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ABSTRACT: This paper presents a neural network approach for beam-
forming and interference cancellation. A three-layer radial basis function
neural network is trained with input—output pairs. The results obtained
from this network are in excellent agreement with the Wiener solution. It
was found that networks implementing these functions are successful in
tracking mobile users in real time as they move across the antenna’s field
of view. © 1999 John Wiley & Sons, Inc. Microwave Opt Technol
Lett 21: 451-455, 1999.
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. INTRODUCTION

New wireless systems such as cellular, personal communica-
tion systems (PCS), and personal communication networks
(PCN) must satisfy an increasing demand for coverage, capac-
ity, and service quality. For this purpose, the need for more
powerful tools to improve different aspects of modern com-
munications systems has become increasingly important. In
recent years, it has become clear that the area of smart
antennas will provide a key technological boom for the wire-
less communications industry [1-3]. This paper discusses the
development of a neural-network-based smart antenna capable
of performing adaptive beamforming and interference cancel-
lation in real time. The base station array is able to track
mobile users as they move within or between cells by allocat-
ing high-gain narrow beams in the directions of the desired
users while simultaneously nulling unwanted sources of inter-
ference [4]. This space-division multiple access (SDMA) will
improve the coverage as well as increase the system capacity
of existing cellular and mobile communications systems [5-8].

Neural networks are gaining momentum in the field of
signal processing [9-13] mainly because of their general-
purpose nature, fast convergence rates, and new VLSI imple-
mentations. Motivated by these inherent advantages, this
paper presents the development of a neural-network-based
algorithm, which treats the problem of computing the weights
of an adaptive array antenna as a mapping problem. The
directions of the desired signals as well as the cochannel
interference are estimated as described in [10], and this
information is used to track the signals without the need for a
reference signal. The organization of the paper is as follows.
In Section II, a brief derivation of the optimum array weights
for adaptive beamforming is presented. The RBFNN ap-
proach for the computation of the adaptive array weights is
introduced in Section III. Finally, Section IV presents the
simulation results, and Section V offers conclusive remarks.

1l. ADAPTIVE BEAMFORMING AND INTERFERENCE
NULLING

Consider a linear array composed of M elements. Let K
(K < M) be the number of narrowband plane waves, cen-
tered at frequency w,, impinging on the array from elevation
angles {6, 0,,..., 0x). Using complex signal representation,
the received signal at the ith element can be written as

K d
xi(t) — Z Sm(t)efj(zfl)Zﬂ'x sin(6,,) + nl-(t),
m=1

i=12,....M (1

where s,,(¢) is the signal of the mth wave, n,(t) is the white
Gaussian noise signal with zero mean and variance o? re-
ceived at the ith sensor, and d is the spacing between the
elements of the array. Using vector notation, we can write the

array output in matrix form:

X(#) = AS(¢) + N(¢) ©))

where X(z), S(¢), and N(¢) are M-dimensional vectors, while
A is the M X K steering matrix of the array toward the
direction of the incoming signals defined as

A=1[a(6)),a(d,),...,a(6;)] 3)

where a(6,,) is the steering vector toward the direction 6,
defined as

a(6,,)

d d d
=1, e*]‘Zﬂ'x sin(ﬁm), e*j47rx sin(Om)’ s €7j(M71)27TX sin(@,,) .

4

Steering vectors and matrices for planar and circular arrays
can be found in [14] and [15], respectively. The weights of the
array element outputs can be represented as an M-dimen-
sional vector:

W=[w1,w2,...,wM]T. ©)

Then the array output becomes

M
y(8) = Y wix; (1) = WHX(1). (6)
i=1
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The mean output power is thus given by
P = E[y(1)y(1)*] = W/RW (7

where * denotes the conjugate and R is the spatial correla-
tion matrix of the received signals defined as

R = E[X()X()"]. 8)

In the above equation, H denotes the conjugate transpose,
and E[ ] denotes the expectation value. To derive the opti-
mal weight vector, the array output is minimized so that the
desired signals are received with specific gain, while the
contributions due to noise and interference are minimized. In
other words,

min WYRW,  subject to WS, = r. 9
In the above equation, r is the IV X 1 constraint vector, where
V' is the number of desired signals, and S, is the steering
matrix associated with the look directions as defined in Egs.
(3) and (4). The method of Lagrange multipliers is used to
solve the constrained minimization problem in (9). It can be
shown that the optimum weight vector is given by the follow-
ing equation:

W, = R7'S,[S/R'S,] . (10)

Since the above equation is not practical for real-time imple-
mentation, an adaptive algorithm must be used to adapt the
weights of the array in order to track the desired signal and
to place nulls in the direction of the interfering signals.

