International Journal on Artificial Intelligence Tools
Vol. 0, No. 0 (2000) 000—000
© World Scientific Publishing Company

(Leave 1% inch blank space for Publisher)

FACE DETECTION AND VERIFICATION USING GENETIC SEARCH

GEORGE BEBIS SATISHKUMAR UTHIRAM
Department of Computer Science

University of Nevada
Reno, NV 89557

MICHAEL GEORGIOPOULOS
School of Electrical Engineering and Computer Science

University of Central Florida
Orlando, FL 32816

Received (received date)
Revised (revised date)

We consider the problem of searching for the face of a particular individual in a two-
dimensional intensity image. This problem has many potential applications such as
locating a person in a crowd using images obtained by surveillance cameras. There are
two steps in solving this problem: first, face regions must be extracted from the image(s)
(face detection) and second, candidate faces must be compared against the face of interest
(face verification). Without any a-priori knowledge about the location and size of a face
in an image, every possible image location and face size should be considered, leading to
a very large search space. In this paper, we propose using Genetic Algorithms (GAs) for
searching the image efficiently. Specifically, we use GAs to find image sub-windows that
contain faces and in particular, the face of interest. Each sub-window is evaluated using a
fitness function containing two terms: the first term favors sub-windows containing faces
while the second term favors sub-windows containing faces similar to the face of interest.
Both terms have been derived using the theory of eigenspaces. A set of increasingly
complex scenes demonstrate the performance of the proposed genetic-search approach.

Keywords: face detection, face verification, genetic algorithms, eigenfaces.

1. Introduction

Searching for the face of a particular individual in a two-dimensional image has
many potential applications such as locating a person in a crowd from images taken
by surveillance cameras. This problem contains two main sub-problems: face de-
tection and face verification. Specifically, given an image, the first step is to extract
all possible regions that might contain a face. The second step is to compare the
extracted faces against the face of interest. Both of these problems are very chal-
lenging. Without any a-priori knowledge about the location and size of a face in an

2 Face Detection and Verification Using Genetic Search

image, we will have to consider almost every possible location and size, leading to a
very large search space. In addition, changes to lighting conditions, facial expression
and pose make the search space even larger and more complex.

For face verification, methods based on correlation ! and neural networks 2 are
quite common. For face detection, many methods consider color ® # (e.g., skin color
distribution) or motion ¢ information to find the face region(s) quickly without re-
sorting to an exhaustive search. Such information, however, is not always available.
Face detection methods can be classified into two main categories: methods based
on facial features ” & or face models ® ' (e.g., template) and methods based on face
representations learned from a large number of examples (face images) using statis-
tical approaches (e.g., eigenfaces) ' 12 or neural networks '® 14. In general, methods
in the second category are more practical since they are less time consuming and
do not rely on special features or models.

The method of eigenfaces uses Principal Components Analysis (PCA) 15 to
linearly project the image space to a low dimensional subspace (eigenspace). This
subspace is defined by the principal components (eigenfaces) of the distribution of
face images (i.e., the most important eigenvectors of the covariance matrix of the
set of faces). Each face is represented as a linear combination of the eigenfaces.
Given an image, sub-images of different size are extracted at every image location.
To classify an image as a face, its distance from the eigenspace space is computed.
In 13 1 retinally connected neural networks examine sub-windows of the image to
decide whether they contain a face. Extensive training using a representative set
of both face and non-face examples is required for the neural networks to learn the
concept of face.

