size networks having a very
poor generalization.

Another way to improve the proposed approach is by increasing the population
size. In our experimentation, we set the population size equal to 20 in order to keep
the time requirements of our experiments within some reasonable limits, given the fact
that we are dealing with a large collection of databases. However, larger size popula-

tions (-50 or more) might allow the genetic algorithm to discover even better

solutions. Of course, the need of using faster machines to run the experiments
is inevitable. The above two improvements might also make the choice of appropri-

ate /& values less data dependent. The consequence of this is very important.
Given a problem to solve, we would be able to obtain a good solution (both in terms
of network size and generalization) without trying different PGA values for each

database.

5. Conclusions

Pruning techniques represent a broad class of methods which try to restrict the
number of free parameters in a network (i.e., weights) in order to improve general-

ization. Although pruning techniques reduce network size, they do not always im-

prove generalization. In fact, smaller size networks obtained by applying weight

pruning may have the same or even worst generalization performance than that of
their unpruned counterparts. In this paper we proposed the coupling of genetic
algorithms with weight elimination. Weight elimination is a well known pruning
technique and the most general among the weight decay techniques. The objective of
our work is to provide a method not only for reducing network size but also for

preserving generalization.
An extensive experimental study involving one artificial and seven real databases

has demonstrated that the coupling of genetic algorithms with weight elimination is
a very promising approach. Actually, the framework of our approach is more general
since other pruning techniques can be also coupled with genetic algorithms. Weight

elimination depends on a number of parameter values whose choice can significantly

affect the results. We show that small size networks can be obtained; however, the
generalization performance of these networks is not always satisfactory. On the other
hand, the networks obtained by the proposed approach not only are small in size but
they also have good generalization capabilities.

The success of the proposed approach is mainly due to the interchange of informa-
tion that takes place during evolution. Starting with a population of networks having
various parameter settings, the genetic algorithm was capable of finding good solu-
tions (both in terms of size and generalization) than the solutions found by training

each one of the networks separately using the same parameter settings. To demon-
strate the capabilities of the genetic algorithm approach, we used the same parameter
settings for all the databases used. Although it was shown (Section 2) that the optimal
parameter value ranges are data dependent, the genetic algorithm managed to find
good solutions in all the cases.

192 G. Bebis et al. JNeurocomputing 17 (1997) 167-194

Acknowledgements

This research was supported in part by a grant from Harris Corporation.

References

[l] T. Ash, Dynamic node creation, Connection Sci. 1 (4) (1989) 365-375.

[2] E. Baum, D. Haussler, What size net gives valid generalization, Neural Comput. 1 (1989) 151-160.

[3] G. Bebis, M. Georgiopoulos, Feed-forward neural networks: why network size is so important, IEEE

Potentials (Oct/Nov.) (1994) 27-31.

[4] G. Bebis, M. Georgiopoulos, T. Kasparis, Coupling weight elimination and genetic

algorithms, in: Internat. Conf. on Neural Networks (ICNN-96), vol. 2, Washington, DC, June 1996,

pp. 1115-1120.

[5] G. Bebis, G. Papadourakis, Implementation of character recognition using neural networks and

traditional classifiers, Proc. NEURONET Internat. Symp. on Neural Networks and Neural Comput-

ing, Prague, 1990, pp. 33-36.

[6] M. Caudill, Evolutionary neural network, AI Expert, (March) (1991) 29-33.

[7] Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, Adv. Neural Inform.

Process. Systems 1 (1989) 519-526.

[S] J. Depenau, M. Moller, Aspects of generalization and pruning, in: Proc. World Congress on Neural

Networks, vol. III, 1994, pp. 504509.

[9] S. Fahlman, C. Lebiere, The Cascade-Correlation learning architecture, Adv. Neural Inform. Process.

Systems 2 (1990) 524532.

[lo] M. Frean, The Upstart algorithm: a method for constructing and training feed-forward networks,

Neural Comput. 2 (1990) 198-209.

[l l] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,

Reading, MA, 1989.

[12] J. Grefenstette, Optimization of control parameters for genetic algorithms IEEE Trans. Systems Man

Cybernet. 16(l) (1) (1986) 122-128.

1131 S. Hanson, L. Pratt, Comparing biases for minimal network construction with back-propagation,

Adv. Neural Inform. Process. Systems 1 (1989) 177-185.

[14] S. Harp, T. Samad, A. Guha, Designing application-specific neural networks using the genetic

algorithm, Adv. Neural Inform. Process. Systems 2 (1990) 447-454.

[15] B. Hassibi, D. Stork, Second order derivatives for network pruning: optimal brain surgeon, Adv.

Neural Inform. Process. Systems 5 (1993)

[16] Y. Hirose, K. Yamashita, S. Hijiya, Back-propagation algorithm which varies the number of hidden

units, Neural Networks 4 (1991) 61-66.

[17] K. Hornik, M. Stinchombe, Multilayer feed-forward networks are universal approximators, in: H.

White et al. (Eds.), Artificial Neural Networks: Approximation and Learning Theory, Blackwell Press,

Oxford, 1992.

[1 S] D. Hush, B. Horne, Progress in supervised neural networks, IEEE Signal Process. Mag. (Jan.) (1993)

8-39.
[19] C. Ji, R. Snapp, D. Psaltis, Generalizing smoothing constraints from discrete samples, Neural

Comput. 2 (1990) 188-197.

