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Abstract 

This paper discusses one variation of the Fuzzy ART 
architecture, referred to as fizzy ART Variant. The 
Fuzzy ART variant is a Fuzzy ART algorithm, with a 
very large value for the choice parameter. Based on the 
geometrical interpretation of templates in Fuzzy ART we 
present and prove useful properties of learning pertain- 
ing to the Fuzzy ART variant. One of these properties of 
learning establishes an upper bound on the number of list 
presentations required by the Fuzzy ART variant to learn 
an arbitrary list of input patterns presented to it. In pre- 
viously published work, i t  was shown that the Fuzzy ART 
variant performs as well as a Fuzzy ART algorithm with 
more typical values for the choice parameter. Hence, the 
Fuzzy ART variant is as a good of a clustering machine 
aa the Fuzzy ART algorithm using more typical values of 
the choice parameter. 

1. Introduction 
Adaptive resonance theory was developed by Gross- 

berg ([l]), and a list of ART architectures were introduced 
in the last ten years by Carpenter and Grossberg, as well 
aa by other researchers in the field. A major separation 
among all of these ART architectures is based on whether 
the learning applied is unsupervised or supervised. Un- 
supervised learning is implemented when a collection of 
input patterns needs to be appropriately clustered in cat- 
egories, while supervised learning is utilized when a m a p  
ping needs to be learned between inputs and correspond- 
ing output patterns. A prominent member of the class of 
unsupervised ART architectures is Fuzzy ART (see [2]), 
which is capable of clustering arbitrary collections of ar- 
bitrarily complex analog input patterns. Our focus in 
this paper is Fuzzy ART and its associated properties of 
learning. 

In a recent publication ([3]) Georgiopoulos et al., iden- 
tified three distinct variations of Fuzzy ART architectures 
depending on the value of the choice parameter 0,: (i) 
choice parameter small (a, -+ 0), (ii) choice parameter of 
intermediate value (0 < a, < CO), and (iii) choice param- 
eter large (a, + m). This classification was based on the 
order according to which committed categories are chosen 
in a Fuzzy ART architecture. In this work, we will focus 
our attention on one of these variants of Fuzzy ART, the 
one where the choice parameter is large. From this point 
on, we will refer to this Fuzzy ART architecture as fizzy 
ART uariant. Our primary concern with this Fuzzy ART 
variant is the development of properties of learning, that 
is properties that help us shed additional light on how 
learning proceeds in this neural network architecture. 

2. Fuzzy ART 
2.1 Fuzzy ART Architecture 

The Fuzzy ART neural network architecture is shown 
in Figure l(a). I t  consists of two subsystems, the at- 
tentional subsystem, and the orienting subsystem. The 
attentional subsystem consists of two fields of nodes de- 
noted F: and F,O. The F: field is called the input field 
because input patterns are applied to  it. The Ff field is 
called the category or class representation field because 
it is the field where category representations are formed. 
These category representations represent the clusters to 
which the input patterns, presented at the Ff field, b e  
long. The orienting subsystem consists of a single node 
(called the reset node), which accepts inputs from the F: 
field, the F,Q field (not shown in Figure l(a)), and the 
input pattern applied across the Ff field. The output of 
the reset node affects the nodes of the F,Q field. 
Some preprocessing of the input patterns of the pattern 
clustering task takes place before they are presented to 
Fuzzy ART. The first preprocessing stage takes as in- 

0-7803-4122-8/97 $10.0001997 IEEE 2012 

http://mngQece.engr.ucf.edu
http://ijdQece.engr.ucf.edu
http://gebQece.engr.ucf.edu
mailto:heileman@houdini.eece.unm.edu


put an M,-dimensional input pattern from the pattern 
clustering task and transforms it into an output vector 
a = (a1 , . . . , aMJ, whose every component lies in the in- 
terval [0, 11 (Le., 0 5 ai 5 1 for 1 5 i 15 Ma). The second 
preprocessing stage accepts as an input the output a of 
the first preprocessing stage and produces an output vec- 
tor I, such that 

I = (a, a") = (al, . . . , aM,, at , .  . . ,a&,) (1) 

where 
a F = l - a i  ; l l i l M a .  (2) 

