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Abstract

In this paper we introduce novel geometric concepts, namely category regions, in the original framework of Fuzzy-ART (FA) and Fuzzy-

ARTMAP (FAM). The definitions of these regions are based on geometric interpretations of the vigilance test and the F2 layer competition of

committed nodes with uncommitted ones, that we call commitment test. It turns out that not only these regions have the same geometrical

shape (polytope structure), but they also share a lot of common and interesting properties that are demonstrated in this paper. One of these

properties is the shrinking of the volume that each one of these polytope structures occupies, as training progresses, which alludes to the

stability of learning in FA and FAM, a well-known result. Furthermore, properties of learning of FA and FAM are also proven utilizing the

geometrical structure and properties that these regions possess; some of these properties were proven before using counterintuitive, algebraic

manipulations and are now demonstrated again via intuitive geometrical arguments. One of the results that is worth mentioning as having

practical ramifications is the one which states that for certain areas of the vigilance-choice parameter space (r,a), the training and

performance (testing) phases of FA and FAM do not depend on the particular choices of the vigilance parameter. Finally, it is worth noting

that, although the idea of the category regions has been developed under the premises of FA and FAM, category regions are also meaningful

for later developed ART neural network structures, such as ARTEMAP, ARTMAP-IC, Boosted ARTMAP, Micro-ARTMAP, Ellipsoid-

ART/ARTMAP, among others. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fuzzy-ART (FA) (Carpenter, Grossberg, & Rosen,

1991) and Fuzzy-ARTMAP (FAM) (Carpenter, Grossberg,

Markuzon, Reynolds, & Rosen, 1992) are two self-

organizing, neural network architectures based on the

Adaptive Resonance Theory (ART) introduced by Grossberg

(1976), which addresses the stability–plasticity dilemma

occurring in learning systems. FA performs unsupervised

clustering of its input data. On the other hand, FAM consists

of two FA networks bridged via an inter-ART module and is

capable of forming associative maps between clusters of its

input and output domains in a supervised manner. As a

special case, when the output domain is a finite set of class

labels, FAM can be utilized as a classifier.

There are many desirable properties of learning and

characteristics associated to FA/FAM. First, both networks

are capable of learning in both off-line (batch) and on-line

(incremental) training modes. Under batch mode and fast

learning rule (Carpenter et al., 1991, 1992) assumptions,

both exhibit fast, stable and finite learning: the networks’

knowledge representation stabilizes (self-stabilization

property) relatively fast after a finite number of list

presentations (epochs). In the case of an FAM classifier,

this last property makes it a consistent classifier (Bezdek,

Reichherzer, Lim, & Attikiouzel, 1998), since using fast

learning its resubstitution error (Bezdek et al., 1998)

becomes zero. Furthermore, they both feature novelty

detection mechanisms that identify input patterns not typical

of previously experienced inputs. Also, due to the specific

nature of their neural architecture, responses of FA and

FAM to specified inputs are easily explained (Carpenter &
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Tan, 1995), in contrast to other neural network models,

where, in general, it is more difficult to explain why an input

pattern x produced an output y. Properties of learning for FA

and FAM can be found in their original references

(Carpenter et al., 1991, 1992), as well as in the work of

others (Georgiopoulos, Fernlund, Bebis, & Heileman, 1996;

Huang, Georgiopoulos, & Heileman, 1995).

There have been many contributions in the ART

literature over the last decade. We only refer to a limited

number of them: ARTEMAP (Carpenter & Ross, 1995),

Gaussian ARTMAP (Williamson, 1996), dART (Carpenter,

1997), dARTMAP (Carpenter, Milenova, & Noeske, 1998),

ARTMAP-IC (Carpenter & Markuzon, 1998), Boosted

ARTMAP (Verzi, Heileman, Georgiopoulos, & Healy,

1998), Micro-ARTMAP (Gomez Sanchez, Dimitriadis,

Cano Izquierdo, & Lopez Coronado, 2000), Topographic

Attentive Mapping network (Williamson, 2001) and

finally Ellipsoid-ART/ARTMAP (Anagnostopoulos &

Georgiopoulos, 2001). The above contributions revolve

around modifications and enhancements as well as around

new approaches based on the concepts of the original FA

and FAM architectures. However, there are other, indepen-

dent developments of similar ART-like structures like

Fuzzy-Min–Max (Simpson, 1992), LAPART2 (Healy &

Caudell, 1998), and s-FLNMAP (Petridis, Kaburlasos,

Fragkou, & Kehagias, 2001).

Both FA and FAM operate by summarizing similar

training data into groups, which we define as FA categories.

These categories constitute the building block of knowl-

edge/memory representation for both architectures and are

formed in a self-organizing manner. FA/FAM exhibit

stability in learning by remembering the characteristics of

the already-formed categories and exhibit plasticity in

learning by allowing updates of existing categories in a non-

destructive fashion or via the creation of new categories, if

no update is possible. Significant insight has been gained

in the past by attributing a geometrical interpretation to

these categories (Carpenter et al., 1991, 1992). On the same

tangent, we introduce in this paper a new geometrical

perspective related to FA categories, which sheds more light

into the process of determining eligible categories to

compete for a newly presented input pattern. By eligible

categories we mean categories that potentially may be

chosen after the node competition.

The definitions of these regions are based on geometric

interpretations of the vigilance test (VT, defines match

regions), and the F2 layer competition of committed nodes

with uncommitted ones that we call commitment test (CT,

defines choice regions). It turns out not only that these

regions (match and choice) have the same geometrical

shape (polytope structure), but also share a lot of common

and interesting properties that are demonstrated in this

paper. For example, the regions’ definitions are of the same

form, the regions’ geometric representations are of the same

shape (but may be of different size), ART network

parameters enforce a maximum hyper-volume for these

regions, both regions contain the representation region

(corresponds to the hyper-box that every category in ART

defines) and other commonalities, which reaffirms the

clustering-by-similarity nature of the VT and CT. One of

these common properties of category regions is the

shrinking of the volume that each one of these polytope

structures occupies, as training progresses, which alludes to

the stability of learning of FA and FAM (a well-known

result). These regions also exhibit different characteristics.

For instance, a category update defines a new match region

that is completely included in the old match region (the one

corresponding to the category before its update). On the

other hand, a category update defines a new choice region

that is not completely included in the old choice region (the

one corresponding to the category prior to its update); only

the hyper-volume of the choice region decreases as we

have emphasized above. A complete enumeration of the

Nomenclature

B the empty set

R the set of real numbers

U the set [0,1]

M the feature space dimensionality

U M the set [0,1]M

R M the M-dimensional Euclidian space

# subset of

, proper subset of

; for all

l l L1 vector norm

x c complement coded form of pattern x

1 all-ones vector

wj template of category j

^ Fuzzy-min operator

s(wj) size of category j

dis(x,wj) L1-norm distance of pattern x from category j

R(wj) representation region of category j

r baseline vigilance parameter value

a choice parameter value

wu initial weight value for templates of uncom-

mitted nodes

g learning rate parameter value

r(wjlx) match function value for category j with

respect to pattern x

T(wjlx) choice function value for category j with

respect to pattern x

Tu choice function value of uncommitted nodes

V(wjlr) match (vigilance) region of category j

dV(wjlr) match region radius of category j

C(wjla,wu) choice (commitment) region of category j

dC(wjla,wu) choice region radius of category j

L(wjlr,a,wu) claim region of category j

dL(wlr,a,wu) claim region radius of category j
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properties of the match and choice regions and their

comparisons is depicted in Table 1.

Finally, it is worth mentioning that the intersection of the

match region and the choice region defines a new region,

named claim region, whose geometrical structure is the

same as the geometrical structure of the match and choice

regions (polytope shape). The claim region has an

interesting interpretation. The claim region of a category

in ART contains all the points in the pattern space that could

be potentially encoded by this category. Due to its

definition, no points outside a category’s claim region can

be encoded by this category. Hence, it can be thought of as

the region of attraction of an ART category. A point in the

pattern space can belong to more than one claim regions.

The category that will eventually encode this point will be

the category that wins the competition amongst all the

categories whose claim region includes this point. The

competition in ART is won by the category that produces

the maximum choice function value. Defining geometri-

cally, or through an equation, the region of attraction of

cluster points (or prototypes) of any pattern classifier (not

necessarily an ART neural network) is a worthwhile

endeavor in the pattern recognition literature. Part of our

work in this paper has accomplished this task for FA and

FAM for both fast and slow learning. It is finally, worth

mentioning that although the idea of category regions

(choice, match, and claim regions) has been developed

under the premises of FA and FAM, these category regions

and their associated properties are valid for later-developed

(than FA and FAM) ART neural network structures, such as

ARTEMAP, ARTMAP-IC, Boosted ARTMAP, Micro-

ARTMAP, Ellipsoid-ART/ARTMAP, among others. In

the sequel, we will assume that the reader is already

familiar with the basic elements and functionality of

FA/FAM.