11l. NEURAL-NETWORK-BASED INTERFERENCE
CANCELLATION

This section describes a new implementation for the problem
of beamforming using neural networks. The optimum weight
vector is a nonlinear function of the correlation matrix and
the constraint matrix [see Eq. (10)]. Therefore, it can be
approximated using a suitable architecture such as a radial
basis function neural network [18]. Note that a radial basis
function neural network can approximate an arbitrary func-
tion from an input space of arbitrary dimensionality to an
output space of arbitrary dimensionality [16—18]. The array
outputs are preprocessed, and then applied to the RBFNN as
shown in Figure 1. The output of the network is the optimal
weight vector. The preprocessing consists of evaluating the
radiation pattern of the antenna. As can be seen from Fig-
ure 1, the RBFNN consists of three layers of nodes: the input
layer, the output layer, and the hidden layer. The input layer
is the layer where the inputs are applied; the output layer is
the layer where the outputs are produced. The input vector
to the network is the spatial correlation matrix R. By exploit-
ing the symmetry in correlation matrix R, one need only
consider either the upper or lower triangular part of the
matrix. In our design, the upper triangular half of R is used.
An M X M spatial correlation matrix R can be rearranged in
an M(M + 1)-dimensional vector of real and imaginary parts
denoted b. This procedure is illustrated in Table 1 where the
lower triangular half of R is removed.

The output layer consists of 2M nodes (1 — D case) or
2MN nodes (2-D case) to accommodate the output vector
(i.e., W,,,). Like most neural networks, the RBFNN is de-
signed to perform an input—output mapping, trained with

/ / /m@signab
Y Y Y ¥

SAMPLE DATA PREPROCESSING

POSTPROCESSING

} } I }

OUTPUT

Figure 1  Architecture of a three-layer RBFNN for array processing
applications

TABLE 1 Correlation Matrix Reduction

ryp I T3
R=1ry 1y 1y b=1[ry rp r3 ry Iy ryl

T3 Iz I3

examples of input-output pairs (R WS,); [=1,2,..., Ny,
where N, stands for the number of examples contained in
the training set. The purpose of the hidden layer in an
RBFNN is to transform the input data R from an input space
of dimensionality J to a space of higher dimensionality L
(see Fig. 1). The rationale behind this transformation is based
on Cover’s theorem [19], which states that an input/output
mapping problem cast in a high-dimensionality space nonlin-
early is easier to solve. The nonlinear functions (the As in
Fig. 1) that perform this transformation are usually taken to
be Gaussian functions of appropriately chosen means and
variances. There are many learning strategies that have ap-
peared in the literature to train an RBFNN. The one used in
this paper was introduced in [18], where an unsupervised
learning algorithm (such as the K-means [20]) is initially used
to identify the centers of the Gaussian functions used in the
hidden layer. Then, an ad hoc procedure is used to determine
the widths (standard deviations) of these Gaussian functions.
According to this procedure, the standard deviation of a
Gaussian function of a certain mean is the average distance
to the first few nearest neighbors of the means of the other
Gaussian functions. The aforementioned unsupervised learn-
ing procedure allows one to identify the weights (means and
standard deviations of the Gaussian functions) from the input
layer to the hidden layer. The weights from the hidden layer
to the output layer are identified by following a supervised
learning procedure, applied to a single-layer network (the
network from the hidden to the output layer). This supervised
rule is referred to as the delta rule. The delta rule is essen-
tially a gradient descent procedure applied to an appropri-
ately defined optimization problem. For more details about
the delta rule and how it is applied to single-layer networks,
see [16]. Once training of the RBFNN is accomplished, the
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training phase is complete, and the trained neural network
can operate in the performance mode (phase). In the perfor-
mance phase, the neural network is expected to generalize,
that is, respond to inputs (Rs) that it has never seen before,
but drawn from the same distribution as the inputs used in
the training set. One way of explaining the generalization
exhibited by the network during the performance phase is by
remembering that, after the training phase is complete, the
RBFNN has established an approximation of the desired
input/output mapping. Hence, during the performance phase,
the RBFNN produces outputs to previously unseen inputs by
interpolating between the inputs used (seen) in the training
phase. The step-by-step procedure to produce the training
data {R5W,; [ = 1,2,..., Ny} for the RBFNN in this appli-
cation is provided below. In practice, the directions of the
multiple desired signals are estimated so that the matrix S, is
incorporated as a priori information in the training. This is
accomplished by the algorithm described in [10].