The above transformation is called complement coding. 
The complement coding operation is performed in Fuzzy 
ART at a preprocessor field designated by F; (see Figure 
l(a)). From now on, we will refer to the vector I as the 
input pattern. 
We denote a node in the Ff field by the index i (i E 
{ 1,2, . . . , 2Ma}), and a node in the F.j' field by the index 
j (j E {1,2,. . ., N a } ) .  Every node i in the F: field is 
connected via a bottom-up weight with every node j in 
the F t  field; this weight is denoted by WG. Also, ev- 
ery node j in the F,O field is connected via a top-down 
weight with every node i in the Ff field; this weight 
is denoted by w;~. The vector whose components are 
equal to the top-down weights emanating from node j 
in the F t  field is designated by w; and it is called a 
template. Note that wj" = ( w ? ~ ,  ~ j " ~ , .  . .,w&M,) for 
j = 1 , .  . . , N,. The vector of bottom-up weights converg- 
ing to a node j in the F t  field is designated by Wj. Note 
that W; = (WfJ, W.fJ, .  . . , W.fM,,j) for j = 1,. . . , N a .  
Initial values of the bottom-up and top-down weights are 
designated by Wd (0), and w$(O), respectively. Initial 
values of the top-down weights are chosen equal to one. 
Initial values of the bottom-up weights are chosen equal 
to: 

1 
a a  + M," (3) 

where aa and M," are Fuzzy ART parameters. The p" 
rameter aa is called the choice parameter and it takes 
values in the interval (0, CO). The parameter M," takes 
values in the interval [ ~ M ~ , c o ) ;  we name this parame- 
ter the uncommitted node choice parameter. The initial 
bottom-up and topdown weight choices in Fuzzy ART 
correspond to the values of these weights prior to presen- 
tation of any input pattern to the Fuezy ART architec- 
ture. 
In the original Fuzzy ART paper ([2]), only the top-down 
weights of the architecture are introduced. We have fol- 
lowed a different approach in this paper, intoducing both 
bottom-up and top-down weights, so that we can natu- 
rally define the uncommitted node chalice parameter M," 
which plays a significant role in the introduction of the 
Fuzzy ART variant in Section 3. 

At this point it is important to introduce the notation 
w;''ld, Wa8'ld, J w;*"'~ and Wy8""". Quite often, tem- 
plates and bottom-up weights in Fuzzy ART are discussed 
with respect to an input pattern I presented at the Fi' 
field of Fuzzy ART. In particular, the notation w;*''~ or 

denotes the template of node j or the bottom-up 
weight converging to node j in the F; field of Fuzzy ART, 
prior to the presentation of an input pattern I at the Fi' 
field (i.e., before learning due to this pattern present* 
tion is initiated). Furthermore, the notation w''" '~ or 
WjoSne'" denotes the template of node j or the tottom- 
up weight converging to node j in the F,O field of Fuzzy 
ART, after the presentation of an input pattern I at the 
FT field (i.e., after learning due to this input pattern pre- 
sentation is completed). Similarly, any other quantities 
defined with it superscript {a, old) or {a, new) will indi- 
cate values of these quantities prior to and after a pattern 
presentation to  Fuzzy ART, respectively. 

2.2 Templates in Fuzzy ART: A Geomet- 
rical Interpret ation 

We previously referred to the topdown weights em- 
anating from a node in the F,O field as a template. A 
template corrlsponding to a committed node is called a 
committed template, while a template corresponding to an 
uncommitted node is called uncommitted template. As we 
have already mentioned, an uncommitted template has all 
of its components equal to one. 
In the original Fuzzy ART paper it is demonstrated that 
a committed template wj", which has coded input pat- 
terns I~ = ( z i ( l ) , a G ( l ) ) ,  I' = (a(2),ac(2)), ..., I~ = 
(a(P),aC(P)), can be written as follows: 

Wa,old 
? 

wj" = 1' A I2 A . . , A I' = (Ar=la(i), Ar=lac(i)) (4) 

or 
wj" = (ArZla(i), {Vcla(i)}c) ( 5 )  

The operations A and V stand for the fuzzy min and 
the fuzzy mac operations, respectively. The fuzzy min 
( m a )  operation of two vectors produces a vector with 
components the minimum (maximum) of the correspond- 
ing components of these vectors. Based on the above ex- 
pression for w4, we can now state that the weight vector 
wj" can be expressed in terms of the two Ma-dimensional 
vectors U? anti vj .  Hence, the weight vector wj" can be 
represented, geometrically, in terms of two points in the 
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Ma-dimensional space, uj" and vj". Another way of look- 
ing at this is that w4 can be represented, geometrically, 
in terms of a hyperrectangle R; with endpoints U; and v3 
(see Figure l(b) for an illustration of this when Ma = 2). 
For simplicity, in this paper we refer to hyperrectangles 
as rectangles because all of our illustrations are in the 
%dimensional space. 