The rest of the paper is organized as follows. In Section

2, we provide limited, but necessary background regarding

the concept of FA categories. Section 3 formally defines the

CT as the competition with an uncommitted node in the F2

layer of an FA module. In Section 4, we introduce the

concept of category regions and mention some of their most

interesting properties. Section 5 presents a group of results

that are based on the idea of category regions and apply to

both FA and FAM. A comprehensive summary of the

presented material is being provided in Section 6. Finally,

proofs of selected category region, properties and results

can be found in Appendix A.

2. Fundamentals of FA categories

We begin this section by introducing some useful

notation. If A and B are two sets, then by A # B (A , B)

we mean that A is a (proper) subset of B and A 2 B denotes

the set {x [ A but x � B}. Let R be the set of real numbers

and U M [ [0,1]M denote the closure of the M-dimensional

unit hyper-cube that serves as an input space for any FA

module (network). A block diagram of such a module is

displayed in Fig. 1. We define as l·l : U2M ! R to be the L1-

norm for the U2M domain; the same notation is also going to

be used for the U M domain L1-norm. Additionally, we

define the Fuzzy-min-operator ^ : U2M £ U2M ! U2M ; such

that, if w1, w2 [ U 2M and w3 ¼ w1 ^ w2; then the mth

component w3m of vector w3 is w3m ¼ min{w1m;w2m}: A

pattern serving as an input to an FA module will be denoted

as x and xc ¼ ½x 1 2 x� [ U2M will denote its complement

coded form, where 1 is the all-ones vector. Note that lxcl ¼
M for all x. Complement coding occurs in an FA module’s

F0 layer, as shown in Fig. 1, and vector x c serves as the input

vector to the F1 layer. All aforementioned quantities are row

vectors. The information describing each FA category j of

an FA module is stored in a template, which is a vector of

the form wj ¼ ½uj 1 2 vj� [ U2M and uj, vj [ U M. A

template wj is the top-down weight vector related to the

connections from the jth node in the F2 layer to all nodes in

Table 1

Comparison of match and choice region properties

Category match region properties Category choice region properties

Match region size depends on category size and is tunable

via r. Ranges from size 0 to the entire input domain.

Choice region size depends on category size and is tunable

via a and wu. Ranges from size 0 to the entire input domain.

Upon category update (expansion), the match region contracts. Upon category update (expansion), the new choice region is not

completely contained in the original one.

The match region enforces a maximum category size of M(1 2 r). The choice region enforces a (not-attainable) least upper bound for

category sizes of ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ:

After a category update (expansion), patterns that used to be

located outside the original match region, will also

be outside the new match region.

After a category update (expansion), there will be patterns that

used to be located outside the original choice region, but

will be inside the new choice region.

The regions’ definitions are of the same form, thus, they

are of same shape, but have different radii.

Both regions always contain the representation region.

Upon category update (expansion), the

regions’ hyper-volume decreases.
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the F1 layer. Due to FA/FAM’s learning schemes, for every

template it always holds that ujm # vjm with m ¼ 1;…;M:

The F2 layer consists of two kinds of nodes: committed

and uncommitted. Committed nodes store information in

their templates about previously experienced evidence

gathered from the module’s input domain. In particular,

templates of committed nodes store the description of FA

categories. These categories are the FA module’s exemplars

that summarize subsets of input patterns presented to the

module during training. There is a one-to-one correspon-

dence between FA categories and committed nodes in the F2

layer of each FA module. On the other hand, uncommitted

nodes in the F2 layer of FA modules do not correspond to

real categories and represent the ‘blank’ memory of the

system. Moreover, uncommitted nodes feature a template

of wu ¼ wu1 [ U2M ; where wu $ 1 is one of the module’s

parameters. A popular choice of this parameter is wu ¼ 1:

Note that before the commencement of a module’s training

phase all nodes in the F2 layer are uncommitted. As new,

‘unseen’ information is revealed to the networks about their

environment, learning progresses in FA/FAM by gradually

updating already existing categories and by committing

uncommitted nodes, so that new categories are founded.

We continue by defining the size s(wj) of a category j with

template wj as

sðwjÞ ¼ M 2 lwjl ¼ lvj 2 ujl ¼
XM
m¼1

ðvjm 2 ujmÞ ð1Þ

where lwjl is the template size of category j. Note that for

every input pattern x [ U M and template wj it holds

lwjl ¼ M 2 lvj 2 ujl ¼ M 2
XM
m¼1

ðvjm 2 ujmÞ;

lxc ^ wjl ¼ M 2
XM
m¼1

½max{xm; vmj} 2 min{xm; umj}�

ð2Þ

Based on Eqs. (1) and (2), we define as the distance of a

pattern x [ U M from a category with template wj the

quantity

disðx;wjÞ ¼ lwjl2 lxc ^ wjl ¼
XM
m¼1

½ðmax{xm; vjm} 2 vjmÞ

þ ðujm 2 min{xm; ujm}Þ�

ð3Þ

Notice that for any x [ U M and any category with template

wj it holds 0 # dis(x,wj) # M. Utilizing Eqs. (1) and (3) we

can reformulate Eq. (2) as

lwjl ¼ M 2 sðwjÞ; lxc ^ wjl ¼ M 2 sðwjÞ2 disðx;wjÞ

ð4Þ

It has been shown by Carpenter et al. (1991, 1992) that FA

categories can be geometrically represented as hyper-

rectangles embedded in the FA module’s input space U M.

An example, when M ¼ 2; is shown in Fig. 2.

The union of the shaded area in Fig. 2 and the boundaries

of the rectangle defined by uj and vj, is called representation

region of category j. Also depicted in the same figure,

dis(x,wj) reflects the minimum L1 distance (also known as

city-block or Manhattan distance) between pattern x and

category’s j representation region. Note that, if x were inside

or on the borders of the rectangle, its distance from category

j would have been 0, therefore a more formal definition for

the representation region can be stated as follows.

Definition 1. We define as category representation region

Rj ¼ RðwjÞ of a category j with template wj the following

subset of U M:

RðwjÞ ¼ {x [ UM lxc ^ wj ¼ wj} , RðwjÞ

¼ {x [ UM ldisðx;wjÞ ¼ 0} ð5Þ

To incorporate new evidence in the form of a training

pattern, an FA category increases its representation region

size and simultaneously reduces the distance between the

pattern and the region. The learning law that implements

Fig. 1. Block diagram of a Fuzzy-ART module.

Fig. 2. Geometric representation of FA category j assuming a two-

dimensional input domain. The shaded area constitutes the representation

region of j and the size of j equals the city-block distance between the

category’s template elements uj and vj. Also shown in this figure is the

distance dis(wj,x) of a pattern x from j, which is defined as the minimum

city-block distance of x from the representation region of j. If x were inside

the representation region, the distance from j would have been zero.
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this idea for a category j being updated due to a pattern x is

wnew
j ¼ g xc ^ wold

j

� �
þ ð1 2 gÞwold

j ð6Þ

where g [ (0,1] is a learning rate parameter. From Eqs.

(1)–(3) and (6), we deduce that after a category has been

updated due to a pattern x it holds

s wnew
j

� �
¼ s wold

j

� �
þ g dis x;wold

j

� �
ð7Þ

dis x;wnew
j

� �
¼ ð1 2 gÞdis x;wold

j

� �
ð8Þ

As a special case, when g ¼ 1 (fast learning assumption), a

category j that will be modified upon presentation of pattern

x will increase its size so that its new representation region

contains x. In such a case, we say that the updated category j

encodes pattern x. In all other cases, where g , 1 (slow

learning assumption), we will say that pattern x updated or

modified category j. Fig. 3 shows these two cases in a two-

dimensional setting.

In Fig. 3, under slow learning, pattern x modifies wj
old to

wj
new1, while under fast learning category j expands enough

to encode x and updates wj
old to wj

new2. Due to how learning

occurs in FA and FAM, categories are never destroyed

during the training phase and can only increase in size;

destruction (elimination) of a category would be equivalent

to partial loss of the FA module’s memory. As can be

noticed in Fig. 3, the new representation region of a

category that has been updated includes the previous one for

any value of g [ (0,1]. Expressed in terms of sets, if

x � R(wj
old) and category j is being updated due to x as in

Eq. (6), then Rðwold
j Þ , Rðwnew

j Þ: Otherwise, if x [ R(wj
old),

then Rðwold
j Þ ¼ Rðwnew

j Þ for any g [ (0,1]. This implies that

R(wj
old) # R(wj

new) for any x [ U M and under any learning

assumption.