A. Generation of Training Data

1. Generate the correlation matrix {R; [ = 1,2,..., Ny}
using Eq. (8).

2. Rearrange the upper triangular part of R into a vector
b; then normalize it by its norm.

3. Produce the required training input/output pairs of
the training set, that is, {(R; W(fpl); I=1,2,...,N;}. In
this application, the training data were generated by
assuming that multiple sources are located at elevation
angles 0 ranging from —90 to +90° with increments of
A6 for the one-dimensional case. In other words, if we
have four sources with Af = 5°, then R’ would be
based on sources at {—90°, —85° 80°, 75°}, R? based on
sources at {—88°, —83°, —78°, —73°, and so forth. In
the two-dimensional array, in addition to angles 6,
azimuth angles ¢ can be made to range from 0 to 360°
in order to span the field of view of the antenna. As we
have emphasized before, once the RBFNN is trained
with a representative set of training input/output pairs,
it is ready to function in the performance phase. In the
performance phase, the RBFNN produces estimates of
the optimum weights for the array outputs through a
simple, computationally inexpensive, two-step process,
described below.

B. Performance Phase of the RBFNN

1. Follow steps 1 and 2 in the training procedure.

2. Present the normalized array output vector at the input
layer of the trained RBFNN. The output layer of the
trained RBFNN will produce, as an output, the esti-
mates of optimum weights for the array outputs (e,
Wopo):

Unlike the least mean-square, recursive least squares, or
the sample matrix inversion algorithms [4], where the opti-
mization is carried out whenever the directions of the desired
or interfering signals change, in our approach, the weights of
the trained network can be used to produce the optimum
weights needed to steer the narrow beams of the adaptive
array to the direction of desired users. Knowing that the
response time for neural networks (i.e., the time that it takes
a trained neural network to produce an output if it is excited
by an input) is very small, the proposed adaptive beamform-

ing technique will track the mobile users as they move in real
time.

IV. SIMULATION RESULTS

The pattern of an array of eight elements receiving one
desired and three interfering signals is shown in Figure 2.
The SNR of the sources is 10 dB with respect to the noise.
The input to the network consisted of all of the elements
of the correlation matrix R. Hence, the dimension of the
input layer is 128 nodes. In Figure 3 an array of ten elements
is simulated under the same conditions with 110 input nodes,
where only the upper triangular part of R was used as the
input. The results show that it is possible to reduce the
dimension of the input layer significantly without affecting
the interpolation capabilities of the network. Figure 4 illus-
trates an array of 16 elements receiving seven signals, four of
which are interference. The SNRs of the desired signals were
set to 10 dB, while those of the interfering signals were set to
20 dB and A6 =5°. A 4 X 4 planar array is simulated in
Figure 5, and is trained to track seven signals, three of which
are desired with A9 = 12° and ¢ = 60°. Figure 6 shows the
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Figure 2 Adapted pattern of an eight-element array receiving one
desired signal and three interfering. The SNR of the sources is 10 dB
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Figure 3 Adapted pattern of a ten-element array receiving one
desired signal and three interfering. The SNR of the sources is 10 dB
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Figure 4 Adapted pattern of a 16-element array tracking seven
signals, four of which are interference. The SNR of desired signals is
10 dB, the SNR of interfering signals is 20 dB, and A6 = 5°
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Figure 5 Gain of a 4 X 4 rectangular array shown tracking seven
signals (three desired users, four cochannel signals) with A9 = 12°,
¢ = 60°

tracking of two desired signals and one cochannel user with a
ten-element (nine + one at center) circular array of 0.8\
radius. The signals are equipower (10 dB) with respect to the
noise (0 dB). The angular separation is A9 = 15° and ¢ = 40°.
The results obtained from the simulations demonstrate the
accuracy of the proposed approach. The RBFNN was simu-
lated on a 300 MHz Pentium II computer. The network
response time to the various test data sets containing 100—150
input vectors was 1-2 s, indicating that the average response
time to a single input is 0.01-0.02 s. Hardware implementa-
tion of the RBFNN is expected to achieve much higher
speeds, which makes this approach suitable to use in real
time.

