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Abstract

In this paper we are examining the issue of overtraining in Fuzzy ARTMAP. Over-training in Fuzzy ARTMAP manifests itself in two
different ways: (a) it degrades the generalization performance of Fuzzy ARTMAP as training progresses; and (b) it creates unnecessarily
large Fuzzy ARTMAP neural network architectures. In this work, we are demonstrating that overtraining happens in Fuzzy ARTMAP and we
propose an old remedy for its cure: cross-validation. In our experiments, we compare the performance of Fuzzy ARTMAP that is trained (i)
until the completion of training, (ii) for one epoch, and (iii) until its performance on a validation set is maximized. The experiments were
performed on artificial and real databases. The conclusion derived from those experiments is that cross-validation is a useful procedure in
Fuzzy ARTMAP, because it produces smaller Fuzzy ARTMAP architectures with improved generalization performance. The trade-off is that
cross-validation introduces additional computational complexity in the training phase of Fuzzy ARTMAP. © 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

Fuzzy ARTMAP was introduced in the neural network
literature by Carpenter, Grossberg, Markuzon, Reynolds
and Rosen (1992a) and Carpenter, Grossberg and Rosen
(1992) and since then it has been established as one of the
premier neural network architectures in solving classifica-
tion problems. At the same time that Fuzzy ARTMAP
appeared in the neural network literature, other ART-like
architectures have also been introduced with characteristics
similar to Fuzzy ARTMAP (e.g. Healy, Caudell & Smith,
1993; Simpson, 1992, 1993). Furthermore, from Fuzzy
ARTMAP’s inception and until the present, a variety of
researchers have proposed modifications of the Fuzzy
ARTMAP neural network that have improved its perfor-
mance (e.g. Carpenter & Markuzon, 1998; Carpenter &
Ross, 1995; Charalampidis, Georgiopoulos & Kasparis,
2000; Williamson, 1996). Finally, ART architectures
including Fuzzy ARTMAP and its modular pieces, such
as Fuzzy ART, have been carefully analyzed in the literature
by a multitude of investigators (e.g. Moore, 1988; Carpenter
et al.,, 1992; Georgiopoulos, Dagher, Bebis & Heileman,
1999; Georgiopoulos, Fernlund, Bebis & Heileman, 1996;
Georgiopoulos, Heileman & Huang, 1991; Georgiopoulos,
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Huang & Heileman, 1994; Huang, Georgiopoulos &
Heileman, 1995).

In solving classification problems, Fuzzy ARTMAP has the
capability of establishing arbitrary mappings between clusters
of an input space of arbitrary dimensionality and clusters of an
output space of arbitrary dimensionality. At times, in doing so
itcreates very large neural network architectures. As aresult, a
number of researchers have tried to address this problem with
various degrees of success (e.g. Gomez Sanchez, Dimitriadis,
Cano Izquierdo & Lopez Colorado, 2000; Vertzi, Heileman,
Georgiopoulos & Healy, 1998; Williamson, 1996). In Vertzi et
al. (1998), the authors discussed the issue of overtraining in
Fuzzy ARTMAP. This issue is most apparent when the classes
of the classification problem that Fuzzy ARTMAP tries to
solve exhibit significant overlap and results in the creation of
large Fuzzy ARTMAP neural network architectures. In this
paper, we address the same problem, the problem of overtrain-
ing in Fuzzy ARTMAP. Overtraining in Fuzzy ARTMAP
manifests itself in two different ways. It may decrease the
generalization performance of the network or it may increase
the size of the Fuzzy ARTMAP architecture (without neces-
sarily improving its generalization), or both. To address the
problem of overtraining in Fuzzy ARTMAP we propose the
usage of cross-validation techniques. Cross-validation is a
well respected procedure in the statistical literature that allows
determination of when overtraining occurs. To avoid some of
the issues that plague cross-validation approaches (e.g. the

0893-6080/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0893-6080(01)00090-9



1280 A. Koufakou et al. / Neural Networks 14 (2001) 1279—-1291

issue of small datasets) we focus our attention here only on
databases that have a sufficient number of data points. This
way, we can split the data into training, validation and test sets
that are representative of the distribution that the data follow.
In order to verify that the chosen training, validation, and test
sets follow the actual distribution of the data we compared the
histogram of a large set extracted from the data with the histo-
gram of the chosen training, validation and test sets. The histo-
grams of the chosen training, validation and test sets were a
good match of the histogram produced by the large set
extracted from the data.

There is a large and interesting literature on cross-valida-
tion methods which often emphasizes asymptotic statistical
properties, or the calculation of generalization error for
certain models. The literature is too large to survey here,
so we restrict ourselves in a limited sample of papers that
share some connection with the work conducted in this
paper, and the foundational papers that include those of
Stone (1974, 1977). In Kohavi (1995), three methods for
accuracy estimation of a model and for model selection
are discussed. The leave-one-out cross-validation, the k-
fold cross-validation and the bootstrap method; the models
considered include C4.5 and Naive Bayes. Kohavi’s conclu-
sion is that the best method is 10-fold cross-validation for
accuracy estimation of a model and model selection. In our
paper, we assume that we have enough data, and as a result
we can claim that the correct data distribution is accurately
represented by the training, validation or test sets. Conse-
quently, we perform training of Fuzzy ARTMAP with a
single training set, validation of Fuzzy ARTMAP with a
single validation set and testing of Fuzzy ARTMAP with
a single test set. Our experimental results indicate that we
can trust this cross-validation approach in producing reli-
ably good Fuzzy ARTMAP models. This method of
performing cross-validation is also adopted by Amari,
Murata, Muller, Finke and Yang (1996, 1997).

Another paper that is worth mentioning is the paper by
Dietrich (1998). In this work the author discusses a taxon-
omy of statistical questions in machine learning, one of
which is the selection of an appropriate pattern classifier
under the assumption that the data available to us are plenti-
ful. This is the same problem that we are focusing on here,
from the perspective of which of a number of Fuzzy
ARTMAP neural networks is the best classifier for the clas-
sification problem at hand. The type of Fuzzy ARTMAP
networks investigated are (a) a Fuzzy ARTMAP network
that is trained until completion, (b) a Fuzzy ARTMAP
network that is trained for one epoch, and (c) a Fuzzy
ARTMAP network that is trained to the point where its
performance on the validation set is maximized.