Two important quantities related to FA categories are the

category match function r(wlx) (CMF) and the category

choice function T(wlx) (CCF—also known as bottom-up

input or activation function) of a category with template w

with respect to an input pattern x, which are defined below:

rðwlxÞ ¼
lxc ^ wl

M
ð9Þ

TðwlxÞ ¼
lxc ^ wl
lwlþ a

ð10Þ

In Eq. (10), a . 0 is defined as the choice parameter of the

module. Based on Eq. (4), the CMF and CCF can be

alternatively expressed via geometry-based quantities as

rðwlxÞ ¼
M 2 sðwÞ2 disðx;wÞ

M
ð11Þ

TðwlxÞ ¼
M 2 sðwÞ2 disðx;wÞ

M 2 sðwÞ þ a
ð12Þ

The above functions play a central role in the two phases of

operation of an FA module (training and performance). The

CMF value of a category with respect to an input pattern is

the quantity used in comparison to the FA module’s

(baseline) vigilance parameter r [ [0,1]. On the other

hand, a category’s CCF value of a category with respect to a

pattern x is used to determine the winning node in the F2

layer of FA modules during node competition for x. Both

committed and uncommitted nodes participate in the

competition. The node featuring the highest CCF value is

eventually chosen, unless it is committed and gets reset, as

we will explain later. In the latter case, the competition will

be repeated, until a non-reset node is found featuring the

highest CCF value (repetitive category search process).

During the training phase in FA modules only the non-reset

winning node will become updated by training pattern x

(winner-take-all scheme). In case of a tie among nodes, the

one with smallest index j is finally chosen.

3. The commitment test

The comparison of CMF values to the vigilance

parameter r, which we mentioned earlier, constitutes the

VT. The VT acts as a screening device for categories after

the node competition has taken place. A winning committed

node j failing the VT with respect to a pattern x during either

the training or performance phase can be interpreted as

follows: x does not fit the characteristics of category j and,

therefore, the node is being reset via the reset node in Fig. 1

and disqualified from the node competition for x. If all

committed nodes become reset after the competition for a

pattern x, an uncommitted node will be chosen, which

signifies that none of the existing categories was able to

Fig. 3. FA category modifications—slow versus fast learning. Here we

illustrate the two types of learning, when a pattern x updates category j with

original template wold
j ¼ ½uold

j 1 2 vold
j �; its representation region is

displayed dark-shaded. Under fast learning assumption ðg ¼ 1Þ category

j’s representation region will expand to include x and j’s template will be

updated to wnew2
j ¼ ½unew2

j 1 2 vnew2
j �: Using slow learning (0 , g , 1) j’s

will have its template updated to wnew1
j ¼ ½unew1

j 1 2 vnew1
j �; which will

cause its representation region to expand towards x, so that its new size will

become sðwold
j Þ þ g disðx;wold

j Þ (according to Eq. (7)) and x’s distance from

j will reduce (according to Eq. (8)) to ð1 2 gÞdisðx;wold
j Þ: The template

update in both cases of learning follows the learning rule depicted in Eq.

(6).

G.C. Anagnostopoulos, M. Georgiopoulos / Neural Networks 15 (2002) 1205–1221 1209



explain the presence of x, therefore a new category must be

created. Thus, the VT can be regarded as a tunable, novelty

detection mechanism that points out atypical patterns with

respect to existing categories in the FA module. The VT is

expressed as

rðwjlxÞ $ r ð13Þ

Categories fail the test, when their CMF value is less than r.

Since it can be shown that 0 # r(wlx) # 1, for a value of

r ¼ 0 all categories will pass the VT for any pattern

presented, which is practically equivalent to omitting the

VT node/category filtering operation altogether. The higher

the value of r, the more node filtering occurs via the VT.

Due to Eq. (9), uncommitted nodes feature a constant CMF

value of

ru ¼ rðwulxÞ ¼ 1 ð14Þ

which means that they pass the VT for all values of

r [ [0,1] and will never get reset. This fact implies that if

none of the committed nodes pass the VT for x, then an

uncommitted node will be chosen. During training phase,

the winning uncommitted node j will get committed by

having its template updated to wj ¼ xc ¼ ½x 1 2 x� (fast

commit) and will form a new category encoding a single

pattern.

However, the VT is not the only novelty detection device

in FA modules, as we will demonstrate shortly. Note that,

due to Eq. (10), uncommitted nodes feature a constant CCF

value of

Tu ¼ TðwulxÞ ¼
M

2Mwu þ a
ð15Þ

for all patterns x of the input space. Occasionally the

winning node will be an uncommitted one, which also

means that the existing categories could not satisfactorily

explain the just presented pattern (Georgiopoulos et al.,

1996). Therefore, the competition of committed nodes

against uncommitted can be thought as an implicit novelty

detection mechanism, in contrast to the VT, which is an

explicit one. In order for a category j to have a chance of

being selected by a pattern and be the one that best explains

the presence of this pattern, apart from having a CMF value

larger or equal to r, it must also have a CCF value higher

than or equal to the one of uncommitted nodes, that is,

TðwjlxÞ $ Tu ð16Þ

For this reason, we can view the above comparison of CCF

values as a test similar to the VT, which determines if a

category j has the potential to be chosen. Motivated from

our discussion so far, we can formally define the

competition between a committed and an uncommitted

node as a test similar to the VT.

Definition 2. We define as CT of a category j featuring a

template wj with respect to an input pattern x the comparison

of its CCF value, T(wjlx), to the CCF value of an

uncommitted node, Tu. We say that category j passes the

CT, when T(wjlx) $ Tu.

It can be shown that 0 # T(wjlx) # M/(M þ a) , 1 and

0 , Tu , 1/2. Additionally, from Eq. (15), when wu ! 1,

then Tu ! 0 and the CT is satisfied by any committed node.

The smaller the value of wu, the stricter the node filtering

that is being performed via the CT. Comparing to the VT, wu

plays the same role as r in the VT, thus wu can be regarded

as the tuning parameter of the CT.

According to what we have presented so far, if a

category does not pass the VT and/or the CT with respect

to a pattern x, it is guaranteed that this particular category

will not be chosen upon presentation of x. Furthermore,

when both r ¼ 0 and wu ! 1, we conclude that (i) during

training of an FA module an uncommitted node will only

be selected by the first training pattern presented, which

will find a category (all remaining patterns will select this

one and only category) and (ii) during performance no

uncommitted node will ever be chosen. This particular

setting of r and wu must be used for the performance phase

of FAM classifiers, when an ‘unknown’ class label

response is unacceptable and all test patterns have to be

classified as belonging to one of the existing classes. As a

reminder, when a test pattern selects an uncommitted node

during performance phase, this pattern is proclaimed as

atypical in comparison to the training patterns seen by the

network during training; in the case of an FAM classifier,

the pattern cannot be classified.

4. Fuzzy-ART category regions

In Section 3, we have talked about the geometric

representation of FA templates and we have described the

update of a category due to a training pattern by geometric

means. We also have formally defined a category’s

representation region, which corresponds to all the points

in the input domain the category already encodes. A major

contribution of our work is the introduction of additional

regions as new geometric concepts related to FA categories.

By expressing the VT and CT using geometric quantities via

Eqs. (11) and (12), we will define FA category regions,

which attribute a geometric facet to both tests. Their

purpose is to explain the circumstances in a geometrical

framework, under which a category has a potential to be

chosen and increase our understanding of FA and FAM

operations.

4.1. The category match region

Next, we will proceed with a definition that adorns the

VT with a new geometrical interpretation. Proofs of selected

properties regarding the match region, as well as regarding

other regions presented in the sequel, are supplied in

Appendix A.
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Definition 3. We define as category match (vigilance)

region Vj ¼ VðwjlrÞ of a category j with template wj for a

particular value r of the vigilance parameter the following

subset of U M:

VðwjlrÞ ¼ {x [ UMlrðwjlxÞ $ r}

,
VðwjlrÞ ¼ {x [ UMldisðx;wjÞ # dV ðwjlrÞ}

dV ðwjlrÞ ¼ Mð1 2 rÞ2 sðwjÞ

8<
:

9=
;

ð17Þ

We call the quantity dV(wjlr) the radius of the match

(vigilance) region. It stands for the maximum L1 distance

that a pattern x can have from the category’s representation

region, so that category j passes the VT for a vigilance

parameter value of r. Based on Definition 3 we can replace

the algebraic definition of the VT, as shown in Eq. (13), with

a geometric one.

Geometric definition of the vigilance test. An FA

category j with template wj passes the VT with respect to

an input pattern x [ U M for a particular value r of the

vigilance parameter, if and only if x [ V(wjlr).

