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Abstract

This paper describes a new approach to the segmentation of textured gray-scale images based on image pre-"ltering
and fractal features. Traditionally, "lter bank decomposition methods consider the energy in each band as the textural
feature, a parameter that is highly dependent on image intensity. In this paper, we use fractal-based features which
depend more on textural characteristics and not intensity information. To reduce the total number of features used in the
segmentation, the signi"cance of each feature is examined using a test similar to the F-test, and less signi"cant features are
not used in the clustering process. The commonly used K-means algorithm is extended to an iterative K-means by using
a variable window size that preserves boundary details. The number of clusters is estimated using an improved
hierarchical approach that ignores information extracted around region boundaries. � 2001 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Texture is a main characteristic of the surface of an
object. In the case of an image, it de"nes the special
relationship between the gray-scale values of the pixels in
a region of the image. Texture segmentation is an impor-
tant task with many applications in pattern recognition
and computer vision. Segmentation can be de"ned as
identi"cation of di!erent regions with uniform textures,
or as identi"cation of the boundaries between them. For
the purpose of segmentation, textures can be described
by parameters, usually denoted as features. If the vari-
ation of the feature values that describe a uniform tex-
tural region is small, then the results obtained by the
segmentation process are more accurate. Usually, a fea-
ture vector is needed to successfully characterize a tex-
tural region. Many features have been used for texture
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segmentation. Some of them are Gabor energy features
[1}3], Fourier transform energy [4], second-order stat-
istical features [5,6] and wavelet features [7,8]. Segmen-
tation involves a method of identi"cation of the di!erent
texture regions based on the corresponding features. This
method can be clustering or classi"cation of the feature
sets that characterize di!erent regions of the image. A
commonly used clustering algorithm is the K-means. A
desired feature property is insensitivity to di!erent image
transformations, such as changes in the intensity, zoom-
ing, scaling of the gray-scale values and subjection to
noise. Fractal dimension (FD) [9}11] has been a popular
feature because it is relatively insensitive to changes in
the image intensity and to multiplicative noise.

It is well known that the FD as a single feature is not
su$cient for texture characterization. Chaunduri and
Sarkar [9] proposed a solution to this problem by com-
puting the FD for di!erent transformations of the
original image. Another preprocessing method for pro-
ducing additional features is based on Gabor "lter de-
composition where features are computed for each
"ltered version of the original image. A large number of
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"lters is necessary for e$cient texture characterization
and as a result a lot of work has been directed towards
the reduction of the number of "lters by selecting optimal
"lter parameters. Jain and Farrokhnia [1] proposed
a systematic "lter selection scheme to select optimal
"lters from a "lter bank that nearly uniformly covers the
spatial-frequency domain. Dunn and Higgins [2] use
Gabor "lters with suitably chosen parameters to detect
"lter-output discontinuities at texture boundaries. Teu-
ner et al. [3] proposed a method of selecting optimal
tuned Gabor "lters. The "lter parameter selection and
tuning are based on the detection of the spectral compo-
nents of the image. In Refs. [1}3], the segmentation was
based on energy features.

In this paper, we extend the work proposed in Refs.
[1}3,9] by using fractal features. Speci"cally, we use
a bank of N Gabor "lters to "lter the original image and
the FD is computed locally for each one of the "ltered
images so that the feature vector consisting of N features
is obtained. In our experiments, we used 12 "lters (N
"12). After the features are computed, a clustering algo-
rithm is used for clustering the feature vectors. Each
cluster represents one region in the image. Before cluster-
ing, the features that do not provide local information
are eliminated to speed up the clustering process of the
feature vectors. In our work, we also introduce an iter-
ative K-means algorithm that preserves region bound-
aries better, and provides a cleaner segmentation.
Furthermore, we introduce a segmentation approach
that does not require the number of regions in the image
to be predetermined. This is achieved by using a hier-
archical approach for clustering the feature vectors. The
proposed iterative K-means clustering algorithm is ap-
plied repeatedly assuming each time di!erent number of
clusters (regions) in the image. A modi"cation of the VRC
index introduced by Calinski and Harabatz [12] is com-
puted for each cluster set and the selected clustering is the
one that maximizes this index.