In this paper, we investigate the idea of using Genetic Algorithms (GAs) ¢
17 to search the image for the face of interest. GAs are search procedures which
have shown to perform well when considering large search spaces such as the one
considered in this work. GAs operate iteratively on a population of structures,
each one of which represents a candidate solution to the problem at hand. Each
structure, is modified in a much the same way that populations of individuals evolve
under natural selection. Variations among the individuals in the population result
in some individuals being more fit than others (i.e., better solutions). In the past,
GAs have been used to solve various difficult problems such as target recognition
18 facial feature extraction '°, and object recognition 20 2!,

Initially, the GA starts by extracting random sub-windows from the input image.
A sub-window is retained in subsequent generations if it contains a face, especially
if it is the face we are looking for. Each sub-window is evaluated using a fitness
function which contains two terms. The first term favors sub-windows containing
faces (face detection term) while the second term favors sub-windows containing
faces similar to the face of interest (face verification term). Both terms have been
derived using the theory of eigenspaces ! 12 (eigenfaces). In the original eigenface
approach, a single eigenspace was used, built from a large set of images from different
individuals. Both face detection and recognition were performed using the same

G. Bebiset. al ... 3

eigenspace (i.e., by computing the ”distance from face space” and ”distance in face
space”). Here, we use a separate eigenspace for each case.

The first eigenspace is built using images from different individuals, as in the
original approach, and is used to define the first term of the fitness function (face
detection term). There is a difference, however, between the original approach and
the one used here: we do not use the original images but images filtered by Sobel
operator 22. Our experiments indicate that this preprocessing step enhances facial
features (e.g., face contour, eyes, mouth, nose) making it more robust to distinguish
between faces and non-faces. The second eigenspace is built using images of the
face of interest under different lighting conditions, facial expression, and pose. The
second term of the fitness function (face verification term) is defined using the
distance from this eigenspace.

The approach proposed here has similarities with the approach of Swets et. al 23.
In that approach as well as in our approach, the GA searches for faces by extracting
sub-windows from the image, however, there is not guarantee that the sub-windows
fall inside the input image. To deal with this problem, they included an extra term
to the fitness function to penalize those windows. This, however, adds unnecessary
complexity to the fitness function and increases time requirements. Here, we use
an improved encoding scheme which ensures that all sub-windows extracted by the
GA fall inside the input image. Also, the extracted sub-windows were evaluated by
computing the distance of each sub-window from the "mean” face of interest. Here,
we employ a more powerful fitness function based on the theory of eigenspaces. An
earlier version of this work appears in 24

The rest of the paper is organized as follows: In Section 2, we provide brief
review of the eigenface approach while Section 3 contains an introduction to ge-
netic algorithms. Section 4 presents the proposed approach in detail including the
preprocessing steps, eigenspace representation, encoding, and fitness evaluation. In
Section 5, we present our experiments and we discuss our experimental results.
Finally, Section 6 contains our conclusions.

2. The method of eigenfaces

The method of eigenfaces is based on Principal Component Analysis (PCA) 15,
a standard statistical technique for reducing the dimensionality of data while at-
tempting to preserve as much of information as possible in terms of variance. The
key idea is to represent each data in a low dimensional space defined by the most
important eigenvectors (i.e., ”eigenfaces”) of the covariance matrix of the data dis-
tribution. A complete description of the eigenface approach can be found in 2.
Here, we just summarize the main ideas.

Representing each image I(z,y) as a N x N vector I';, first the average face ¥
is computed:

1
= RE T, (1)

4 Face Detection and Verification Using Genetic Search

where R is the number of faces in the training set. Next, the difference ® of each
face from the average face is computed: ®; = I'; — U. Then, the covariance matrix
is estimated by:

R
1
C’:—E:@i(}T:AAT, 2
Rizl (] ()

where, A = [®1®,...®g]. The eigenspace can then be defined by computing the
eigenvectors u; of C. Since C is very large (N2 x N?), computing its eigenvectors
will be very expensive. Instead, we can compute v;, the eigenvectors of AT A, an R
x R matrix. Then, u; can be computed from v; as follows (the details are given in
12

)

R
Ui:ZUij(I)j,j:].,‘..,R (3)
j=1

Usually, we only need to keep a smaller number of eigenvectors R', corresponding
to the largest eigenvalues. Given a new image I', we subtract the mean (& =T —¥)
and we compute its projection:

RI
¢ = Zwiui, (4)
=1

where w; = ul ® are the coefficients of projection.