3. The Fuzzy ART Variant Algo- 
rithm 

As we have emphasized in the Introduction, our pri- 
mary focus in this paper is the Fuzzy ART algorithm with 
a very large choice parameter value CY, (Le.,  CY^ + CO). 

One might question this choice, since when aa is large 
Fuzzy ART has the tendency to choose uncommitted 
nodes over existing committed nodes. This way we may 
end up with a Fuzzy ART algorithm that does not per- 
form useful clustering since every input pattern from the 
training list forms its own cluster. This is indeed the case 
if we assume that the ucommitted node choice parameter 
M," is chosen equal to 2M,, as in the original Fuzzy ART 
paper ([2]). On the other hand, if we consider a Fuzzy 
ART architecture with M," very large i.e., M," + 00, so 
that committed nodes are chosen prior to any uncommit- 
ted node, then it is reasonable to allow CY, to increase 
to large values, as well. This Fuzzy ART architecture, 
referred to as f i z z y  ART variant in this paper, chooses 
committed nodes prior to uncommitted nodes, and the 
criterion for choosing among committed nodes is still the 
maximum bottom-up input criterion. But now, since CY, 

is large, the bottom-up input to a committed node j in 
P ' f ,  with template w ; ~ ~ ~ ~ ,  is proportional to: 

(9) 

where I stands for the input pattern applied across the 
nodes of the Fi' field of Fuzzy ART. 
Hence, in review, the Fuzzy ART variant algorithm is 
the same as the Fuzzy ART algorithm with the following 
modifications: (i) uncommitted nodes are chosen prior to 
committed nodes in the Fuzzy ART variant algorithm, 
and (ii) bottom-up inputs to committed nodes in the 
Fuzzy ART variant architecture are computed according 
to equation (8). 

4. 
Fuzzy ART Variant 

Properties of Learning of the 

In this section we report three properties of learning of 
the Fuzzy ART variant. Then we comment on their im- 
portance, and we briefly discuss the basis for their proof. 
We refer to these properties of learning as Results 1-3. 
The following results refer to the off-line training oper- 
ation of the Fuzzy ART variant. In the off-line training 
operation of the Fuzzy ART variant a collection of input 

patterns is presented to  the architecture repeatedly, until 
learning is over, that is until the weights in the architec- 
ture stop changing. 

4.1 Statement of Results Result 1: 
Consider the off-line training of a list of P input pat- 
terns using the f i z zy  ART variant algorithm. Assume 
that after the first list presentation the f i z zy  ART vari- 
ant has created C categories in F i .  Designate by  j i ( t )  
(1 5 i 5 C;  t 2 1) the identity of the node with the i-th 
largest rectangle immediately after the end of the t-th list 
Presentation. Then, 

Result 2: 
Consider the off-line training of a list of input patterns 
using the f i z z y  ART  variant algorithm. Assume that af- 
ter the first list presentation the f i z zy  ART  variant algo- 
rithm has crated C categories in Ff. Designate by  j j ( t )  
(1 5 i 5 C ;  t 2 1) the identity of the node with i- 
th largest rectangle immediately after the end of the t-th 
list presentation. Let Si (1 5 i)  denote the set of train- 
ing patterns that choose and are coded by  node j i ( i )  in the 
(i+l)-th list presenattion. Then, the patterns of collection 
Si will always be coded by  node ji(i) in list presentations 
> i + 2 .  
Result 3: 
Consider the off-line training of a list of input patterns 
using the f i z z y  ART  variant algorithm. Assume that a$ 
ter the first list presentation the f i z z y  ART algorithm has 
created C categories in Ff. Then, training will be over in 
at most C list presentations. 

4.2 Comments about the Results 
Result 1 tells us that the identity of the node with 

the largest size rectangle does not change after the first 
list presentation, the identity of the node with the second 
largest rectangle does not change after the second list 
presentation, and so on. Result 1, also tells us that the 
size of the largest rectangle does not change after the first 
list presentation, the size of the second largest rectangle 
does not change after the second list presentation, and so 
on. 
Result 2, tells us that patterns that are coded by the 
largest rectangle in the second list presentation do not 
need to be presented to the Fuzzy ART variant again, 
patterns that are coded by the second largest rectangle 
in the third list presentation do not need to be presented 
to the Fuzzy ART variant again, and so on. Result 2 
is useful because it allows us to eliminate patterns from 
the training list that do not affect the learning process. 
This way the learning process can be made to be less 
computationally intensive. 
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Result 3 is important because it predicts an upper bound 
for the number of list presentations required by the Fuzzy 
ART variant to learn a list of input patterns. In order 
to identify this upper bound it suffices to present once 
the collections of input patterns through the Fuzzy ART 
network (this way we can find the value for the parameter 
C) * 