Our review of the cross-validation is not complete if we
do not mention some of the recent papers that have appeared
in the literature and examine cross-validation procedures for
another popular neural network architecture, the multi-layer
perceptron (MLP) (see Rumelhart, Hinton & Williams,
1986). These papers include the work by Anders and Korn

(1999) and Prechelt (1998). A lot more work on cross-vali-
dation to avoid overtraining in MLP has been reported in the
literature The interested reader may want to consult the
references in the two aforementioned recent publications.
Our careful examination of the literature did not identify
any references where Fuzzy ARTMAP training is stopped
early through a cross-validatory procedure. As we have
mentioned earlier, this is the topic that this paper addresses.

The organization of the paper is as follows. In Section 2
we provide the basic details of the Fuzzy ARTMAP archi-
tecture. In Section 3 we discuss the topic of cross-validation
and explain what kind of cross-validation procedure is
applied to Fuzzy ARTMAP training. In Section 4 we elabo-
rate on the types of experiments conducted that compare
Fuzzy ARTMAP networks that are (i) trained until comple-
tion, (ii) trained for one epoch, and (iii) trained until the
maximum performance on the validation set is achieved.
In Section 4 we focus on experiments with simulated data
and real databases. The conclusions of our work are empha-
sized in the final section (Section 5) of this paper.

2. Fuzzy ARTMAP neural network architecture

The Fuzzy ARTMAP neural network consists of two
Fuzzy ART modules, designated as ART, and ART,, as
well as an inter-ART module as shown in Fig. 1. Inputs
are presented at the ART, module, while their corresponding
outputs are presented at the ART, module. The inter-ART
module includes a MAP field whose purpose is to determine
whether the correct mapping has been established from
inputs to outputs.

Some pre-processing of the input patterns of the pattern
classification task takes place before they are presented to
the ART, module of Fuzzy ARTMAP. The first pre-proces-
sing stages takes as an input as M ,-dimensional input pattern
from the pattern classification task and transforms it into an
output vector a = (ay, ..., a4y, ), whose every component lies
in the interval [0, 1]. The second pre-processing stage
accepts as an input the vector a of the first pre-processing
stage and produces a vector I, such that

I=(a,a%) = (ay,...,apy,.a},....ay) (1
where
a=1—-a5l=i=M, )

The above transformation is called complement coding.
Complement coding is performed in ART, at a pre-processor
field designated by F§ (see Fig. 1). From now on, we will be
referring to the vector I as the input pattern. Similar type of
operations, as the ones described above, are also performed
in order to produce the output pattern O that is applied at the
ART, module.

Fuzzy ARTMAP frequently operates in two distinct
phases: the training phase and the performance phase.
The training phase of Fuzzy ARTMAP works as
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Fig. 1. Block diagram of the Fuzzy ARTMAP architecture.

follows: given a list of training input/output pairs, such
as {I,O"),... . {I',O"},... {I",0"}, we want to train
Fuzzy ARTMAP to map every input pattern of the
training list to its own corresponding output pattern.
In order to achieve the aforementioned goal, we present
the training list repeatedly to the Fuzzy ARTMAP
architecture. That is, present I' to ART, and 0' to
ART,, then I? to ART, and O’ to ART,, and finally
I" to ART, and 0" to ART),; this corresponds to one
list presentation. We present the training list as many
times as it is necessary for Fuzzy ARTMAP to correctly
classify all the input patterns. The task is considered
accomplished (i.e. the learning is complete) when the
weights do not change during a list presentation. The
aforementioned training scenario is called off-line
learning.

The performance phase of Fuzzy ARTMAP works as
follows: given a list of test input patterns, such as
il, U iNS, we want to find the Fuzzy ARTMAP output
produced when each one of the aforementioned test patterns
is presented at its F{ field. In order to achieve the aforemen-
tioned goal, we present the test list once to the trained Fuzzy
ARTMAP architecture.

More details about the training and performance phase of
Fuzzy ARTMAP can be found in the literature (Carpenter,
Grossberg & Reynolds, 1991). What is worth mentioning,
though, is that for pattern classification problems, Fuzzy
ARTMAP creates clusters of input data in the input pattern
space. These clusters are hyperboxes that enclose within
their boundaries all the input patterns that chose them as
their representative clusters. At the end of training, the clus-
ters (hyperboxes) created define appropriate decision
regions that split the input space into subspaces that are

mapped to a single output category (class). It is possible
that more than one subspace of the input pattern space is
mapped to the same output class.

There are a number of Fuzzy ARTMAP parameters that
affect its performance in classification problems. These are:
the choice parameter 3 ,, and the baseline vigilance para-
meter p,. The choice parameter assumes values in the inter-
val (0, o), while the baseline vigilance parameter assumes
values in the interval [0, 1]. The Fuzzy ARTMAP equations
in which the choice parameter 3, and the baseline vigilance
parameter p, appear are shown below.

ropy = LAY 3)
Y0 = 5T

LA w|

RN =y, @)

The first equation above calculates the bottom-up input
applied at node j of F5 (choice function) due to the presenta-
tion of pattern I at the field F{ of the Fuzzy ARTMAP archi-
tecture. The node in F that receives the maximum bottom-up
input is chosen to represent the input pattern I. The node thus
chosen in F3 is considered appropriate to represent the input
pattern I if and only if it satisfies inequality (4), which is
referred to as the vigilance criterion. The right hand side of
inequality (4) is the vigilance parameter p, in ART, that is
initially set equal to the baseline vigilance p,. During Fuzzy
ARTMAP training, the vigilance parameter value is allowed
to increase above the baseline vigilance parameter value; the
range of the vigilance parameter is the interval [p,, 1]. Small
values of this baseline vigilance parameter result in coarser
clustering of the input patterns, while large values of the
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baseline vigilance result in finer clustering of the input
patterns of the pattern classification task. The choice para-
meter B , has an effect on the order according to which nodes
in F35 will be accessed due to the presentation of an input
pattern applied at F{ field of Fuzzy ARTMAP (for more
details see Georgiopoulos et al., 1999, 1996).

Another Fuzzy ARTMAP parameter that is often not
referred to as a parameter in the associated literature is the
order of training presentation. It has already been an estab-
lished fact that Fuzzy ARTMAP performance depends on
the order according to which data are presented to Fuzzy
ARTMAP during the training process. As a result, Fuzzy
ARTMAP’s performance is frequently evaluated by aver-
aging the performance of Fuzzy ARTMAP for different
orders of training data presentation to it. In this paper, the
values of B, and p, parameters in ART, were chosen equal
to 0.01 and 0, respectively; this choice of ART, parameter
values guarantees that the network architectures that Fuzzy
ARTMAP creates are small (compared to larger values for

B, and p,).