The paper is organized as follows: Section 2, is an
overview of Gabor "lters and fractal dimension.
Section 3 proposes a segmentation technique. Lastly,
Section 4 presents the experimental results of segment-
ation.

2. Background

2.1. Gabor xlters and energy

Multi-channel Gabor decomposition is an approach
to texture characterization and segmentation [1}3]. The
frequency spectrum of a signal, texture in this case, is
decomposed into its spectral components using two-
dimensional Gabor "lters with speci"ed bandwidths and
center frequencies. The "lters that we use in our work are
real-valued directional Gabor "lters. These "lters can be

de"ned in the spatial and the frequency domain, respec-
tively, as

h(x, y)"g(q(x, y), w(x, y)) cos(2� uoq(x)), (1)
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In the above equations, g(x, y) is the Gaussian envel-
ope, �

�
denotes the orientation of the "lter with respect

to u axis, u
�

denotes the center frequency of the "lter and
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�
, �

�
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�
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and �
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�
, respectively. It is worth

noting that H(u, v) is also a Gaussian envelope centered
at frequencies (u

�
, 0). The parameters �

��
�
�

are the stan-
dard deviations of the Gaussian envelope in the spatial
domain and in the direction of q(x, y) and w(x, y), respec-
tively. Hence, �

�
and �

�
de"ne the size of the envelope.

The standard deviations of the Gaussian envelope in the
frequency domain and in the direction of q(u, v) and
w(u, v) are �

�
, �

�
, respectively.

Filtering the original image using "lter banks is the
"rst step of feature extraction for texture characteriza-
tion. The second step is to compute the textural energy in
small overlapping windows of the "ltered images. Tex-
tural energy is a measure that is widely used to character-
ize texture. The energy that corresponds to a square
window of the image Z

�
centered at x and y in the spatial

domain is de"ned as

E(x, y)"
1

M�
�

�	� 
�����

�Z
�
(i, j)�, (6)

where M�M is the size of the window W
��

, centered at
x, y, and Z

�
(x, y) is the value of the "ltered image with

coordinates x and y. In Jain et al. [1] the image Z
�

is not
used directly, but instead a transformation of the form
F(Z

�
(x, y)), where F( ) ) is a non-linear, sigmoid function of

the form

F(t)"tanh(�t)"
1!e����
1#e����

, (7)

where � is a constant.

2.2. Fractal dimension

There are several de"nitions of the FD of an object,
including Hausdor! dimension, box dimension and cor-
relation dimension [17]. The FD has been characterized
as a measure of irregularity of an object. Any curve is an
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object with one topological dimension that occupies
some part of a plane. FD de"nes how much area of this
plane is occupied by the curve. For instance, a highly
irregular curve will have FD greater than that of
a straight line. The FD of a curve can be between 1,
(which is equal to its topological dimension) and 2 (which
is equal to the topological dimension of the plane that it
can occupy). The concept of FD can be extended to
surfaces. The FD of a surface can be between 2 (which is
its topological dimension) and 3 (which is the topological
dimension of the `boxa that the surface can occupy). Two
methods that give good estimation of the FD are the
di!erential box counting (DBC) [9] and the variation
method [10].

2.2.1. Variation method

The variation method has been adopted in this paper
to compute the FD of an object because it has been
shown to give an accurate and robust estimation of the
FD of a surface [10]. An image Z(x, y) of size R�R can be
considered as a surface of size R�R, where its value at
position (x

�
, y

�
) is Z(x

�
, y

�
). According to this method, if

a surface Z is a fractal, there exists at least one part of the
interval [0, 1] where Z is nowhere or almost nowhere
di!erentiable. If P(x, y, x�, y�) is the slope of the line pas-
sing through points (x, y, Z(x, y)) and (x�, y�, Z(x�, y�)), then
�P(x, y, x�, y�)� goes to in"nity as the point (x�, y�) tends
toward (x, y). The FD is de"ned as the rate in which
�P(x, y, x�, y�)� goes to in"nity. The variation of Z can be
de"ned as

<� (x, y" max Z(s, t)
�������� ����� ���	�

! max Z(s, t)
�������� ����� ���	�

, (8)

where dist((x, y), (s, t))"max(�x!s�, �y!t�) and �'0.
The integral of <� (x, y) tends to zero as � tends to 0. The
rate of growth of this integral is directly related to the FD
of Z. The FD of the surface Z is then de"ned as

FD
�
"	

�
(Z)"lim

��	

log
�
	

�
	

(<
�
(x, y)/�
) dx dy

log��
. (9)

The slope of the log}log plot of the line that is de"ned by
log

[<� (x, y)/�
 ] dx dy and log(1/�) gives the FD of the
surface. The computation of the FD of a discretized
surface involves the substitution of the integrals with
summations.