An image is considered to be a face if the mean square error (called the dis-
tance from face space (dffs)) between its representation using the most important
eigenvectors and its normalized counterpart (e.g., the difference of the input image
and the mean image), is small. Also, an image is considered to be a face found in
the data set if the error (called the distance within face space (difs)) between the
coefficients of the eigenvectors used to represent the image and the face in the data
set is small.

3. Background on Genetic Algorithms

This section contains a brief summary of the fundamentals of Genetic Algorithms
(GAs). Goldberg 7 provides a great introduction to genetic algorithms and the
reader is referred to this source as well as the survey papet of Srinivas and Patnaik
25 for further information.

GAs are a class of optimization procedures inspired by the biological mechanisms
of reproduction. GAs operate iteratively on a population of structures, each one of
which represents a candidate solution to the problem at hand, properly encoded as
a string of symbols (e.g., binary). A randomly generated set of such strings forms
the initial population from which the GA starts its search. Three basic genetic
operators guide this search: selection, crossover, and mutation. The genetic search
process is iterative: evaluating, selecting, and recombining strings in the population
during each iteration (generation) until reaching some termination condition. The

G. Bebiset. al ... 5

basic algorithm, where P(t) is the population of strings at generation ¢, is given
below:

=40
initialize P(t)
evaluate P(t)
while (termination condition not satisfied) do
begin
select P(t+1) from P(t)
recombine P(t+1)
evaluate P(t+1)
t =t+1

end
Ccrossover point
The parent chromosomes

.
]]
(a)

The resulting offsprings after crossover

. . Parent chromosome (A binary chromosome)
L] L]

. . Resulting offspring after mutation
at the indicated points

b

~—

Fig. 1. Various genetic operators: (a) Crossover operator. (b) Mutation operator.

Evaluation of each string is based on a fitness function that is problem-dependent.
It determines which of the candidate solutions are better. This corresponds to the
environmental determination of survivability in natural selection. Selection of a
string, which represents a point in the search space, depends on the string’s fitness
relative to that of other strings in the population. It probabilistically removes from
the population those points that have relatively low fitness. Mutation, as in natural
systems, is a very low probability operator and just flips a specific bit. (see Figure
1(b)). Mutation plays the role of restoring lost genetic material. Crossover in con-

6 Face Detection and Verification Using Genetic Search

trast is applied with high probability. It is a randomized yet structured operator
that allows information exchange between points. Its goal is to preserve the fittest
individuals without introducing any new value. Figure 1(a) illustrates a two-point
Crossover.

In summary, selection probabilistically filters out solutions that perform poorly,
choosing high performance solutions to concentrate on or ezploit. Crossover and
mutation, through string operations, generate new solutions for exploration. Given
an initial population of elements, GAs use the feedback from the evaluation process
to select fitter solutions, generating new solutions through recombination of parts
of selected solutions, eventually converging to a population of high performance

solutions.
Input image
Apply -

filter

{ GA
Filtered Encode a sub-window
Input image within the input image

Extract the sub-window
from the input image

Perform preprocessing:
Light-correction

|

Compute the Compute the
face-detection term face-recognition term

Fitness:
Addition of the two terms

Stopping Criterion

Ouput the window
found and stop.

Fig. 2. The main steps of the proposed approach.

G. Bebiset. al ... 7

4. Methodology

In this section, we describe the genetic search approach. Figure 2 shows the main
steps. In the following sections, we discuss the steps of the proposed approach in
detail.

4.1. Preprocessing

To compute the eigenfaces, first the training images must be registered. The pro-
cedure used is similar to the one given in 3. Specifically, the eyes, tip of the nose,
and the corners and center of the mouth of each face were labeled manually. These
points were then used to normalize each face to same scale, orientation and po-
sition. The normalization was performed by mapping the facial features to some
fixed locations in an N x M image. The mapping was assumed to be an affine
transformation, computed iteratively. The steps are described below:

Step1: Let F be a vector which contains the average positions of each labeled fea-
ture over all subimages. Initialize F' with the feature locations in the first subimage
Fy.