3. Cross-validation

Estimating the accuracy of a classifier induced by super-
vised learning methods, such as Fuzzy ARTMAP, is an
important issue. One of the reasons for its importance is
that it gives us some guidance on how good the future
predictive accuracy of the classifier is. Another, equally
important reason, is that it gives us a way of choosing the
‘best’ classifier model amongst a set of classifier models.

Cross-validation is a statistical technique that allows us to
estimate the accuracy of a classifier model. Kohavi (1995)
discusses two prominent cross-validation procedures. The
first one is referred to as the hold-out method. We split the
set S of available data into a training set S, and a validation
set S,. The classifier is designed using the data in the
training set S, and its accuracy is estimated by evaluating
its performance on the validation set S,. That is, the hold-out
estimated accuracy is defined as

1

PCC,=100X — > 8.0, (5)

(1;,0)ES,

where PCC, denotes the percentage of correct classification
of the classifier over the validation set S,, NV is the number
of datapoints in validation set Sy, the /; and O; designate the
i-th input and desired output pair in Sy, y; is the actual
response of the classifier when it is excited by the input I;
and 6(x, y) =1 if x =y, while 6(x, y) =0 if x # y.
Obviously, the hold-out estimate is a random number that
depends on the division of the available data in S into a train-
ing set S and a validation set S,. Often the hold-out method is
repeated k times and the estimated accuracy PCC, is
produced by averaging the estimated accuracies of the k runs.
The second method for cross-validation is referred to as
k-fold cross-validation. In this procedure, the available data

S are split into k mutually exclusive subsets, designed as S',
$%, ..., 8" of approximately equal size. The classifier is
trained and tested (validated) k times. Each time m,
mE {1, 2, ..., k}, it is trained on S\S" and tested on S™.
The cross-validation estimate is defined as the number of
correct classifications divided by the number of data points
in the set S. That is,

k

1
PCC,=100X 2 > > 80,y (©)
m=1 (I,,0,)ES"

where PCC, is the percentage of correct classification on the
validation set (which in this case happens to be the entire set
of available data), NV is the number of elements in S, (which
happens to be the same as §), (I, O;) represents a generic
input/desired output pair in S”, and y; is the actual output of
the classifier, designed with data in S\S™, and excited with
the input /; from the set S”. Once more, 8(x, y) =1 if x =1y,
while 6(x, y) =0 if x # y.

Obviously the cross-validation estimate in Eq. (6) is a
random number that depends on the division into folds.
Complete cross-validation is the average of the above esti-
mates over all the possible folds of NT training data into k
folds of approximately equal size. This is too expensive
though, except in the case of 1-fold cross-validation, with
NT relatively small. As Kohavi states, repeating cross-vali-
dation multiple times using different splits into folds
provides a better estimate at the expense of additional
computational cost. In stratified cross-validation, the folds
are stratified so that they contain approximately the same
proportions of labels as the original set.

In this paper, we use stratified cross-validation to stop
training of Fuzzy ARTMAP at a point where its perfor-
mance on the validation set is maximized. To produce the
estimate of the Fuzzy ARTMAP performance we used the
hold-out cross-validation technique. Since we are focusing
on datasets with large samples of data we do not have to
worry about making inefficient use of the available data.
Furthermore, since we deal with large databases we did
not use k-fold cross-validation to avoid increased computa-
tional costs. Despite the fact that one of the major advan-
tages of Fuzzy ARTMAP is that it is an instance-based
classifier, its performance on a number of databases where
it is trained off-line has also been investigated (e.g. Carpen-
ter & Markuzon, 1998; Carpenter et al., 1992a). Some of
these databases, such as the Letters database in Carpenter et
al. (1992), and others, could very well be thought of as large
databases.

4. Experiments—Results—OQObservations

We conducted two sets of classification experiments to
demonstrate the potential of cross-validation in Fuzzy
ARTMAP. The first set of experiments dealt with artificial
databases, and the second set of experiments dealt with real
databases. The advantage of using artificial databases is that
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we can generate as many training, validation, and test data
as we want. Hence, we can easily satisfy the assumption in
this paper that we are dealing with large databases. The
other advantage of the artificial databases is that we can
experiment with different values for the dimensionality of
the input patterns, the number of output classes, and the
degree of overlap of data belonging to different classes.
The degree of overlap of data belonging to different classes
affects the difficulty of the problem under consideration.
Obviously, the problem becomes more difficult as the
degree of overlap increases.

4.1. Artificial databases

The artificial databases consist of Gaussian data that are
of dimensionality 2 or 5 or 10. They belong to either two
different classes or three different classes. The degree of
overlap of data that belong to different classes is either
low, medium, or high. The Gaussian data generated are
independent in different dimensions and their means and
variances are chosen appropriately so that they can justify
the characterization of low, medium, or high overlap.

For example, let us assume that we have a collection of
Gaussianly distributed data, of dimensionality 2, that belong
to two different classes. We decided to use 5000 datapoints
per class to train Fuzzy ARTMAP (this set is S;), 5000
different datapoints per class to cross-validate Fuzzy
ARTMAP (this set is S,), and 5000 different datapoints
per class to test the performance of the trained Fuzzy
ARTMAP (this set is Si;). We trained Fuzzy ARTMAP in
three different modes:

Mode 1: Train Fuzzy ARTMAP with the training data
until completion (i.e. until Fuzzy ARTMAP’s misclassi-
fication rate on the training data is 0%). Evaluate the
performance of the trained Fuzzy ARTMAP on the test
data (S,). This performance is denoted by PCCr.
Mode 2: Train Fuzzy ARTMAP for one complete epoch
(an epoch of training corresponds to one presentation of
all input/output pairs of the training set through Fuzzy
ARTMAP). Evaluate the performance of the trained
Fuzzy ARTMAP on the test data (set Si). This perfor-
mance is denoted by PCCpy".