V. CONCLUSION

A new approach to the problem of adaptive beamforming was
introduced. The weights were computed using an RBFNN
that approximates the Wiener solution. The network was
successful in tracking multiple users, while simultaneously
nulling interference caused by cochannel users. Both 1-D and

Atrtay Pattetn in dB
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Figure 6 Tracking of one desired signal and two cochannel user
with a ten-element (nine + one at center). Circular array of 0.8A
radius, equipower signals (10 dB), noise (0 dB). A9 = 15°, ¢ = 40°

2-D arrays were simulated, and the results have been very
good in every case. A comparison of the adapted pattern
obtained by the RBFNN and the optimum solution demon-
strates the high degree of accuracy of our approach. Some of
the attractive features of this novel neural-network-based
approach is that it can yield results in real time, hence
outperforming other conventional techniques. This leads to
the accurate estimation of the mobile location and the com-
putation of the weights of the adaptive array antennas in a
few characteristic time constants of the circuit, normally, on
the order of hundreds of nanoseconds. Furthermore, digital
implementations of neural networks make them ideal candi-
dates for digital beamforming. Moreover, conventional beam-
formers require highly calibrated antennas with identical
element properties. Performance degradation often occurs
due to the fact that these algorithms adapt poorly to element
failure or other sources of errors. Neural-network-based ar-
ray antennas do not suffer from this shortcoming. The an-
tenna behavior (uniform, nonuniform spacing, nonuniform
elements, etc.) can be incorporated in the training of the
neural network under different circumstances and scenarios.
The network, being able to generalize, can then be used to
predict the aperture behavior at all points. Future work will
concentrate on: 1) the effects of element patterns, 2) finding
the maximum number of simultaneous users that can be
tracked by the antenna array using this new approach, and 3)
improving the generalization capability of the network so that
it can give satisfactory results for a different environment
than it was trained for, i.e., for example, if the number of
desired users and interference or the angular separations are
not the same as in the training.
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ABSTRACT: An experimental method is suggested that supposes the
study of characteristics of slot bridge (SB) cells in the multimode
operating regime. It is based on the preliminary numerical investigation
of the resonant scattering characteristics of SB, i.e., the solution of the
boundary value problem (BVP). The configuration of an experimental SB
cell is computed according to the required frequency band and prelimi-
nary information about dielectric parameters of the materials chosen for
tests. Etalon scattering characteristics of an SB cell are computed by
software development on the basis of a rigorous solution of the BVP,
providing numerical data with required accuracy. © 1999 John Wiley &
Sons, Inc. Microwave Opt Technol Lett 21: 455-458, 1999.

Key words: rigorous mathematical model; microwave band; dielectric
parameters; SB cell

1. INTRODUCTION

An accurate mathematical model describing electromagnetic
resonant scattering properties of a coaxial slot bridge (SB)
has been developed in [1]. The developed numerical algo-
rithm is a powerful tool for the investigation of diffraction
and spectral characteristics of the cell. The preliminary ex-
periments relying on this model proved that the coaxial SB
cell manifests remarkable advantages in fluid dielectric pa-
rameters control, in industrial and technological applications.

The features that distinguish these structures from the
formerly known ones are the following.

« Sufficiently good correspondence of real devices to their
numerical model.

» Technological simplicity of manufacturing of a real SB
cell that can be easily integrated into the pipelines with
objects under testing. Materials used for SB cell con-
struction provide ecological safety of the control tech-
nique.

» The possibility of real-time dielectric parameter control
by fitting a programmable single-chip computer to a
technological SB cell.

2. THEORETICAL BACKGROUND

The considered SB is depicted in Figure 1. The walls of the
circular waveguides are assumed infinitely thin and perfectly
conducting.

The diffraction problem for such an electromagnetic
structure is formulated (see [1]) as a BVP problem of scat-
tered field amplitude determination in SB.

The solving procedure is based on the semi-inversion
method. Namely, the main singular part is extracted from the

455



	I. INTRODUCTION
	II. ADAPTIVE BEAMFORMING AND INTERFERENCE NULLING
	III. NEURAL-NETWORK-BASED INTERFERENCE CANCELLATION
	Figure 1
	TABLE 1

	IV. SIMULATION RESULTS
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	V. CONCLUSION
	Figure 6

	ACKNOWLEDGMENT
	REFERENCES