Step2: The feature coordinates in F are transformed so that the average loca-
tions of the eyes (P and P») and tip of the nose (P3) appear at predetermined
locations (P{,PJ,P{ respectively) in a N x M window (see Figure 3). A 48 x 40
window was used in our experiments. An affine transformation is used to register
the images:

Pl = AP, +b (5)
P{ = AP, +b (6)
P{ = AP +b (7)

The above equations can be rewritten as

Pey = py (8)
Pcy =py (9)
where
X, v, 1
P=|X, v, 1
Xs Vs 1
x{

x{

8 Face Detection and Verification Using Genetic Search

1 = a12

a21
C2 = a22
b2

(1 and ¢y are the parameters of the affine transformation).

Step3: For every subimage 4 in the training set, we compute the best affine
transformation to align the features (eyes, tip of the nose) F; with the average
feature locations F'. Let’s call the aligned feature locations F.

Step4: Update F by averaging the aligned features F} for each subimage 1.

Step5: If the error between F(t+1) and F(t) is less than a threshold, then stop;
otherwise go to step 2.

4 f f\
Pl Fb
O> O>

Fig. 3. A typical face showing the features of interest.

The alignment algorithm converges usually within seven iterations. For each
subimage, it yields an affine transformation that maps that subimage to the 48 x
40 window. To avoid gaps in the normalized subimage, each point in the desired
subimage was actually determined through the inverse affine transformation (see
Figure 4). The inverse transformation is given by:

G. Bebis et. al ... 9

1 a2 —a9 0
! !
[.X,Y,].] = [.X ,Y ,l]m —ai9 ail 0
11a22 — A210A12
a21by —azbi aizbi —anbs ariase — aziai2

Original Image Normalized
Image X' =allX +al2Y +bl
(X,Y) (X'.Y") Y’ =a2l.X +a22.Y + b2

\/

Fig. 4. Tllustration of inverse mapping.

Figure 5 shows some examples of images before and after normalization. Each
normalized image was then preprocessed to account for different lighting conditions
and contrast. First, a linear function was fit to the intensity of the image. The form
of the linear model used is shown below:

flz,y) =ax + by +cry+d (10)

where f(z,y) denotes the image and a,b,c,d are the coefficients to be determined.
To solve for the coefficients, we use a least squares approach.

Fig. 5. Example showing images before (first row) and after (second row) normalization.

10 Face Detection and Verification Using Genetic Search

The result was subtracted out from the original image to correct lighting differences.
Then, histogram equalization 2? was performed to correct for different camera gains
and to improve contrast. Figure 6 shows some examples.

Fig. 6. The preprocessing steps: (a) original image, (b) linear fit, (c) light corrected image, (d)
histogram equalized image.

4.2. Figenspace representation

All the images in the training set were preprocessed as explained in the previous
paragraph. The resulted images were used to compute the eigenspace representa-
tion. As we have already discussed, we are using two different eigenspaces: the
first eigenspace is used for face detection and is built using images of different indi-
viduals. To improve face detection, we enhance the facial features of each face by
computing the image gradient using the Sobel operator 22. A 3 x 3 mask was used
in our experiments. The resulted images were then thresholded (i.e., if a value was
below 30, it was set to zero, otherwise, it remained unchanged) and used to built
the first eigenspace. Figure 7 shows sample images and the first few eigenfaces.
To build the second eigenspace, we used different images from the individual of
interest. To allow for robustness, the images were obtained under different lighting
conditions, facial expression, and pose.

G. Bebis et. al ... 11

Fig. 7. The enhanced faces (first row) while and the mean and first four eigenfaces (second row).