Mode 3: Train Fuzzy ARTMAP for one complete epoch
but check its performance on the validation set (set S,)
every 100 iterations of training (an iteration of training
corresponds to one input/output training pair presentation
to Fuzzy ARTMAP). At the end of the one epoch of
training we identify the iteration number at which the
trained Fuzzy ARTMAP has exhibited the maximum
performance on the validation set. We denote this perfor-
mance as PCC,. The weights of the Fuzzy ARTMAP that
exhibited the maximum performance on the validation set
are retained. These weights are then used to evaluate
Fuzzy ARTMAP’s performance on the test set (set Sis).
We denote this performance by PCCl;.

For all the aforementioned three modes of training, we also
retained the information about the number of nodes that the
trained Fuzzy ARTMAP had created. We denoted the
number of these nodes as N, NaIEP , and N,, for modes 1, 2
and 3 of training, respectively. For the artificial databases
mode 3 cross-validation was performed only for the first
epoch of training, due to the fact that cross-validation is a
computationally expensive procedure. We observed that for
the artificial databases, performing cross-validation only for
the first epoch of training was enough, since we were able to
produce a small Fuzzy ARTMAP architecture with a good
generalization performance.

Our experimental results with the artificial databases are
illustrated in three different tables (Tables 1-3). In Table 1
we depict the results in seven different columns. Column 1,
designated as Overlap, defines the degree of overlap
between the data belonging to different classes. As we
have emphasized above, the overlap degree levels that we
are investigating are low, medium and high. In Fig. 2 we
show Gaussianly distributed data belonging to two different
classes that are of low overlap (see Fig. 2(a)), medium over-
lap (see Fig. 2(b)) and high overlap (see Fig. 2(c)). For
example, in Fig. 2(a) the Gaussian data of class 1 have a
mean vector of (0, O)T, and variance vector (1, 1)T, while the
data of class 2 have a mean vector of (3.2, 3.2)7, and
variance vector (1, I)T. In a similar fashion, in Fig. 2(b)
the Gaussian data of class 1 have a mean vector of (0, O)T,
and variance vector (1, l)T, while the data of class 2 have a
mean vector of (1, l)T, and variance vector (1, l)T. Finally,
in Fig. 2(c) the Gaussian data of class 1 have a mean vector
of (0, 0)T and variance vector (1, 1)1, while the data of class
2 have a mean vector of (3.2, 3.2)T, and variance vector (4,
4)". The second column of Table 1 depicts the number of
classes in our dataset; as we have mentioned before we have
experimented with data belonging to two or three distinct
classes. The third column in Table 1 shows the dimension-
ality of the input patterns. As we have said before, we have
experimented with data of dimensionality 2, 5 and 10.

To discuss the rest of the columns of Table 1 and Tables 2
and 3, let us focus on one of the rows of Table 1, the bold-
faced entry of the medium overlap category corresponding
to data of dimensionality 10, belonging to three classes. The
results reported in columns 4-8 of the boldfaced entry of the
medium overlap category are extracted by averaging the
results over 25 experiments. These experiments were
constructed by taking five different sets of training/valida-
tion/test data and for each such set of data we trained Fuzzy
ARTMAP with five distinct orders of training data presen-
tations (chosen randomly). For future reference, we refer to
these five different sets of data as Sy, Sy, and S, for
1 =m = 5. For each one of these sets, we refer to the five
orders of training data presentation by or(m), where or(m)
takes the values 1, 2, 3, 4, 5 to designate the five different
orders of presentation for each one of the five training data
sets. The entry of the fourth column of the boldfaced row in
the medium overlap category corresponds to PCCy. The
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Comparison of average percentage of correct classification (PCCs) and average node compression ratios (CRs) for the three different Fuzzy ARTMAP training
modes (1, 2, 3) and three degrees of overlap (low, medium, high) using artificial databases

Overlap Classes Dim. PCCE, PCCys — PCCg PCC,; — PCClEP CR° CR'EP
Low 2 2 95.39 1.11 1.82 44.21 14.94
2 5 96.78 0.79 1.92 19.31 5.04
2 10 99.76 0.08 0.43 3.26 2.02
3 2 99.95 0.86 1.51 45.32 15.75
3 5 99.19 0.08 0.51 10.31 3.82
3 10 99.57 0.31 0.68 3.23 2.05
Medium 2 2 84.50 2.69 4.34 63.54 23.34
2 5 83.03 0.29 2.44 42.98 10.87
2 10 83.59 1.27 3.66 18.38 4.27
3 2 85.22 2.31 4.20 75.19 28.55
3 5 83.51 2.61 4.81 55.84 14.34
3 10 85.66 2.38 4.34 34.75 7.91
High 2 2 70.34 2.53 3.96 44.97 18.22
2 5 68.09 243 3.94 51.45 14.17
2 10 68.05 2.73 4.24 28.97 6.89
3 2 67.22 3.02 4.95 91.00 43.71
3 5 63.61 2.24 3.90 93.10 28.90
3 10 73.06 1.01 2.62 17.96 4.14
Table 2

Comparison of average percentage of correct classification (PCCs) and average node compression ratios (CRs) for the three different Fuzzy ARTMAP training
modes (1, 2, 3) and three degrees of overlap (low, medium, high) using artificial databases. The underscore in some entries indicates that the corresponding

entry is a vector of an appropriate dimensionality

Class 1 Class 2 Class 3 Percentage of correct classification Nodes

Var Mean Var Mean Var Mean PCCs — PCC PCCy, — PCCE? CR® CR'EP
(a) Low overlap (3 classes, 5 dimensions)

1 1 1 2 1 7 -0.3 0.88 21.13 6.46
1 0 1 3 1 6 0.3 0.7 8.87 3.80
1 0 2 4 2 10 0.1 0.14 2.67 1.87
1 0 2 6 2 12 0.01 0.01 1.33 1.33vr
1 0 4 5 4 10 0.28 0.81 17.56 5.63
(b) Medium overlap (3 classes, 10 dimensions)

1 1 1 2,2,0 1 5,51 2.45 4.50 41.74 8.76
1 0 1 2,2,0 1 3,3,5 3.11 4.05 37.40 9.48
1 0 2 3,30 2 6,6,1 3.03 5.40 45.33 10.25
1 0 2 3,3,0 2 7,7,0 3.54 5.25 26.41 5.96
1 0 4 4,4,0 14 8,81 —0.25 2.51 22.86 5.13
(c) High overlap (3 classes, 2 dimensions)

1 0 1 1,2 1 25,15 4.69 7.56 87.57 44.75
1 0 1 2,3 1 1,05 2.12 3.94 90.03 44.41
1 0 2 2 2.5 3.6 44 6.26 167.28 79.35
1 0 4 2 4 4 2.16 3.76 76.16 36.09
1 0 4 3 4 5 1.75 3.25 33.96 13.96

entry of the fifth column of the boldfaced row in the medium
overlap category corresponds to PCCi — & The

quantities PCCy, and PCC¢, are defined as follows:

1 5 5
PCCei = 5¢ mZZI 0,%:1 PCCs(m, or(m)) 7
1 5 5
PCCii= 52 > D PCCulm,or(m) ®)
m=1 or(m)=1

where PCC(m, or(m)) is the performance of Fuzzy
ARTMAP on the test data Sy, trained under mode 3, with
training data Sy, presented to it in the order or(m), while
PCCi(m, or(m)) is the performance of Fuzzy ARTMAP
on the test data Sg, trained under mode 1, with training
data Si presented to it in the order or(m).