4.3 Proof of the Results 

demonstrated in [4], and presented below as Lemma 1. 
Lemma 1: 
(a): In the fizzy ART variant, if an input pattern I is 
inside rectangles R;lold and Ra;ld, then pattern I will 
choose the rectangle of the smahest size, 
(b): In the fizzy ART variant, if an input pattern I 
is inside a rectangle R;iold and outside another rectangle 
p o l d  j a  , then pattern I will choose first rectangle R;:ld if 
and only if 

The proofs of the results are based on earlier findings, 

IRja:nSWI < lR;;O1dl (11) 
(c): In the fizzy ART variant, if an  input pattern I is 
outside rectangles R;;'ld and R;;Oid, then pattern I will 
choose first rectangle R;;ld if and only if 

For the Fuzzy ART variant with aa small, stronger results 
exist than the ones reported in Section 4. In particular, 
it was proven in [2] that when a, is small, Fuzzy ART 
converges to at solution in one list presentation. Hence, 
in this case, the identities and sizes of all the rectangles 
created in the first list presentation remain intact in sub- 
sequent list presentations. 
For the Fuzzy ART variant with an intermediate a, value, 
the results of the previous section cannot be extended in 
a trivial fashion. The major problem is that Lemma 1 is 
not valid in its entirety if the a, value is of intermedi- 
ate value (see [3]), Hence, we cannot prove Results 1-3 
any more, since their validity waa demonstrated by using 
Lemma 1. Proving similar properties of learning, as the 
ones developed in this paper, for the Fuzzy ART vari- 
ant with intermediate a, values is a subject of further 
research. 
It is also worth pointing out that in [4] we evaluated the 
clustering performance of the Fuzzy ART variant and the 
Fuzzy ART algorithm for typical values of the choice pa- 
rameter cta (e.g., cta 5 10). The clustering performance 
of Fuzzy ART and the Fuzzy ART variant waa computed 
for a number of databases included in the UCI reposi- 
tory (see [5]). 'The conclusion from these evaluations waa 
that the Fuzzy ART variant has performance comparable 
to the one Fuzzy ART, using typical a, values, exhibits. 
Hence, in practice, the Fuzzy ART variant algorithm can 
be used in clustering applications. 

The proofs of the results are based on parts (a) and (b) 
of Lemma 1. Part (a) and (b) of Lemma 1 are pictorially 
illustrated in Figures 2(a) and 2(b). The complete proof 
of the results can be found in [4]. 

5. S ummary-D iscussion 
In this paper we focused our attention on a Fuzzy ART 

variant that is obtained if we use very large values for the 
choice parameter aa, and the uncommitted node choice 
parameter Ad," (Ad," >> Qa + CO). Using the geometri- 
cal interpretation of the templates in Fuzzy ART we de- 
veloped useful properties of learning for the Fuzzy ART 
variant. One of these properties of learning gave us an 
upper bound on the number of list presentations required 
by this Fuzzy ART variant to learn an arbitrary list of 
analog input patterns. This upper bound verified one of 
the important properties of the Fuzzy ART variant, the 
fact that off-line training converges to a. solution in finite 
time. 
There are two other Fuzzy ART variants that we men- 
tioned in the Introduction of this paper. The Fuzzy ART 
variant with a, small (aa + 0), and the Fuzzy ART vari- 
ant with 0 0  assuming intermediate values (0 < a, < CO). 
A natural question to ask is whether the results reported 
in the previous section are valid for these Fuzzy ART vari- 
ants as well. In the sequel, we elaborate on this topic. 
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Figure 1: (a): A block diagram of the Fuzzy ART architecture. (b): Representation of the template 
w? = (U?,{V?)~) in terms of the rectangle R? with endpoints U? and va 
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Figure 2: (a): Illustration of Lemma 1: Pattern I = (a,ac) is inside rectangles R?lold and R. a,old , 

Pattern I will choose first the rectangle of the smallest size R?lold. (b): Illustration of Lemma 1: 

Pattern I = (a,ac) is inside rectangles RFIold and outside rectangle R?'Old. Pattern I will choose first 

the rectangle Rfaold because IR8*new/ > IR:rldl. 
J1 J2 

J1 J2 

J1 

J1 J2 

2016 