4.3. Encoding

In our encoding scheme, each individual (chromosome) in the population represents
a sub-window within the given input image. There are some constraints that need
attention when encoding a rectangular window. First of all, to evaluate sub-windows
of different size using the eigenface approach, we need to scale them down or up to
the size of the images in the training set. Although we tried several different scaling
algorithms 22, we used the nearest neighborhood scheme 22 since it performed as
good as the other more sophisticated schemes but it is faster. Second, to avoid
face distortions, we need to ensure that the sub-windows extracted by the GA have
the same aspect ratio with that of the images in the training set. While trying to
maintain the aspect ratio, we also need to make sure that each chromosome defines
a window that lies within the bounds of the input image. Finally, during our
experimentation, we found that the eigenface approach does not perform well when
dealing with small sub-windows (it yields a large number of false positives when
the image size is small). Thus, we added an additional constraint to the encoding
scheme such that the GA could choose sub-windows not smaller than MinX x
MinY (MinX=20 and MinY=20). These conditions are depicted in Figure 8.

To define a sub-window, while at the same time satisfy the constraints discussed
above, we encode three of the four points that define a window. We employed
two different versions of encoding as shown in Figure 9 The selection of schemel is
based upon the condition that the aspect ratio of the input image is greater than
the aspect ratio of the images in the training set. If the opposite is true, scheme2
is used (the reason in discussed below). UL stands for the upper-left corner of the
sub-window, and BR stands for the bottom-right corner of the defined sub-window.
Let L be the length of each chromosome. Then, L is given by L = 3m, where m is
the number of bits used to represent each point encoded in the chromosome. The
following constraint should be satisfied:

2™ >=maz(input image's height,input image's width) (11)

12 Face Detection and Verification Using Genetic Search

(00) - X
(ULx,ULy) aspect ratio of the sub-window,
=(BRy - ULy) / (BRx - ULX)
= aspect ratio of the training images.
(BRx,BRy) BRx - ULX >= MinX
BRy - ULy >= MinY
Y

(MN)

Fig. 8. The constraints that must hold true for a sub-window.

ULx ULy BRx
(a)

ULx ULy BRy
(b)

Fig. 9. Our encoding schemes, (a) schemel, (b) scheme2.

Given that the sub-window lies within the image and that its aspect ratio is
maintained, we need to compute the fourth point that completes the definition of
the boundaries of the sub-window. The following discussion is based on Figure 8
and on the assumption that we use encoding schemel (Figure 9(a)). Let A be the

aspect ratio of the images in the training set. In order for the sub-window

and

the training images to have the same aspect ratio, the fourth point, BR,, that

completes the definition of the window, is calculated as follows:
BR,=Ax(BR, -UL,)+ UL,
BR, should satisfy the following inequality:
MinY<=BR, < M
Substituting (12) in (13), we have:
MinY<=A*(BR, —UL,)+ UL, < M

(12)

(13)

(14)

G. Bebis et. al ... 13

or
c<=BR, < d (15)

where ¢ = (MinY — UL, + AxUL,)/Aand d= (M — UL, + AxUL,)/A. BR,
should also lie inside the image, thus, it should satisfy the following inequality:

MinX<=BR, < N (16)

To decode BR,, a linear mapping from [0,2™ — 1] to [maz(MinX,c), min(N,d)]
is used. The other two points, UL, and UL,, are decoded using a linear mapping
from [0,2™—1] to [0, N— MinX] and from [0, 2™ —1] to [0, M — MinY], respectively.
Using (12) we can compute the value of BR,. Similar calculations are performed
when using encoding scheme2. To see when each scheme needs to be used, let us
consider (15). From (15), we have that MinX <=c and d < N. Let us assume for
simplicity that MinX = MinY = 0. Then, 0<=c implies that A < M/N while
d < N implies that UL, < N which is always true. Thus, if A < M/N schemel is
used, otherwise, scheme2 is used.