From the previous definition, a match region’s size is

parametrically affected only by r. More specifically, the

match region radius is a monotonically decreasing function

of r. The larger the value of the vigilance parameter is, the

smaller the radius of the match region for constant category

size. The following property reflects in some aspect this fact

by examining the two extreme values for r.

Property 1. For r ¼ 0 the match region of any category j

coincides with the entire input domain. For r ¼ 1 a

category’s match region includes only the pattern that

created the category. Stated in terms of sets:

If r ¼ 0 ) Vðwjl0Þ ¼ UM ;wj;

If r ¼ 1 ) sðwjÞ ¼ 0 and Vðwjl1Þ ¼ {uj} ¼ {vj} ;wj

ð18Þ

The first part of the property restates the fact that for r ¼ 0

any category will pass the VT for any pattern of the input

domain. The second part refers to the case where FA/FAM

creates categories as many as training patterns during its

training phase regardless of the value of a (Carpenter et al.,

1992). Under this condition, no category will pass the VT

for patterns that are not already encoded.

Assuming a constant value of r, we observe that the

match region radius decreases with increasing category size.

Also, if dV(wjlr) , 0 the match region is the empty set B,

which implies that category j will never pass the VT for any

pattern, even for the ones it already encodes in its

representation region. However, this can never be the case

in an FA network. The above observations hint that the

match region enforces a maximum category size, which is

controlled by the value of r.

Property 2. The category match region imposes a maximum

on category sizes equal to Mð1 2 rÞ for all FA categories.

We continue with a property that relates the match region

to the representation region of a category.

Property 3. For an FA category j with template wj it holds

that RðwjÞ # VðwjlrÞ ;r [ ½0; 1�: It holds that RðwjÞ ¼

VðwjlrÞ; if and only if sðwjÞ ¼ Mð1 2 rÞ.

We know at this point that the match region always

contains the representation region, which explains a previous

result that a category will pass the VT for all patterns it already

encodes. In the case, where RðwjÞ ¼ VðwjlrÞ; category j will

never pass the VT for any pattern outside its representation

region. Also, upon presentation of patterns inside its

representation region, due to the learning law in Eq. (6), the

category will not get modified. Therefore, if RðwjÞ ¼ VðwjlrÞ;
category j cannot be updated due to the presentation of any

training pattern, since it has reached its maximum size with

respect to the VT, and is called stagnant.

Category region illustrations for a general case of wj

when M ¼ 2 and M ¼ 3 are given in Figs. 4 and 5,

respectively. In Fig. 4 the union of both shaded areas

constitutes the match region of the category depicted, while

Fig. 4. Match region of a template j in two dimensions. The match region of

j consists of all points of the input pattern space, for which j would pass the

VT. As seen in the figure, the match region of j (the union of the light- and

dark-shaded regions) contains its (dark-shaded) representation region in

concordance with Property 3. Here, dV(wjlr) stands for the match region

radius of j, which depends on the category’s size s(wj) as well as on r (as

shown in Eq. (17)) and equals the maximum city-block distance a pattern

can have from j, so that j will marginally pass the VT. The larger j’s size

and/or larger the value of r, the smaller the radius. When the radius equals

zero, the match region coincides with the representation region and j is

prohibited from further expanding due to other patterns, since it will fail the

VT for any presented input pattern outside its representation region.

Finally, note that, in the general case, j’s choice region would have the same

shape as the match region depicted in this figure featuring, however, a

different radius.
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dV(wjlr) denotes the match region radius. The match

region’s boundary represents all points, for which the

category will barely pass the VT. The most general case of a

match region embedded in a three-dimensional space has 26

facets and is depicted in Fig. 5. We state here without proof

that for higher dimensionalities of the input space (higher

values of M) the match region’s boundary is a convex

polytope with its axes of symmetry parallel to the

corresponding ones of the coordinate system. We continue

with Property 4, which describes the relationship of a

category’s match region before and after an update due to a

pattern belonging to the category’s original match region.

Note that, when we refer to slow learning, we actually mean

fast-commit/slow-recode learning (Carpenter et al., 1991,

1992), i.e. only committed nodes are being updated via Eq.

(6), while uncommitted ones become committed in the way

we described earlier.

Property 4. During the training phase and for fast learning

or slow learning using fast-commit, the match region of any

FA category contracts, whenever the category is being

updated due to a training pattern located inside its match

region, but outside the category’s representation region.

Stated in terms of sets, for any FA category j with template

wj
old and any pattern x [ V(wj

oldlr) it holds that

Vðwnew
j lrÞ # V(wj

newlr) # V(wj
oldlr) ;r [ [0,1] and any

g [ (0,1], where wnew
j ¼ ð1 2 gÞwold

j þ gðxc ^ wold
j Þ: Speci-

fically, it holds that

ðaÞ x [ R


wold

j

�
, V



wnew

j lr
�
¼ V



wold

j lr
�
;

ðbÞ x [ V


wold

j lr
�
2 R



wold

j

�
, V



wnew

j lr
�
, V



wold

j lr
� ð19Þ

Since match regions are contracting, whenever their related

representation regions expand, an immediate result of

Property 4 is the following.

Property 5. During the training phase and under fast or

slow learning with fast-commit, the match region’s hyper-

volume of any FA category decreases, whenever the

category experiences an update due to a pattern located

inside its match region, but outside the category’s

representation region, i.e. if x [ Vðwold
j lrÞ2 Rðwold

j Þ; then

VolðVðwnew
j lrÞÞ , VolðVðwold

j lrÞÞ ;r [ ½0; 1� and g [
ð0; 1�; where wnew

j ¼ ð1 2 gÞwold
j þ gðxc ^ wold

j Þ:

An example of a two-dimensional match region con-

tracting is shown in Fig. 6, where a representation region

expands due to category’s j update and its match region

decreases in volume (for two dimensions, in surface), while

it remains contained in the original match region. Observe

that, although x1 was inside the original match region before

the expansion, the category will fail the VT with respect to

x1 after the update, since x1 does not belong to the new

match region. Hence, x1 will never cause an update to this

category, if it is presented again in the future. Finally, notice

that the category will never pass the VT for x2 regardless of

future updates, since its match region always contracts.

4.2. The category choice region

So far we have highlighted some aspects of the match

region, which relate directly to the notion of the VT. A

similar development as in Definition 3 can be performed for

the CT by using Eq. (12), which expresses the CCF in

geometric quantities.

Definition 4. We define as category choice (commitment)

region C(wjla,wu) of a category j with template wj for

particular values a of the choice parameter and wu the subset

of U M depicted in Eq. (20)

In other words, C(wjla,wu) stands for all points of the input

space, for which the category j with template wj would

satisfy the CT, for parameter values a and wu. Points, for

which TðwjlxÞ ¼ Tu; lie exactly on the boundary of the

choice region. Due to the region’s definition, a category

would loose the competition against an uncommitted node

with respect to any pattern outside its choice region. The

quantity dC(wjla,wu) in Eq. (20) is called the radius of the

choice (commitment) region. In light of Definition 4, the CT

can be geometrically redefined as shown below.

Geometric definition of the commitment test. An FA

Fig. 5. General form of a category’s match region in three dimensions. The

geometric shape consists of 26 faces, its axes of symmetry coincide with the

ones of the coordinate system and it encloses the category’s representation

region (as expected by Property 3). In the general case, the category’s

choice region would feature a similar shape in a three-dimensional pattern

space.

Cðwjla;wuÞ ¼ {x [ UMlTðwjlxÞ $ Tu} ,

Cðwjla;wuÞ ¼ {x [ UM ldisðx;wjÞ # dCðwjla;wuÞ}

dCðwjla;wuÞ ¼
ð2wu 2 1ÞM þ a

2Mwu þ a

ð2wu 2 1ÞM2

ð2wu 2 1ÞM þ a
2 sðwjÞ

" #
8>><
>>:

9>>=
>>; ð20Þ
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category j with template wj passes the CT with respect to a

pattern x [ U M for a particular value a of the choice

parameter and a particular value of wu if and only if

x [ C(wjla,wu).

Due to their definitions, match and choice regions are

very similar to each other (apart from some minor

differences), as it will become obvious in the sequel. For

example, observations similar to the ones that we have

stated for the match region radius can be stated for

dC(wjla,wu) as well. A choice region’s radius is also a

monotonically decreasing function of a; the larger the value

of the choice parameter, the smaller the radius for constant

category size. This verifies a well-known result in the FA

and FAM literature that as a increases it is more likely to

access an uncommitted node than an already committed

node. The opposite holds for the value of wu. Property 6 is

the counterpart of Property 1 for choice regions.