[20] R. Kamimura, S. Nakanishi, Weight-decay as a process of redundancy reduction, in: Proc. World

Congress on Neural Networks, vol. III, 1994, pp. 48&489.

[21] E. Karnin, A simple procedure for pruning back-propagation trained neural networks, IEEE Trans.

Neural Networks, 1 (2) (1990) 239-242.
[22] J. Hertz, A. Krogh, R. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley,

Reading, MA, 1991.

[23] A. Krogh, J. Hertz, A simple weight decay can improve generalization, Adv. Neural Inform. Process.

Systems 4 (1992) 950-957.

c241

Cl51

1261

1271

1281

WI

c301

II311

1321

c331

r341

c351

C361

c371

C381

G. Bebis et al. /Neurocomputing I7 (1997) 167-194 193

Y. Le Gun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Back-propagation

applied to handwritten zip code recognition, Neural Comput. 1 (1989) 541-551.

Y. Le Cun, J. Denker, S. Solla, Optimal brain damage, Adv. Neural Inform. Process. Systems 2 (1990)

5988605.

D. MacKay, A practical bayesian framework for backpropagation networks, Neural Comput.

4 (I 992) 448472.

M. Mezard, J. Nadal, Learning in feed-forward layered networks: the tiling algorithm, J. Phys. A 22

(1989) 2191-2204.

G. Miller, P. Todd, S. Hegde, “Designing neural networks using genetic algorithms“, 3rd Internat.

Conf. on Genetic Algorithms, pp. 3799384.

D. Montana, L. Davis, Training feed-forward neural networks using genetic algorithms, in: Proc. i I th

Internat. Joint Conf. on Artificial Intelligence, 1989, pp. 762-767.

M. Mozer, P. Smolensky, Skeletonization: a technique for trimming the fat from a network via

relevance assessment, Adv. Neural Inform. Process. Systems l(198Y) 105-l 15.

P. Murphy, D. Aha, UC1 Repository of machine learning databases, [Machine-readable data

repository], University of California, Department of Information and Computer Science. Irvine, CA,

1994.

S. Nowlan, G. Hinton, Simplifying neural networks by soft weight sharing, Neural Comput. 4 (4)

(1992) 473493.

J. Sietsma, R. Dow, Creating artificial neural networks that generalize, Neural Networks 4 (lY91)

67779.

H.H. Thodberg, Improving generalization of neural networks through pruning, Internat. J. Neural

Systems 1 (4) (1991) 317-326.

A. Weigend, D. Rumelhart, B. Huberman, Generalization by weight elimination with application to

forecasting, Adv. Neural Inform. Process. Systems 3 (1991) 875-882.

M. Wynne-Jones, Node splitting: a constructive algorithm for feed-forward neural networks, Adv

Neural Inform. Process. Systems 4 (1992) 1072-1079.

Y. Yang, V. Honavar, Experiments with the cascade-correlation algorithm, Technical Report, Dept. of

Computer Science, Iowa State University, Ames, IA.

X. Yao, A review of evolutionary artificial neural networks, Internat. J. Intelligent Systems 8 (1993)

539~ 567

George Bebis received the B.S. degree in Mathematics and the MS. degree in
Computer Science from the University of Crete, Greece, in 1987 and 1991,
respectively, and the the Ph.D. degree in Electrical and Computer Engineering
from the University of Central Florida, Orlando, in 1996,Currently, he is a Visiting
Assistant Professor in the Department of Mathematics and Computer Science at
the University of Missouri, St. Louis. His research interests include computer
vision, image processing, neural networks, and genetic algorithms.

Michael Georgiopoulos received the Diploma in electrcial engineering from the
National Technical Universitv of Athens. Greece. in 1981. and the MSc. and
Ph.D. degrees in electrical engineering from the University of Connecticut, Storrs,
in 1983 and 1986. resoectivelv. In 1987, he ioined the Universitv of Central
Florida, Orlando, where he is currently an Associate Professor at the-Department
of Electrical and Computer Engineering. His research interests are in the area of
pattern recognition, neural networks, fuzzy logic and genetic algorithms. He is also
interested in applications of the above technologies in prediction, electromag-
netics, signal/image processing and simulation. Dr. Georgiopoulos is a member of
the IEEE, International Neural Network Society, and a member of the Techmcal
Chamber of Greece.

194 G. Behis et al. /Nmrocomputing I7 (I 95’7) I67- 1 Y4

Takis KasDaris received the Dioloma of Electrical Engineering from the National
Technical University of Athens: Greece in 1980, and th‘k MEEE and Ph.D. degrees
in Electrical Engineerine from the Citv Colletre of New York in 1982 and 1988.
From 1985 until-1989 hewas an electronics consultant for various firms in the New
York area designing various single board computers and other types of digital

i hd ar ware. In 1989 he joined the Electrical Engineering Department of the Univer-
sity of Central Florida, Orlando, where he is presently an associate professor. His
main research areas are non-linear adaptive median filters for image filtering and
restoration, texture analysis and segmentation problems, computer vision and
digital signal processing for communications and audio processing. He has pub-
lished over 50 papers in various scientific journals and conference proceedings.