4.4. Fitness Evaluation

Each individual in the population needs to be evaluated. Based on its fitness it will
be decided if it will survive in subsequent generations. As we have already discussed,
the fitness function used here contains two terms. The first term denotes how close
the sub-window is to the face space (face detection term). The second term, denotes
how close the sub-window resembles the face of interest (face verification term). To
compute the face detection term, we compute its df fs;.iecrion USing the eigenspace
built from different individuals. To compute the face verification term, we compute
its df fSyerification USING the eigenspace built from different face images from the
individual of interest. This has yielded better results than including the images of
the face of interest in the first eigenspace, using the ”distance in face space” as the
second term of the fitness function.

The less the value of df fs etection, the more the sub-window resembles a face;
and the less the value of df f$,ep; fication, the more it Resembles the face of interest.
Thus, both of these values provide a measure of error. Since we need to maximize
the fitness but minimize the error, our fitness function is given as:

Fitness = MAX — dffsdetectz'on - dffsverification (17)

which changes the minimization problem to a maximization problem for the GA
(MAX is a large constant value).

5. Experimental Results

We have used two training sets of faces in our experiments. The first set includes
38 images (see Figure 10(b) and is used to compute the face detection term of the
fitness function. As we have already discussed, we do not use the original images for

14 Face Detection and Verification Using Genetic Search

building the eigenspace but the images obtained after applying the Sobel operator,
followed by thresholding (see Figure 10(c)). The second set contains 20 face images
from the individual of interest. Figure 10(a) shows one of the sets we used in our
experiments. Different lighting, facial expressions and slight tilts were allowed to
make verification more robust.

0

2}

| =

k22
<

CCLL
Fa e

'

(c)
Fig. 10. (a) Lighting-corrected, histogram-equalized training set used for face verification, (b)
original images used for face detection (c) images processed with the Sobel operator, followed by

thresholding.

Our selection strategy was cross generational. Assuming a population of size P,
the offspring double the size of the population and we select the best P individu-
als from the combined parent-offspring population for further proces sing 8. This
kind of selection does well with small populations and leads to quick convergence

G. Bebis et. al ... 15

(sometimes prematurely). We also linearly scale fitnesses to try maintain a constant
selection pressure. A simple two-point crossover and point mutation were employed
in our experiments. The crossover probability used was 0.95, the mutation proba-
bility was 0.05 and the scaling factor was 1.2. The M AX constant in the fitness
function was set to 18000.

We have tested our algorithm on several scenes. Here, we show results on seven
scenes of increasing complexity (scenel - scene7) with the face of interest being
present in all of them (see Figure 11). The population size was set to 100 for scenel
and scene2 and to 150 for all other scenes. On the average, 40 generations were
required for the algorithm to find the face of interest. For each scene, we tested our
approach 10 times with different random seeds. Performance plots indicate that
the GA gets close to the correct solution quickly and then spends most of its time
making little progress.

15000

14000
13000
12000 ’
11000
10000
9000
8000

7000 |

6000
[

Fig. 11. Scenel (Size: 120 x 128) and its performance plot.

Scenel is relatively simple containing only the face of interest. What is interest-
ing about this image is that it is not a very recent picture of the person of interest.

16 Face Detection and Verification Using Genetic Search

The GA was able to find the face in all cases (see Figure 11). Next, we tested GA’s
ability to find the face of interest, assuming different size. Figure 12 shows scene2
with the face of interest being very close to the camera. The GA converged to the
face in all experiments. To test GA’s robustness against occlusion, we tested it on
Scene3 where the person of interest is wearing glasses. As seen in Figure 13, the
GA performed a good job finding the face. It should be mentioned that in all three
cases, the fintness of the solutions found was fairly high. We have also tested images
containing different faces. The GA converged to these faces as well, however, the
fitness of the solutions was much lower.

16000

15000

14000
13000 |
12000
11000
10000

9000 |

8000
[

Fig. 12. Scene2 (Size: 240 x 320) and its performance plot.