Property 6. For wu ! 1 the choice region of any category j

coincides with entire input domain. For a ! 1 a category’s

choice region includes only the pattern that created the

category. Stated in terms of sets:

If wu !1 ) Cðwjla;1Þ ¼ UM ;wj;

If a !1 ) sðwjÞ ¼ 0 and Cðwjl1;wuÞ ¼ {uj} ¼ {vj}

;wj ð21Þ

According to the previous property, when wu ! 1, any

category will pass the CT for any input pattern and when

a ! 1, FA/FAM creates categories as many as training

patterns during its training phase regardless of the

vigilance’s value, since no category will pass the CT for

patterns that are not already encoded. An interesting relation

between a category’s match and choice region is given in

the next statement.

Property 7. For any FA category j and any a . 0, when

r ¼ 0 and wu ! 1, its match region coincides with its

choice region, that is, Cðwjla;1Þ ¼ Vðwjl0Þ ¼ UM :

For a two- and three-dimensional category, the choice

region of a category would resemble in shape to the match

region depicted in Figs. 4 and 5, respectively. This is

because both sets are of the same form {x [
UMldisðx;wÞ # dðr; a;wuÞ}; they only differ in radii. The

choice region’s counterpart of Property 2 is stated as

follows.

Property 8. During training using fast or slow learning

with fast-commit, the category choice region imposes a least

upper bound on category size equal to ðð2wu 2

1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ for all FA categories.

Property 8 tells us that, if the VT had been disabled

during the training phase of an FA module, all category

sizes would satisfy sðwÞ , M2=ðM þ aÞ due to the CT.

Notice that this bound is not attained by any category, which

contrasts the attainable bound of M(1 2 r) enforced by the

VT in Property 2. In analogy to Property 3, the relationship

Fig. 6. Contraction of match region in two dimensions. The figure depicts a category j having a template of wold
j ¼ ½uold

j 1 2 vold
j � and dark-shaded

representation region. The category is being updated using either slow or fast learning due to a pattern, which is not shown here, and its template becomes

wnew
j ¼ ½unew

j 1 2 vnew
j �: Both initial (Vj

old) and post-update (Vj
new) match regions are represented as the union of light- and dark-shaded areas in (a) and (b),

respectively. (b) demonstrates that Vj
new is fully contained within Vj

old, which is in agreement with Property 4. In other words, a category’s match region

contracts after being updated, which also implies that the match region’s hyper-volume (for two-dimensional pattern space, surface area) decreases after an

update (see Property 5). The contraction effect may cause the updated category j to fail the VT with respect to some specific patterns (like x1 in the figure), even

though it would have passed it with respect to the same patterns prior to the update. Also due to the match region’s contraction, j will obviously fail the VT for a

pattern x2 after the update, if it would have failed it with respect to the same pattern prior to the update (relates to Result 1).
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of the choice region with the representation region is

expressed in the following.

Property 9. For any FA category j with template wj it holds

RðwjÞ , Cðwjla;wuÞ ;a . 0; wu $ 1:

As stated above, a category’s representation region will

always be included in its choice region, which means that,

for a pattern already encoded in a category, an uncommitted

node will never be chosen during training. Notice that there

is no counterpart to Property 4 for the choice region,

because, as it can be illustrated graphically, after a category

has been updated, the new choice region does not

completely lie within the previous one, that is, choice

regions do not contract after template updates take place.

However, the following property is analogous to Property 5.

Property 10. During the training phase and under fast or

slow learning with fast-commit, the choice region’s hyper-

volume of any FA category decreases, whenever the

category experiences an update due to a pattern located

inside its choice region, but outside the category’s

representation region, i.e. if x [ Cðwold
j la;wuÞ2

Rðwold
j Þ; then VolðCðwnew

j la;wuÞÞ , VolðCðwold
j la;wuÞÞ

;a . 0; wu $ 1 and g [ ð0; 1�; where wnew
j ¼ ð1 2

gÞwold
j þ gðxc ^ wold

j Þ:

Again, an example of the above statement in two

dimensions is given in Fig. 7, which illustrates the fact

that, although the choice region decreases in hyper-volume

(surface, in two dimensions), it is not completely contained

in the category’s original choice region. As was the case

with the match region in Fig. 6, x1 belongs to the original

choice region, but after the category’s update finds itself

outside. The exact opposite happens to pattern x2, which can

never happen for match regions.

A summary of the regions’ properties is presented in

Table 1, which highlights similarities, as well as a few

differences between the two regions. A major difference is

that upon a category update, although the hyper-volume of

both its match and choice regions decreases, only its match

region contracts.

So far we have examined both the VT and the CT

separately in terms of their associated regions and the results

imply that both perform analogous functionality: they

regulate for which and for how many points a particular

category will pass the VT or the CT. From that aspect the

coexistence of the VT and CT seems to bear a redundancy in

functional role. However, the absence of one or the other

would produce different results during an FA module’s

training phase. We saw earlier that when r ¼ 0 any category

in an FA module will pass the VT, in essence inhibiting

VT’s novelty detection role. A similar statement holds for

the CT, if wu ! 1. Training an FA module using r ¼ 0 (no

VT) in one case and training it using wu ! 1 (no CT) in

another case would lead to two architectures most likely

differing not only in the structure of the categories but also

in the number of categories that would have been created.

This is mainly because only match regions contract, while

choice regions do not (see Figs. 6 and 7) resulting in two

different ways of category expansion.

4.3. The category claim region

A category j may be chosen upon presentation of x, if at

least it passes both the VT and CT, as we have seen in

Fig. 7. Hyper-volume decrease of choice region in two dimensions. This figure is analogous to Fig. 6, but instead features choice regions. It displays a category j

having a template of wold
j ¼ ½uold

j 1 2 vold
j � and dark-shaded representation region. A pattern (not actually shown) causes the update of j either via slow or fast

learning so that its template becomes wnew
j ¼ ½unew

j 1 2 vnew
j �: Both initial (Cj

old) and post-update (Cj
new) choice regions of j are represented as the union of light-

and dark-shaded areas in (a) and (b), respectively. (b) demonstrates that, in agreement with Property 10, the hyper-volume (for two-dimensional pattern space,

surface area) of j’s choice region decreases after the category’s update. In contrast to j’s match region, its choice region does not contract after a template

update, since Cj
new may include patterns like x2, which do not belong to Cj

old.
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Section 3. According to the geometric definitions of the VT

and the CT, we have given so far, this is equivalent to the

pattern x belonging to both match and choice region of j. If x

is located outside at least one of those two regions, then j

will either fail the VT (x � V(wjlr)), or j will lose the

competition against the uncommitted node, since it fails the

CT (x � C(wjla)), or both. Therefore, it is natural to define a

new category region, which will include all points common

to both the match and choice regions.

Definition 5. We define as category claim region L(wjlr,a,wu)

of an FA category j with template wj for a particular

vigilance value r, choice parameter a and wu the following

subset of U M:

Lðwjlr; a;wuÞ ¼ VðwjlrÞ> CðwjlaÞ

,

8<
:

Lðwjlr; a;wuÞ ¼
�
x [ UMldisðx;wjÞ # dLðwjlr; a;wuÞ

�
dLðwjlr; a;wuÞ ¼ min{dV ðwjlrÞ; dCðwjla;wuÞ}

9=
;

ð22Þ

As expected, the quantity dL(wlr,a,wu) is called the radius

of the claim region, which also decreases, when a category’s

size increases. By virtue of Properties 1 and 6, an immediate

observation regarding the category claim region is that

Lðwjl0; a;1Þ ¼ UM : The next property links the newly

defined region with the match and choice regions.

Property 11. The claim region of an FA category j with

template wj coincides either with the category’s match

region or its choice region depending on the value of the

vigilance parameter r, the value of the choice parameter a,

the value of wu and, under certain circumstances, on the

category’s size s(wj). In more detail, if we define as sthres ¼

ð2Mwu þ aÞð1 2 rÞ2 ð2wu 2 1ÞM; then for a . 0 and

wu $ 1 we discriminate three major cases:

1. If 0 # r # a=½ð2wu 2 1ÞM þ a�; then Lðwjlr; a;wuÞ ¼

Cðwjla;wuÞ:

2. If a=½ð2wu 2 1ÞM þ a� , r , ðM þ aÞ=ð2Mwu þ aÞ

(2a) If sðwjÞ , sthres; then Lðwjlr; a;wuÞ ¼ Cðwjla;wuÞ:

(2b) If sthres , sðwjÞ; then Lðwjlr; a;wuÞ ¼ VðwjlrÞ:
(2c) If sðwjÞ ¼ sthres; then Lðwjlr; a;wuÞ ¼

Cðwjla;wuÞ ¼ VðwjlrÞ:
3. If ðM þ aÞ=ð2Mwu þ aÞ # r # 1; then Lðwjlr; a;wuÞ ¼

VðwjlrÞ:

Property 11 proclaims that the claim region, depending

on which region it coincides with (match or choice region),

exhibits analogous properties, as depicted in Table 1. It is

also fundamental to some aspects related to the operation of

FA/FAM networks, as it is shown in Section 5.