Note that the entries of the fourth column of Table 1,
which correspond to the average percentage of correct clas-
sification for mode 1 Fuzzy ARTMAP (complete training
scenario) are a quantitative verification that we are dealing
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Table 3

Comparison of percentage of correct classification (PCCs) and number of nodes created for the three different Fuzzy ARTMAP training modes (1, 2, 3) and

three degrees of overlap (low, medium, high) using artificial databases

Order PCC, PCC PCCE, PCCE? PCC, PCC: PCCFP N, NS NIEP
(a) Low overlap case

1 99.96 99.87 99.84 99.77 99.92 100 99.91 3 8 5
2 99.97 99.95 99.85 99.8 99.95 100 99.93 3 8 5
3 99.97 99.97 99.85 99.82 99.85 100 99.94 3 8 6
4 99.97 99.97 99.84 99.83 99.93 100 99.93 3 8 6
5 99.96 99.97 99.85 99.81 99.94 100 99.97 3 8 6
(b) Medium overlap case

1 84.19 83.68 80.57 78.77 87.67 100 86.67 9 323 69
2 81.86 81.63 79.81 76.87 86.25 100 87.11 7 336 73
3 82.87 83.32 80.53 76.25 87.15 100 84.1 6 316 72
4 85.13 85.44 81 78.51 90.29 100 88.05 7 315 75
5 82.52 82.73 79.76 79.39 89.39 100 87.59 7 342 80
(c) High overlap case

1 72.71 73.59 65.8 63.41 74.45 100 80.59 12 3043 1425
2 68.26 68.89 65.07 64.29 68.77 100 82.09 28 3182 1544
3 66.92 67.13 65.77 63.82 67.25 100 79.93 20 3046 1394
4 64.81 69.91 65.98 63.99 71.66 100 80.99 18 3061 1464
5 68.04 70.36 65.27 63.09 70.51 100 80.32 16 3093 1439

with a low, medium or high overlap. The PCCy, value for
the low overlap is in the high 90s range, the medium overlap
is in the low to mid-80s range and the high overlap is in the
60-70s range. The entry of the sixth column of the bold-
faced row in the medium overlap category corresponds to

PCC,s — PCCIEP, which is the average difference in the
percentage of correct classification between the mode 3
and mode 2 trained Fuzzy ARTMAPs. The seventh column,
designated as CR®, corresponds to the average ratio of the
number of nodes created by the mode 1 trained Fuzzy
ARTMAP and the number of nodes created by the mode 3
trained Fuzzy ARTMAP. This ratio is referred to as
compression ratio complete (CRS), to remind us how
much mode 3 trained Fuzzy ARTMAP compresses the
information compared to mode 1 trained Fuzzy ARTMAP
(which is trained to completion). The eighth column, desig-

nated as CR'P, corresponds to the average ratio of the
number of nodes created by the mode 2 trained Fuzzy
ARTMAP and the number of nodes created by the mode 3
trained Fuzzy ARTMAP. This ratio is referred to as
compression ratio one epoch (CR'P), to remind us how
much mode 3 trained Fuzzy ARTMAP compresses the
information compared to mode 2 trained Fuzzy ARTMAP
(which is trained for one epoch). The definitions of the

quantities PCCIEP, CR®, and CR'™" are similar with the
definitions of the quantities PCC,.s and PCCy, defined in
Egs. (7) and (8).

The purpose of Table 2 is to take three entries from Table
1 (boldfaced one of low overlap, boldfaced one of medium
overlap and boldfaced one of high overlap) and expand
them in a way that provides more detailed information
about these entries. For example, the boldfaced entry of
medium overlap of Table 1 has been appropriately expanded

in Table 2(b). The first row of Table 2(b) corresponds to a
specific training/validation/test sets (i.e. Si/ 8l SL). The
second row of Table 2(b) corresponds to a specific train-
ing/validation/test sets (i.e. Slzr/ S%/ Slzes), and so forth for the
rest of the rows of Table 2(b). Each row of Table 2(b) has 10
columns. The first six columns give us information about the
statistics of the data involved. In particular, the first six
entries of the boldfaced row of Table 2(b) tell us that
class 1 data have mean vector 0, and variance vector 1,
class 2 data have mean vector (3, 3, Q)T, and variance 2,
and class 3 data have mean vector (6, 6, 1)T, and variance
vector 1. The remaining four columns of the boldfaced entry
in Table 2(b) (row 3) have the same interpretation as the last
four columns in Table 1. The only difference is that an entry
in Table 2(b) corresponds to an average of five experiments,
while an entry in Table 1 corresponds to an average of 25
experiments. In particular, the entry of the seventh column
of the boldfaced row of Table 2(b) corresponds to PCCs —
PCCt is defined as follows:

1

PCCey = 7 D, PCCy(3,01(3)) ©)
or(3)=1

1

PCCi= 5 >, PCC(3,0r(3) (10)
or(3)=1

where PCC(3, or(3)) is the performance of Fuzzy
ARTMAP on the test data S?es, trained under mode 3, with
training data S3 presented to it in the order or(3), while
PCCi(3, 0r(3)) is the performance of Fuzzy ARTMAP on
the test data S?es, trained under mode 1, with training data S?r
presented to it in the order or(3). Similar interpretations are
valid for the rest of the columns of row 3 of Table 2(b)
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Fig. 2. Scatter plots of two-dimensional Gaussian classes for different class
overlap degrees: (a) low overlap; (b) medium overlap and (c) high overlap.