Scenes 4-7 were used to test GA’s performance in the presence of other faces.
In the case of scenes 4 and 5, the faces present resemble the face of interest as they
are from the same ethnic group and all have moustache. In all ten experiments,
the face of interest was found correctly. Scenes 6 and 7 contain faces from other
races. In the case of scene 6, the GA converged to the face of interest 6 out of
10 times. The other four times it converged to the face shown in Figure 16. Our
analysis indicated that the two solutions have close fitnesses. In the case of scene

G. Bebis et. al ... 17

15000

14000

13000
12000 :
11000
10000

9000 |

8000
0

Fig. 13. Scene3 (Size: 350 x 444) and its performance plot.

7, the GA converged to the face of of interest 9 out of 10 times. The face to which
it converged one time is shown in Figure 17. Our analysis indicated again that the
fitnesses were close (but not as close as in the case of scene 6). These two cases
indicate that more powerful fitness functions are required. We elaborate on this
issue in the next section. Nevertheless, we were able to achieve 100% accuracy by
increasing the population size.

The total number of sub-windows that the GA explores is much less compared
to the entire search space. To compute this number, we consider the product of
population size and number of generations it took for the GA to converge to the
correct face. To estimate the efficiency gained, we computed the number of all
possible sub-windows assuming that the smallest sub-window is of size 20 x 20
(since the GA does not consider smaller sizes than this). Table 1 shows the ratio of
sub-windows searched by the GA over the total number of possible sub-windows.
Clearly, the GA was able to find the face of interest by searching only a very small
portion of the solution space.

18 Face Detection and Verification Using Genetic Search

16000

12000 /
11000
10000
9000

8000 -

7000
0

15000

et
o o

w00

13000
12000 {
11000
1000
o000

8000

7000
0

Fig. 15. Scene5 (Size: 269 x 395) and its performance plot.

G. Bebis et.

15000

14000 -

13000 1/

12000
11000
10000

9000

8000
0

50 100 150 200 250

Fig. 16. Scene6 (Size: 438 x 497) and its performance plot.

11000

10000

000

8000
0

Fig. 17. Scene7 (Size: 288 x 464) and its performance plot.

al ...

19

20 Face Detection and Verification Using Genetic Search

Table 1. Summary of results.

120x128 8,051,400 3200 0.000397
240x320 673,688,000 4000 0.00000594
350x444 3,549,060,000 6975 0.00000197
240x320 673,688,000 14625 0.0000217
269x395 1,454,510,000 11250 0.0000077
438x497 7,623,950,000 17100 0.0000022
288x464 2,466,860,000 21150 0.00000857

T oot w

6. Conclusions

We have proposed using genetic algorithms to search for the face of a particular
individual in an image. Specifically, we used GAs to search for sub-images that
might contain the face of interest. To evaluate each sub-window, we proposed
a fitness function derived from the theory of eigenspaces. Also, we proposed an
encoding scheme which ensures that the sub-images extracted lie inside the input
image and have the same aspect ratio with the training images. Our experimental
results demonstrate that the GA approach is promissing.

The current work has certain limitations: we have considered mostly frontal
face images, without significant changes in lighting conditions facial expression and
pose. These limitations are in fact limitations of the eigenspace approach used to
derive the fitness function and not of the genetic search approach. We allowed for
robustness by employing a separate eigenspace for the face of interest, however, more
powerful approaches are need in defining better fitness functions. In the future,
we plan to investigate improved methods such as the methods of Fisherfaces 26,
Discriminant Analysis 27 and Independent Component Analysis (ICA) 2. Tt should
be mentioned that in several practical applications (i.e., criminal identification), a
large image gallery of the face of interest might not be available. In such cases, we
might be able to generate a synthetic image gallery 2°.

References

[1] Matas J. Jonsson K. and Kittler J. Fast face localisation and verification. Image and
Vision Computing, 17:575-581, 1999.