5. Property-based results for FA/FAM

The category regions along with their properties that we

have presented so far are sufficient to describe under what

conditions a category will be eligible to be chosen upon

presentation of a particular pattern during the training and

performance phase of FA/FAM. All the results of this

section apply for FA modules with parameters r [ [0,1],

a . 0, wu $ 1 and g [ (0,1], unless otherwise specified. An

immediate result stemming from Property 4 is provided

below.

Result 1. During FA/FAM off-line training or perform-

ance phase, if in a particular list presentation a category j

does not pass the VT for a pattern x and a specific value

of the vigilance parameter r, then j will never pass the

VT in future list presentations for the same pattern x and

value of r.

The following statement comes as an immediate result of

Definition 5 and Property 11.

Result 2. Upon presentation of pattern x during training or

during the performance phase of an FA/FAM network, in

order to determine if a particular FA category j with

template wj may have the potential to be chosen, it suffices

to perform only one of the two tests (VT, CT), since

satisfaction of one will imply concurrent satisfaction of the

other one. If we define as sthres ¼ ð2Mwu þ aÞð1 2 rÞ2

ð2wu 2 1ÞM; then the sufficient test to be performed depends

on the values of the network parameters as follows:

1. If 0 # r # a=½ð2wu 2 1ÞM þ a�; then it suffices to per-

form only the CT.

2. If a=½ð2wu 2 1ÞM þ a� , r , ðM þ aÞ=ð2Mwu þ aÞ and

(2a) if sðwjÞ , sthres; then it suffices to perform only

the CT.

(2b) If sthres , sðwjÞ; then it suffices to perform only

the VT.

(2c) If sðwjÞ ¼ sthres; then perform either the CT or the

VT.

3. If ðM þ aÞ=ð2Mwu þ aÞ # r # 1; then it suffices to

perform only the VT.

The above result states that, when a category satisfies the

VT, it will also automatically satisfy the CT (with respect to

the same pattern) and vice versa depending on the

circumstances outlined. From Result 2 we conclude that,

when wu ! 1, only the VT is necessary for all categories

and all (r,a). Some further implications of the previous

result are presented in Results 3 and 4.

Result 3. Let us define as wu-insensitive parameter region

the set {ðr; aÞ [ ½0; 1� £ ð0;1Þla [ ð0;1Þ; ðM þ aÞ=

ð2Mwu þ aÞ # r # 1}: If some FA module, which is part

of an FA/FAM network, operates in the wu-insensitive
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region of the (r,a) parameter space, then the outcome of the

training (under any learning assumption) and performance

phases does not depend on the particular value of wu.

When using values for the vigilance and choice

parameters from within the wu-insensitive region, an

uncommitted node will be accessed and will form a new

category only because all other existing committed nodes

fail the VT for a presented pattern. Another immediate

result of Result 2 follows in Result 4. Observe that the

vigilance r is used in FA/FAM only for the performance of

the VT. In case (1) of Result 2 we notice that, if a category

passes the CT with respect to a certain pattern, then the

corresponding VT will automatically be satisfied as well.

This fact leads us to the following result.

Result 4. Let us define as r-insensitive parameter region

the set {ðr; aÞ [ ½0; 1� £ ð0;1Þla [ ð0;1Þ; 0 # r # a=

½ð2wu 2 1ÞM þ a�}: If some FA module, which is part of

an FA/FAM network, operates in the r-insensitive region of

the (r,a) parameter space, then for any wu $ 1 the outcome

of the training (under any learning assumption) and

performance phases does not depend on the particular

value of r.

Result 4 tells us, for example, that, if an FA/FAM

network operates in the r-insensitive region, the number and

the structure of the categories it is going to create during

training, as well as the number of list presentations required

for fast learning convergence, does not depend on the

specific value of r. Another example would be that, under

the same parameter settings, the classification results of an

FAM classifier are independent of the particular value of r

used in its ARTa module (Carpenter et al., 1992) during

performance phase. An important observation is that the r-

insensitive region vanishes, when wu ! 1. Finally, one

more result directly derived from Property 11 is the

following result pertaining to the maximum size of

categories that can be constructed during training.

Result 5. For an FA/FAM network, where uncommitted

nodes participate in the competition for pattern selection,

the size of FA categories attained via training is limited by

the following rules:

1. If 0 # r # a=½ð2wu 2 1ÞM þ a�; then the size of any

category has a least upper bound of ðð2wu 2

1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ; that is, sðwÞ , ðð2wu 2

1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ:

2. If a=½ð2wu 2 1ÞM þ a� , r # 1; then sðwÞ # Mð1 2 rÞ:

Both statements can be combined in a single inequality

sðwÞ # M 1 2 max r;
a

ð2wu 2 1ÞM þ a

� �� �
# Mð1 2 rÞ

ð23Þ

The previous statement blends two independent results

reported earlier in the literature. Case (1) is mentioned in

Georgiopoulos et al. (1996), where it is not combined with

case (2). Also, case (1) is a refinement of what has been

reported in Carpenter et al. (1992), where it is implied that

sðwÞ # Mð1 2 rÞ for all values of r [ [0,1] and a [ (0,1).

Fig. 8 displays different regions of the (r,a) parameter plane,

which relate to the results of this section. The curves

graphed are r ¼ f1ða;wuÞ ¼ a=½ð2wu 2 1ÞM þ a� and r ¼

f2ða;wuÞ ¼ ðM þ aÞ=ð2Mwu þ aÞ: In Fig. 8(a), the area

above the curve r ¼ f2ða;wuÞ represents the wu-insensitive

region, for which the satisfaction of the VT implies the

satisfaction of the CT for all categories with respect to any

input pattern. The contrary holds for choices of (r,a) below

the curve r ¼ f1ða;wuÞ; namely inside the r-insensitive

region. The shaded area signifies the choices of parameter

Fig. 8. Regions of interest in the (r,a) parameter plane. (a) shows the r- and wu-insensitive (r,a) parameter regions (mentioned in Results 3 and 4) separated by

a dark-shaded region. If a Fuzzy-ART module is being trained or performs on a testing set with choices of r and a values belonging to the r-insensitive region,

the module’s operation does not depend on the particular value of r. A similar statement holds for the wu-insensitive parameter region regarding the lack of

dependence on the particular value of wu. The r-independence result is an immediate implication of the fact that for parameter values (r,a) belonging to the r-

insensitive region, any category will pass the VT for any pattern, if it passes the CT for the same pattern. Therefore, in this case only the VT is necessary. The

opposite holds, if the parameter values (r,a) belong to the wu-insensitive region (Result 4). On the other hand (b) shows areas of the (r,a) parameter space and

their corresponding restrictions they impose on the size of any category during training (Result 5).
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values, where the necessity of the tests depends on the size

of each category. For example, as long as r . 2/(2wu þ 1)

and a ¼ M; then the particular value wu does not affect the

training or performance phase of FA/FAM. Also, if a ¼ M;

FA/FAM’s training and performance phases are indepen-

dent of r, as long as r , 1/(2wu). In Fig. 8(b), the curve

r ¼ f1ða;wuÞ divides the plane into two different areas: for

pairs (r,a) below r ¼ f2ða;wuÞ (r-insensitive region) only a

least upper bound exists for the size of categories and for

pairs above r ¼ f2ða;wuÞ the categories can reach a

maximum size of M(1 2 r).

6. Summary and conclusions

In this paper, we have shown that the participation of

uncommitted nodes in the competition for patterns during

either FA/FAM training or performance phase, implements

a category-filtering mechanism similar to the one exercised

by the orienting subsystem of an FA module. This is in line

with a well-known fact in the ART literature that the

presence of uncommitted nodes in the competition at the F2

layer enforces, by itself, clustering of the input patterns,

even when the vigilance parameter in the network is set to

zero. We called this filtering mechanism the commitment

test (CT) since it boils down to a comparison of choice

function values between a committed and an uncommitted

node in the F2-layer of an FA module. Based on this

definition, we also have shown that both the CT and the

vigilance test (VT) perform similar, but not identical,

functions. More specifically, the two tests conjointly

determine the eligibility of committed nodes to compete

for presented patterns during the FA/FAM training or

performance phase.

We have also given an interesting, visual, geometrical

interpretation to the CT and VT through the concept of

category regions. The VT defined the match region, while

the CT defined the choice region. It was observed that not

only these regions (match and choice) have the same

geometrical shape (polytope structure), but they also share a

lot of common and interesting properties that were

demonstrated in this paper. A complete list of these

properties was exhibited in Table 1. One of these common

properties was the shrinking of the volume that each one of

these polytope structures occupies, as training progresses,

which alludes to the stability of learning in FA and FAM.