(i.e. columns 8, 9 and 10), as well as the rest of the rows of
Table 2(b) and the entries in Table 2(a) and Table 2(c).
The purpose of Table 3 is to take three entries of Table 2
(boldfaced one from Table 2(a), boldfaced one from Table
2(b) and boldfaced one from Table 2(c)) and expand them,
in a way that provides more detailed information about these
entries. For example, Table 3(b) takes the third entry of Table
2(b) (corresponding to training set/validation set/test set equal
to Si, S, and Sg) and provides the values of PCC,(3, or(3)),
PCC(3, 0r(3)), PCCiw(3, 0r(3)), PCC,el" (3, 01(3)), PCCy(3,
or(3)), PCCi(3, 0r(3)), PCCy™ (3, 0r(3)), N(3, 0r(3)), Ny(3,
or(3)), and N,*(3, 0r(3)), for a Fuzzy ARTMAP that is trained
with the data in S2, according to order of presentation
or(3)=1, 2, 3, 4, 5, validated with data in Sa, and tested
with data S?es. For conciseness of notation in Table 3(b) the
above quantities are denoted as PCC,, PCC,, PCCys, PCC!EP,
PCC,, PCC, PCCF*, N,, NS, and N,¥*. Similar explanations
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Fig. 3. Percentage of correct classification on the validation set (—) and
testing set ( X ) of a trained Fuzzy ARTMAP network with data of different
degrees of overlap (artificial databases): (a) low overlap; (b) medium over-
lap and (c) high overlap.

are valid for the rest of the entries in Table 3(b) and the entries
in Tables 3(a) and 3(c).

In Fig. 3 we illustrate the validation set performance and
the test set performance of Fuzzy ARTMAP trained under
mode 3 for three different overlap categories (low, medium
and high). The curves in Fig. 3(a) correspond to a specific
training/validation/test sets and a specific order of pattern
presentation of the data in the training set. The same is true
for the curves of Fig. 3(b) and (c). In these figures the X
marks on one of the curves (test curve), correspond to the
number of iterations at which training was stopped and the
classification accuracy of Fuzzy ARTMAP on the validation
and test sets was calculated. These performance results were
used to generate the percentage of correct classification on
the test and validation sets at various instances of the train-
ing process. One obvious observation that can be extracted
from these figures is that the maxima and minima of the
performance of Fuzzy ARTMAP on the validation set are
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coinciding with the maxima and minima of the performance
of Fuzzy ARTMAP on the test set. This is an indication that
the validation and test data sets are representative of the
distribution that the data obey.

If we observe the results depicted in Tables 1— 3, we can
draw some useful observations regarding the performance
of Fuzzy ARTMAP under the three different modes of
training.

1. The number of nodes created by Fuzzy ARTMAP trained
under mode 3 (cross-validated training) is significantly
smaller than the number of nodes created by Fuzzy
ARTMAP trained under modes 1 (complete training)
and 2 (one epoch of training). This observation is more
pronounced for higher overlap datasets.

2. The generalization performance of Fuzzy ARTMAP
trained under mode 3 (cross-validated training) is better
than the generalization performance of Fuzzy ARTMAP
trained under mode 1 (complete training) or mode 2 (one
epoch of training).

3. The difference in the generalization performance
between modes 3 (cross-validated training) and mode 2
(one epoch of training) is larger than the difference in the
generalization performance between modes 3 and 1
(complete training).

4. The difference in the number of nodes created between
mode 1 (complete training) and mode 3 (cross-validated
training) is larger than the difference in the number of
nodes created between mode 2 (one epoch of training)
and mode 3.

5. The above observations are valid for all the dimensions
(2, 5, 10) and all the number of distinct classes (2, 3) that
we experimented with.

It is worth at this point to elaborate on observation 2 that
states that mode 3 trained Fuzzy ARTMAP exhibits better
generalization performance than mode 1 or mode 2 Fuzzy
ARTMAP. The question that arises when a statement of this
nature is made is whether the difference in performance
between mode 3 and mode 1 or 2 Fuzzy ARTMAP is statis-
tically significant. To answer this question let us focus on
the test procedure that estimates trained Fuzzy ARTMAP
accuracy. Each one of the datapoints of the test set (a total of
NS datapoints) is presented to the trained Fuzzy ARTMAP
and it produces a response from the trained Fuzzy ARTMAP
network regarding its class label. If the response of Fuzzy
ARTMAP is incorrect we say that we have committed a
misclassification error. If we denote by MNS the number
of test datapoints whose class label prediction by Fuzzy
ARTMAP is incorrect then the ratio MNS/NS corresponds
to the misclassification rate, and obviously

MNS
100 X —— =100 — PCC an
NS

The number MNS is a random variable, whose distribution is
the binomial distribution, with parameters NS and p, where

p stands for the true misclassification rate of the trained
Fuzzy ARTMAP (that is obviously unknown to us). The
reason that the binomial distribution model is valid is
because we are performing NS independent experiments
(by presenting to the trained Fuzzy ARTMAP the NS
randomly chosen test datapoints) and we are tabulating
Fuzzy ARTMAP responses regarding the class label of
each test datapoint presented to it. The response of Fuzzy
ARTMAP is 1 if a misclassification of a test datapoint is
observed and zero otherwise. The number of incorrect
responses by Fuzzy ARTMAP is represented by MNS and,
due to the above observations, MNS obeys the binomial
distribution with parameters NS and p. It is a well known
fact in probability that we can approximate the probability
distribution of MNS with a Gaussian distribution of an
appropriate mean and variance (provided that NS is a
large enough number). Assuming that NS is large enough,
let us denote by MCNS(= MNS/NS) the misclassification
rate exhibited by Fuzzy ARTMAP, where the misclassifica-
tion rate is based on evaluating Fuzzy ARTMAP’s perfor-
mance on NS test datapoints. The random variable MCNS
has mean p and variance p(1 — p)/NS, and is approximately
Gaussian for NS large. A probability of interest to us is:

Pr{|[MCys — p| < €l (12)