[2] Winter R. Verification of personal identity using facial images. SPIE Conference,
2277:63-70, 1994.

[3] Yang G. and Waibel A. A real-time face tracker. Workshop on Applications of Computer
Vision, pages 142-147, 1996.

[4] Wu H. Chen Q. and Yachida M. Face detection from color images using a fuzzy pattern
matching method. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(6):557-563, 1999.

[6] Wang C. and Brandstein M. A hybrid real-time face tracking system. Proceedings of
ICASSP, pages 3737-3740, 1998.

[6] Eleftheriadis A. and Jacquin A. Automatic face location detection for model-assisted

[10]

[11]

[12]
[13]
[14]
[15]
[16]
[17]

18]

[19]
20]
[21]
(22]
23]

[24]

25]

26]

27]

28]

G. Bebis et. al ... 21

rate control in h.261-compatible coding of video. Signal Processing: Image Communi-
cation, 7(4-6):435-455, 1995.

Huang C. and Chen C. Human facial feature extraction for face interpretation and
recognition. Pattern Recognition, 25(12):1435-1444, 1992.

Brunelli R. and Poggio T. Face recognition: Features versus templates. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 15(10):1042-1052, 1993.
Birchfield S. An elliptical head tracker. Ist Asilomar Conference, pages 1710-1714,
1997.

Kwon Y. and da Vitoria Lobo N. Face detection using templates. Computer Vision
and Pattern Recognition Conference, pages 764-767, 1994.

Kirby M. and Sirovich L. Application of the karhunen-loe‘ve procedure for the char-
acterization of human faces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(1):103-108, 1990.

Turk M. and Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience,
3:71-86, 1991.

Baluja S. Rowley H. and Kanade T. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-38, 1998.

Sung K. and T. Poggio T. Example-based learning for view-based human face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):39-51, 1998.
Press W. et. al. Numerical recipes in c: the art of scientific programming. Cambridge
University Press, 1990.

Holland J. Adaptation in natural and artificial systems. The University of Michigan
Press, 17:Ann Arbor, 1975.

Goldberg D. Genetic algorithms in search, optimization and machine learning. Addison-
Wesley, pages Reading, MA, 1989.

Katz A. and Thrift P. Generating image filters for target recognition by genetic learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(9):906-910,
1994,

Lin C. and Wu J. Automatic facial feature extraction by genetic algorithms. IEEE
Transactions on Image Processing, 8(6):834-844, 1998.

Bebis G. Louis S. and Varol Y. Using genetic algorithms for model-based object recog-
nition. International Conference on Imaging Science, Systems, and Technology, pages
1-6, 1998.

Bebis G. Louis S. and Fadali S. Using genetic algorithms for 3d object recognition.
11th International Conference on Computer Applications in Industry and Engineering,
pages 13-16, 1998.

R. Crane. A simplified approach to image processing. Prentice Hall, 1997.

Punch B. Swets D. and Weng J. Genetic algorithms for object localization in a complex
scene. International Conference on Image Processing, 11:595-598, 1995.

Bebis G. Uthiram S. Georgiopoulos M. Genetic search for face detection and verifica-
tion. IEEE International Conference on Intelligence, Information and Systems, pages
360-368, 1999.

M. Srinivas and L. M. Patnaik. Genetic Algorithms: A Survey. IEEE Computer,
27(6):17-26, June 1994.

Belhumeur P. Hespanha J. and Kriegman D. Eigenfaces vs. fisherfaces: Recognition
using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):711-720, 1997.

. Swets D. Weng J. Using discriminant eigenfeatures for image retrieval. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 18(8):831-836, 1996.

Bartlett M. and Sejnowski T. Independent components of face images: A representation

22 Face Detection and Verification Using Genetic Search

for face recognition. 4th Joint Symposium on Neural Computation Proceedings, 1997.
[29] Beymer D. and Poggio T. Face recognition from one example view. International
Conference on Computer Vision, pages 500-507, 1995.