These regions also exhibit different characteristics. For

instance, a category update defines a new match region that

is completely included in the old match region (the one

corresponding to the category before its update). On the

other hand, a category update defines a new choice region

that is not completely included in the old choice region (the

one corresponding to the category prior to its update); only

the volume of the choice region decreases as we have

emphasized above.

The intersection of the match region and the choice

region led us to the definition of a new region, named claim

region, whose geometrical structure is the same as the

geometrical structure of the match and choice regions

(polytope shape). The claim region has an interesting

interpretation. The claim region of a category in ART

contains all the points in the pattern space that can be

encoded by this category; no points outside a category’s

claim region can be encoded by this category. Hence, it can

be thought of as the region of attraction of an ART category.

Defining geometrically, or through an equation, the region

of attraction of cluster points (or prototypes) of any useful

pattern classifier (not necessarily an ART neural network) is

a worthwhile endeavor in the pattern recognition literature.

Part of our work in this paper has accomplished this task for

FA and FAM.

Based on the existence of these regions and after

examining some of their major properties, we were led to

a few results concerning FA/FAM, which has practical, as

well as theoretical implications. For example, we have

illustrated that r, a and wu conjointly determine whether

satisfaction of the VT by a category automatically implies

satisfaction of the CT, and vice versa. This last observation

unveiled the existence of r- and wu-insensitive regions in

the (r,a) parameter space, which are of practical interest.

We have established that FA/FAM’s behavior does not

depend on the specific value of the vigilance r, when the

network parameter selection is r-insensitive. Thus, in

experimenting with different parameter values of an

FA/FAM network one need only consider distinct values

of the choice parameter a, and a constant value of r, when

(r,a) belongs to the r-insensitive region. Similar obser-

vations can be stated for a wu-insensitive selection of

parameters, where wu is the initial weight value for the

uncommitted nodes. Furthermore, the introduction of

category regions and their associated geometrical structure

allowed us to demonstrate in a simple, and intuitive manner

existing results in FA/FAM that were previously proven

with complex, unintuitive, algebraic manipulations (e.g. see

Result 5).

Apart from the fact that category regions give us an

additional view into the inner processes of category

selection in FA/FAM networks, they can also be used in

deriving efficient software and hardware implementations

for these architectures. For instance, efficient implemen-

tations may take advantage of the regions’ properties

(especially the shrinking of the claim region’s hyper-

volume) in order to expedite the search for a category

appropriate to encode a presented input pattern. Moreover,

the same geometrical concepts can be utilized in the

framework of virtually any other ART-based neural network

architecture as an aid to understand these architectures and

to derive theoretical results describing their behavior.

Examples of such architectures include dART (Carpenter,

1997) and dARTMAP (Carpenter et al., 1998), Boosted-

ARTMAP (Verzi et al., 1998), Micro-ARTMAP (Gomez
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Sanchez et al., 2000), Gaussian ARTMAP (Williamson,

1996), Topographic Attentive Mapping network (Williamson,

2001), Ellipsoid-ART/ARTMAP (Anagnostopoulos &

Georgiopoulos, 2001) and others.
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Appendix A

Proof of Property 1. For r ¼ 0 the match region radius

equals M 2 s(w) and 0 # dis(x,w) # M for all x and w.

Therefore, all points in U M are within the radius of any

category. Assume now an FA module prior to any training

(all F2 layer nodes are uncommitted) with parameters r ¼ 1

and any values for a . 0. The first training pattern x1 will

select an uncommitted node and form a category 1 with

template w1 ¼ xc
1 that has a match region radius equal to

dV ðwjl1Þ ¼ 2sðw1Þ ¼ 0 (from Eq. (17)). Consequently,

when the second training pattern x2 – x1 is presented,

category 1 will fail the VT, since x2 is outside the category’s

match region and x2 will create a new category. The scenario

just described will repeat itself for all P training patterns.

Within one list presentation the FA module will feature P

categories of zero size with their associated match region

containing only the pattern that initiated the creation of the

category. A

Proof of Property 2. From Definition 3, V(wjlr) – B

when dV(wjlr) $ 0, which immediately implies that

s(wj) # M(1 2 r). The maximum size of M(1 2 r) is

indeed attainable, as we will demonstrate. Assume a

category j with wj ¼ xc
1 and a pattern x2 such that

disðx2;wjÞ ¼ kx2 2 x1k1 ¼ Mð1 2 rÞ: Assuming that during

the training phase the category wins the competition to

encode x2, according to Eq. (6) the updated (via fast

learning) category will feature the maximum size of

M(1 2 r). A

Proof of Property 3. The facts that RðwjÞ # VðwjlrÞ ;r [
½0; 1� and that RðwjÞ ¼ VðwjlrÞ; if and only if sðwÞ ¼

Mð1 2 rÞ are immediately concluded from Definitions 1

and 3. A

Proof of Property 4. We need to prove that Vðwnew
j lrÞ #

Vðwold
j lrÞ ;r [ ½0; 1� and any g [ ð0; 1�; where wnew

j ¼

ð1 2 gÞwold
j þ gðxc ^ wold

j Þ and x [ Vðwold
j lrÞ: Pattern x

needs to lie inside the old match region of j, otherwise j

would not pass the VT with respect to x and no update

would be possible. In order to prove the property it suffices

to show that for any y [ Vðwnew
j lrÞ it holds y [ Vðwold

j lrÞ:
Indeed, let y [ Vðwnew

j lrÞ; then

y [ V


wnew

j lr
�
,

Def 3
dis



y;wnew

j

�
# dV



wnew

j lr
�

ðA1Þ

Also, from the definition of the match region radius in

Definition 3 we get

dV



wold

j lr
�
¼ Mð1 2 rÞ2 s



wold

j

�
dV



wnew

j lr
�
¼ Mð1 2 rÞ2 s



wnew

j

�
9=
; ) dV



wnew

j lr
�

¼ dV



wold

j lr
�
þ s



wold

j

�
2 s



wnew

j

�
ðA2Þ

Additionally, it is easy to show that for any g [ ð0; 1� and

x,y [ U M it holds

��y ^ wold
j

�� $ ��y ^ wnew
j

�� ,Eq 4
dis



y;wold

j

�
þ s



wold

j

�
2 s



wnew

j

�
# dis



y;wnew

j

�
ðA3Þ

Combining Eqs. (A1)–(A3) we arrive at

dis


y;wold

j

�
# dV



wold

j lr
�
,

Def 3
y [ V



wold

j lr
�

ðA4Þ

Hence, we proved that Vðwnew
j lrÞ # Vðwold

j lrÞ ;r [ [0,1]

and any g [ ð0; 1�:

(a) The proof goes as follows:

x [ R


wold

j

�
,

Def 1
xc ^ wold

j ¼ wold
j ,

Eq 6
wnew

j

¼ wold
j ,

Def 3
V


wold

j lr
�
¼ V



wnew

j lr
�

ðA5Þ

(b) This statement is an immediate product of the previous

two results. A

Proof of Property 6. Similar to Proof of Property 1. A

Proof of Property 7. For r ¼ 0 we get dV ðwjl0Þ ¼
M 2 sðwjÞ and for wu !1 we have dCðwjla;1Þ ¼ M 2

sðwjÞ as well. From Definitions 3 and 4, we conclude that

Vðwjl0Þ ¼ Cðwjla;1Þ: A

Proof of Property 8. From Definition 4 we establish an

upper bound for a category’s size equal to ðð2wu 2

1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ; since for sizes exceeding this

upper bound a category’s choice region radius becomes

negative and its choice region equals the empty set. We are

now going to show that under any g [ ð0; 1�; a . 0; wu $

1; and for a finite number of training patterns, no category

can reach a size of ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ: We
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first define the quantities

f1 ¼
ð2wu 2 1ÞM2

2Mwu þ a
; f2 ¼

ð2wu 2 1ÞM þ a

2Mwu þ a
ðA6Þ

Let there be a category j with initial size sðwjÞ ¼ s0 ,

ððð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞÞ: Furthermore, assume

that category j is being updated and expands due to the

sequence of patterns x(k) with k $ 1, for which j always

satisfies the VT. Let wj(k) be the template and sk the size of j

after the kth update. Additionally, assume that the patterns

x(k) are such that xðkÞ [ CðwjðkÞla;wuÞ; hence from Definition

4 and Eq. (A6)

disðxðkÞ;wjðkÞÞ # dCðwjðkÞla;wuÞ ¼ f1 2 f2sk ðA7Þ

Assume that category j is always being updated after each

pattern x(k) is presented. Then from Eq. (7) we have

skþ1 ¼ sk þ g disðxðkÞ;wjðkÞÞ ðA8Þ

Under the described scenario, the generated sequence of

sizes sk is strictly increasing. The increase in size is

maximum, when the distance of each pattern x(k) from the

representation region is the maximum possible, so that

category j still passes the CT. This maximum distance

equals the choice region radius of j. Any other increment

will only slow down the convergence of sk. Thus, from Eq.