The aforementioned probability represents the probability
that the estimated misclassification Fuzzy ARTMAP rate
MCNS is within € from the true Fuzzy ARTMAP misclas-
sification rate p. In practice, we want for a small enough € to
find how many test datapoints NS we need to present to
Fuzzy ARTMAP in order to be « percent confident that
MCNS and p are not more than € apart from each other.
For the purposes of this paper, we chose a = 95. By using
the Gaussian approximation for the distribution of MCNS
we can deduce, without a lot of difficulty, that

e/NS )
p(1 —p)

where Q(x) is the well-known Gaussian error function that
has been extensively tabulated. The above probability
cannot be computed because p is unknown. However, it
can be easily shown that p(1 — p) = 1/4 for p in the unit
interval. It then follows that for such p, /p(1 — p) = 1/2,
and since Q(x) decreases with increasing argument

PrMCys — p| < el =1 — 2Q( (13)

Pr{|MCys — p| < €] < 1 — 20(2eV/NS) (14)

We want the left hand side of the above inequality to be
equal to 0.95. It suffices then to choose NS, such that,
02e/NS)= (1 — 0.95)/2=0.025. From  appropriate
tables, where Q(x) has been tabulated, we can obtain that
the argument of Q(x) should be approximately 1.95, thus

2eVNS = 1.95 (15)
Solving for NS we obtain

NS = (0.98)*/€® = 9506 (16)
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Comparison of percentage of correct classification (PCCs) and number of nodes created for the three different Fuzzy ARTMAP training modes (1, 2, 3) using

the Nursery database

Order PCC, PCCs PCCE, PCCE? PCC, PCC: PCCFP N, N¢ NIEP
1 94.56 93.92 93.92 90.68 100 100 93.12 162 453 177
2 94.26 93.71 93.74 85.71 99.91 100 89.68 506 537 192
3 94.16 93.74 93.74 87.53 100 100 90.65 525 537 192
4 94.66 94.11 94.14 89.73 99.89 100 90.94 458 462 173
5 95.62 94.54 94.6 89.14 99.66 100 92.16 457 469 186
Avg 94.65 94.00 94.03 88.56 99.89 100 9131 421.36 486.2 181

The last equality in Eq. (16) was produced by setting
€ =0.01. This justifies our choice of testing the trained
Fuzzy ARTMAP architectures with 5000 datapoints per
class. As a reminder, we examined trained Fuzzy ARTMAP
with two, or three classes, hence in the worst possible case
we are testing Fuzzy ARTMAP with NS = 10,000 test data-
points. Consequently, the true PCC results are, with confi-
dence 95%, within =1% from the values reported in the
tables. Knowing also that our aforementioned claims are
based on an upper bound for the quantity p(1 — p), occur-
ring at p = 1/2, it gives us even bigger confidence in believ-
ing that the performance difference between Fuzzy
ARTMAP trained under mode 3 and Fuzzy ARTMAP
trained under modes 1 and 2 is statistically significant.
Specifically, let us refer to the PCCg,=73.59% and
PCCg = 65.8% results of row 1 of Table 3(c). The afore-
mentioned analysis tells us that with 95% confidence PCCi
lies in the interval [72.59%, 74.59%], while PCCg, lies in
the interval [64.8%, 66.8%]. Hence, PCC,, is statistically
significantly higher than PCCg,, at least for the most of the
higher overlap cases. For the medium overlap cases we see
differences of PCC, and PCC¢, of the order of 2%. Hence,
the statistical significance of these differences is less. We
could have increased the number of datapoints per class
from 5000 to higher values to increase the statistical signif-
icance of the differences in PCCs for the three modes of
training. We decided against doing that because it would
have led to exceedingly slow Fuzzy ARTMAP training
phases. In a similar fashion, the statistical significance of
the PCCs and PCC.s for the low overlap cases is even
less than that for the medium overlap cases. Nevertheless,
we believe that for the low overlap cases the PCCs and
PCCt,s are very close to each other. The major differences
for the low overlap cases are observed in the number of
nodes created (see Table 1).

Due to the observations 1-5, made earlier, we can make
the claim that overtraining in Fuzzy ARTMAP does occur,
and in these cases cross-validation is a legitimate procedure
that allows us to create smaller Fuzzy ARTMAP networks
with better generalization performance. It is worth mention-
ing, though, that there is a price to pay when cross-valida-
tion is employed in Fuzzy ARTMAP training. The price is
increased computational complexity during training. This
price, though, might be worth paying to avoid the creation

of oversized Fuzzy ARTMAP networks (e.g. see the
comparison of N,, NS, NJF¥ in Table 3).

4.2. Real databases

As we have mentioned earlier, there is an advantage of
training/validating and testing Fuzzy ARTMAP with artifi-
cial databases. The reason is that we can easily change the
number of distinct classes, the dimensionality of the input
patterns and the amount of overlap of patterns belonging to
different classes. It is worth, though, examining the
comparative performance of Fuzzy ARTMAP and Fuzzy
ARTMAP with cross-validation for some real databases as
well. We chose the real databases from the well-known UCI
Repository (Murphy and Aha, 1994). From the available
collection of databases there, we chose databases that had
a relatively large number of datapoints to satisfy the
assumption in this paper that we are dealing with large
databases. The databases chosen to experiment with were
the Nursery database and the Letters database.

4.2.1. Nursery database

This database has five distinct classes with a total of
12,960 datapoints. The dimensionality of the input patterns
is 8. We split the data into a training set (6480 points),
validation set (3239 points) and test set (3241 points). For
this collection of training, validation and test sets we trained
Fuzzy ARTMAP for five different orders of training pattern
presentations. Fuzzy ARTMAP was trained and tested with
the Nursery data for all the modes of training discussed in
this paper (i.e. modes 1, 2 and 3). One of the differences
between the mode 3 training here and the one reported for
the artificial databases is that cross-validation here is
performed for all epochs of training. The results are reported
in Table 4. The entries in Table 4 correspond to: PCC,,
PCC,.,, PCCt,, PCCE?, PCC,, PCCS, PCCF*, N,, NS, p
NJF® for each one of the five orders of training pattern
presentations in the training set. These entries have the
same interpretation as the entries of Table 3. In Fig. 4 we
also show the PCC, and PCCy, for one of these five orders
of pattern presentation as training in Fuzzy ARTMAP
progresses. The figure validates our confidence that the
distributions of the data in the validation and test sets are
similar.
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An obvious observation from the results reported in Table
4 is that the maximum validation performance of Fuzzy
ARTMAP happens close to the completion of training
(compare PCC,, and PCCy; in Table 4). There is where we
also observe a test set performance that is very close to the
maximum test set performance (observed at the completion
of training). This is an indication that there is no significant
overtraining when Fuzzy ARTMAP is trained with the
Nursery data, and it might be worth training Fuzzy
ARTMAP to completion in this case. Of course, an
increased generalization average performance of 5% (at
the completion of training) results in a Fuzzy ARTMAP
architecture that has 2.7 times as many nodes as a Fuzzy
ARTMAP trained for only one epoch (see Table 4).

4.2.2. Letters database

This database has 26 distinct classes (letters A—Z) with a
total of 20,000 datapoints. The dimensionality of the input
patterns is 16. We split the data into a training set (10,009
points), validation set (5009 points) and test set (4984
points). For this collection of training, validation and test
sets we trained Fuzzy ARTMAP for five different orders of
training pattern presentations. Fuzzy ARTMAP was trained
and tested with the Letters data for all the modes of training
discussed in this paper (i.e. modes 1, 2 and 3). One of the
differences between the mode 3 training here and the one
reported for the artificial databases is that cross-validation
here is performed for all epochs of training. The results are
reported in Table 5. The entries in Table 5 correspond to:
PCC,, PCC,,, PCC, PCCY', PCC,, PCCy, PCCY™, N,,
N°,, N for each one of the five orders of training pattern
presentations in the training set. These entries have the same
interpretation as the entries of Tables 3 and 4. In Fig. 5 we also
show the PCC, and PCC,, for one of these five orders of
pattern presentation as training in Fuzzy ARTMAP pro-
gresses. The figure validates our confidence that the distribu-
tions of the data in the validation and test sets are similar.

An obvious observation from the results reported in Table
5 is that the maximum validation performance of Fuzzy
ARTMAP happens at the completion of training (compare
PCC, and PCC{.in Table 5). There is where we also observe
the maximum test set performance. This is an indication that
there is no overtraining when Fuzzy ARTMAP is trained
with the Letters database. It is also worth noticing here that

Table 5
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Fig. 4. Percentage of correct classification on the validation set (—) and
testing set ( X ) of a trained Fuzzy ARTMAP network with data of different
degrees of overlap (Nursery database).
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Fig. 5. Percentage of correct classification on the validation set (-) and
testing set ( X ) of a trained Fuzzy ARTMAP network with data of different
degrees of overlap (Letters database).

the average generalization performance at the completion of
training is 2.7% higher than the average generalization
performance achieved after one epoch of training. This
increased generalization performance comes at virtually
no expense on the number of nodes created by Fuzzy
ARTMAP by the completion of training compared to train-
ing for one epoch. Consequently, this is an example of a
database that is worth training until we achieve a 100%
performance on the training set.

5. Conclusions

In this paper, we investigated the relative performance of

Comparison of percentage of correct classification (PCCs) and number of nodes created for the three different Fuzzy ARTMAP training modes (1, 2, 3) using

the Letters database

Order PCC, PCC PCCS, PCCEP PCC, PCC: PCCF? N, N¢ NIEP
1 82.99 82.83 82.83 81.01 100 100 96.05 710 710 659
2 83.13 82.77 82.77 80.26 100 100 95.3 678 678 619

3 83.31 83.27 83.49 81.49 99.35 100 96.11 667 684 632
4 83.51 83.41 83.43 80.99 99.99 100 95.96 691 695 638
5 84.11 83.03 83.03 80.32 100 100 95.5 712 712 651
Avg 83.41 83.06 83.11 80.81 99.87 100 95.70 691.6 695.8 639.8
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Fuzzy ARTMAP trained to completion, or trained for one
epoch, compared to the performance of Fuzzy ARTMAP
trained until the maximum performance on a validation
set is achieved. The results on the artificial databases,
where we could control the amount of data used, the dimen-
sionality of the input patterns and the degree of overlap of
data belonging to different classes, indicate that cross-vali-
dation help us discover a Fuzzy ARTMAP network with
increased generalization and significantly reduced number
of nodes. These conclusions were more pronounced as we
moved from databases of low overlap to databases of higher
overlap. The results with the real databases are also
encouraging. Cross-validation allows us to determine, in a
straightforward fashion, whether overtraining of Fuzzy
ARTMAP occurs or not during the training process. Over-
training of a neural network architecture manifests itself in
two different ways for Fuzzy ARTMAP: decreased general-
ization performance as training progresses and/or creation
of larger size Fuzzy ARTMAP architectures as training
progresses. For example, with the Nursery database we
concluded that the Fuzzy ARTMAP generalization perfor-
mance keeps improving until the completion of training, at
the expense of creating a larger Fuzzy ARTMAP architec-
ture. On the other hand, with the Letters database we
observed that the Fuzzy ARTMAP generalization perfor-
mance keeps improving until the completion of training
without creating a larger size architecture. In both of these
cases, by using cross-validation we were able to make an
educated guess of when to stop the training process.

We performed experiments additional to the ones care-
fully described in Section 4. For example, we experimented
with some of the artificial databases and the real databases
for choice parameter 3, value equal to 1; B,=1 has been
extensively used in simulations of Fuzzy ARTMAP
reported in the literature. The results obtained from these
experiments with the artificial databases are of a nature
similar to the ones reported in observations 1-5 of Section
4.1. The only difference is that for 8, =1 the mode 1 and
mode 2 Fuzzy ARTMAP create a lot more nodes than their
counterparts for 8, = 0.01. As a consequence, the compres-
sion ratios attained by the mode 3 Fuzzy ARTMAP
compared to the modes 1 and 2 Fuzzy ARTMAP, when
B,=1, are higher than the ones reported in Tables 1-3,
where 8, = 0.01. The results obtained from the experiments
with the real databases, when B,=1, are also of similar
nature to the ones obtained when B8,=0.01 (e.g. no over-
training is observed). Furthermore, we experimented with a
mode 3 Fuzzy ARTMAP using a validation period of 10
instead of 100 that was used in all the experiments reported
in Section 4. As a reminder, the mode 3 Fuzzy ARTMAP
training is stopped at specific iteration instances and its
performance on a validation set is checked. The difference
between two such consecutive iteration instances is referred
to as the validation period. For the real databases results, we
did not observe any differences by using a smaller validation
period. For the artificial databases results, we noticed that

mode 3 Fuzzy ARTMAP attained a better generalization
performance PCCy, when the validation period was 10
instead of 100. Obviously, the computational overhead
imposed when the validation period is 10 is 10 times higher
than the one imposed when the validation period is 100.
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