(A8) we have

skþ1 ¼ sk þ g disðxðkÞ;wjðkÞÞ

disðxðkÞ;wjðkÞÞ ¼ dCðwjðkÞlaÞ ¼ f1 2 f2sk

)
) skþ1

¼ gf1 2 ð1 2 gf2Þsk ðA9Þ

If g – 0, then from Eq. (A9) we conclude

lim
k!1

sk ¼
f1

f2

¼
ð2wu 2 1ÞM2

ð2wu 2 1ÞM þ a
ðA10Þ

Eq. (A10) shows us that only with an infinite number of

appropriate training patterns a category could reach the CT-

implied upper bound. Thus, for a finite number of training

patterns the choice region ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ

serves as a least upper bound for category sizes. A

Proof of Property 9. It follows directly from Definitions 1

and 4 that RðwjÞ # Cðwjla;wuÞ for all a . 0. Similar to

Property 3, we would have that Cðwjla;wuÞ ¼ RðwjÞ; if and

only if sðwjÞ ¼ ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ: How-

ever, we showed in Property 8 that the last equality is not

possible. Therefore RðwjÞ , Cðwjla;wuÞ for all a . 0. A

Proof of Property 10. Consider a category with template

w ¼ ½u 1 2 v� and v 2 u ¼ l; where l is the vector with

components lm m ¼ 1;…;M equal to the length of each side

of the category’s associated hyper-rectangle. It can be

shown that the hyper-volume of the category’s choice

region is given by

VolðCðwla;wuÞÞ ¼
YM
m¼1

ð2d þ lmÞ2
ð2dÞM

2
ðA11Þ

where in the case of the choice region we set d ¼

dCðwla;wuÞ ¼ f1 2 f2sðwÞ and f1, f2 are again defined as in

Eq. (A6). An example in two dimensions can be seen in Fig.

9, where the surface area of the region is given by

VolðCðwla;wuÞÞ ¼ ð2d þ l1Þð2d þ l2Þ2 2d2 ðA12Þ

In order to prove the property it suffices to show that the

partial derivative of the hyper-volume with respect to any

length lp p ¼ 1;…;M is negative for any a [ (0,1). Taking

the derivative of Eq. (A11) we get

›VolðCðwla;wuÞÞ

›lp
¼

XM
k¼1

ðdk;p 2 2f2Þ
YM

m¼1;m–k

ð2d þ lmÞ

þ Mf2ð2dÞM21 ðA13Þ

In Eq. (A13) dk;p equals to 1 if k ¼ p and 0 otherwise. Notice

that, if l1 ¼ l2 ¼ · · · ¼ lM ¼ 0; then

XM
k¼1

YM
m¼1;m–k

ð2d þ lmÞ ¼ Mð2dÞM21 ðA14Þ

Since l1; l2;…; lM $ 0; and taking into account Eq. (A14) it

holds

Mð2dÞM21 #
XM
k¼1

YM
m¼1;m–k

ð2d þ lmÞ

a [ ð0;1Þ ) f2 [ ð0:5; 1Þ

9>>=
>>;

) ð1 2 2f2Þ
XM
k¼1

YM
m¼1;m–k

ð2d þ lmÞ # ð1 2 2f2ÞMð2dÞM21

ðA15Þ

Fig. 9. Calculation of a surface area of a two-dimensional choice region.
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It also holds that

XM
k¼1

ðdk;p 2 2f2Þ
YM

m¼1;m–k

ð2d þ lmÞ

# ð1 2 2f2Þ
XM
k¼1

YM
m¼1;m–k

ð2d þ lmÞ ðA16Þ

Due to both Eqs. (A16) and (A17) and the fact that for a . 0

and wu $ 1 it holds f2 . 1/M we get

XM
k¼1

ðdk;p 2 2f2Þ
YM

m¼1;m–k

ð2d þ lmÞ

# ð1 2 2f2ÞMð2dÞM21 )
Eq: ðA13Þ ›VolðCðwla;wuÞÞ

›lp

# ð1 2 Mf2Þð2dÞM21 , 0

A

Proof of Property 11. From Definition 5 it is obvious, since

dLðwjlr; a;wuÞ ¼ min{dV ðwjlrÞ; dCðwjla;wuÞ}; that a cate-

gory’s claim region will either coincide with its match or its

choice region depending on the values of r and a. Fig. 10

displays for different ranges of r the plots of the regions’

radii versus category size. We distinguish three major cases:

(i) If 0 # r # a=½ð2wu 2 1ÞM þ a� and any a . 0 it holds

ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ # Mð1 2 rÞ: There-

fore, dCðwjla;wuÞ # dV ðwjlrÞ and from Definitions 3

and 4 we conclude that for this particular range

Cðwjla;wuÞ # VðwjlrÞ: Finally, it follows from Defini-

tion 5 that Lðwjlr; a;wuÞ ¼ Cðwjla;wuÞ:

(ii) Now assume that a=½ð2wu 2 1ÞM þ a� , r , ðM þ

aÞ=ð2Mwu þ aÞ; where a . 0: Under these circum-

stances, we have Mð1 2 rÞ , ðð2wu 2 1ÞM2Þ=ðð2wu 2

1ÞM þ aÞ: We observe in Fig. 10 that for this range of r

if sðwjÞ , sthres; then dCðwjla;wuÞ # dV ðwjlrÞ; on

which were based Definitions 3 and 4 means that

Cðwjla;wuÞ , VðwjlrÞ: Again, from Definition 5 we

conclude that Lðwjlr; a;wuÞ ¼ Cðwjla;wuÞ: Similarly,

when sthres , sðwjÞ; VðwjlrÞ , Cðwjla;wuÞ; thus

Cðwjlr; a;wuÞ ¼ VðwjlrÞ: Obviously, when sðwjÞ ¼

sthres; all three regions coincide.

(iii) If ðM þ aÞ=ð2Mwu þ aÞ # r # 1; where a . 0, then

Mð1 2 rÞ , ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ: Also,

after examining once more Fig. 10 we observe that

dV ðwjlrÞ# dCðwjla;wuÞ; hence VðwjlrÞ , Cðwjla;wuÞ:

Once more time, it follows from Definition 5 that

Lðwjlr; a;wuÞ ¼ VðwjlrÞ:

A

Proof of Result 4.

(i) According to Property 11(i), for 0 # r # a=½ð2wu 2

1ÞM þ a� and any a . 0 the claim region coincides

with the choice region for all categories. As a

consequence, categories that pass the CT will also

pass the VT for the same patterns. Thus, the upper

bound for category sizes is solely determined by the

upper bound, which the choice region allows. Accord-

ing to Property 8, only a least upper bound of ðð2wu 2

1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ exists.

(ii) According to Property 11(ii, iii) for a=½ð2wu 2 1ÞM þ

a� , r # 1 and a . 0 and for category sizes suffi-

ciently large, the claim region radius coincides with

the match region radius (see Fig. 10). In such a case the

upper bound for category sizes is determined by the

one imposed due to the match region, as stated in

Property 2. Therefore, for this particular range of r the

maximum size categories can achieve is M(1 2 r).

Fig. 10. Plots of match, choice and claim region radii versus category size s(w) for different values of r. The figure displays the plots of the match (dV), choice

(dC) and claim region radius (dL) of a category versus its size s(w) for three different ranges of the value of r. The graph for dL is depicted as a thicker line in all

three plots. In the leftmost plot dL coincides with dC, therefore a category’s claim region will coincide with its choice region for the corresponding interval of r

values. Using the same rationale, the rightmost plot indicates that a category’s claim region coincides with its match region for the corresponding interval of r

values.
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To combine the above results in a single expression we

observe that, if 0 # r # a=½ð2wu 2 1ÞM þ a�; then ðð2wu 2

1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ # Mð1 2 rÞ and if a=½ð2wu 2

1ÞM þ a� , r # 1; then Mð1 2 rÞ , ðð2wu 2 1ÞM2Þ=

ðð2wu 2 1ÞM þ aÞ: Therefore, we can state that

sðwÞ # min Mð1 2 rÞ;
ð2wu 2 1ÞM2

ð2wu 2 1ÞM þ a

( )
) sðwÞ

# M 1 2 max r;
a

ð2wu 2 1ÞM þ a

� �� �
ðA17Þ

However, let us note here that Eq. (A17) does not reflect the

fact that ðð2wu 2 1ÞM2Þ=ðð2wu 2 1ÞM þ aÞ is only a least

upper bound for s(w), when 0 # r # a=½ð2wu 2 1ÞM þ a�

and a . 0: A
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