The FD of an image can be computed locally in all the
di!erent regions of size R�R of the image, so that a FD
space can be created. This FD space will be mapped
one-to-one to the pixels of the image. The algorithm for
computing the FD space of an image is implemented as
follows: The di!erence <� between the maximum and the
minimum gray-scale values is computed in a small win-
dow of size ¹�¹, where ¹"2�#1. This window is
centered at the pixel with coordinates (x, y). This compu-

tation is repeated for all pixels (x, y) of the image, for
�"1, 2, 3,2, �


��
.<�(x, y) is the �th variation located at

(x, y). If we de"ne E� as the average of <� (x, y) over
a window = of size R�R, then the FD located at the
window= is the slope of the line that best "ts the points
(log(R/�), log�(R/�)
E��), where �"1, 2, 3,2, �


��
. The

line that best "ts these points can be found using linear
regression. The FD is then mapped to the central pixel of
the windowW. The next step is to shift the window W and
map the FD to the central pixel of the new window. The
previous steps are repeated for all pixels of the image and
the FD space is thus created.

3. A combined segmentation method

The FD as a single feature is not su$cient for texture
analysis and characterization. The idea of using more
than one FD feature has already been introduced [9,10].
In this paper, a feature set consisting of the FD of 12
"ltered versions of the original image is used. Directional,
non-symmetric, real-valued, two-dimensional Gabor "l-
ters are used for the "ltering. The idea employed is to use
the FD instead of the energy of the "ltered images, be-
cause the FD is insensitive to di!erences in the local
intensity of the image and to local scaling of the gray-
scale levels. Ideally, the FD is also insensitive to image
zooming but in practice this is only valid to a certain
extent. The segmentation method that is described in this
paper consists of two steps: feature extraction and clus-
tering of feature vectors.

3.1. Feature extraction

The "rst step in feature extraction is "ltering of the
original image Z

�
using Gabor "lters with di!erent

center frequencies and orientations. The "lters are
H(q, f, �

�
, �

�
), where q de"nes the orientation of the "lter,

f de"nes the center frequency and �
�

, �
�

are the standard
deviations of the Gaussian envelope in the spatial do-
main. The second step is to compute the FD for all
"ltered versions of the image. The FD values that are
computed over a window W centered at the pixel with
coordinates (x, y) for all "ltered versions of the image,
constitute the image feature vector at coordinates (x, y).
These FD values comprise the feature set. The standard
deviations used are �

�
"6 in the direction of the "lter

and �
�
"0.01 in the direction which is perpendicular

to the direction of the "lter. These "lters decompose
the image into its frequency components essentially in
the direction of the "lters. Other types of "lters were
also tried but the percentage of correct clustering was
experimentally found to be higher when this "lter type
was used. Three normalized center "lter frequencies
f"0, 0.05 and 0.1 were used. One reason that leads to the
selection of lower center frequencies for the Gabor "lters,
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Fig. 1. FD versus the center frequency of bands with bandwidths
0.01 and 0.1.

is that images contain most information at lower
frequencies.

In our experiments, we used four "lter orientations
q"0, 45, 90, 1353. Four orientations were found to be
su$cient for the "lters to detect the directional character-
istics of the textures. Three di!erent center frequencies
and four di!erent orientations de"ne a set of 12 "lters
that are used to "lter the original image.

One indication why the speci"c "lters are used, is given
by the relation between FD and frequency that is shown
in Fig. 1. The FD was computed for one-dimensional
signals that contain only a speci"c band of frequencies,
with center frequencies f

�
"0.05k where k"0, 1,2, 10,

and bandwidths Bw"0.1 and 0.01, all in normalized
units. From Fig. 1, we notice that the FD increases as the
center frequency increases up to 0.25 and #uctuates
thereafter. This result leads us again to use relatively low
central "lter frequencies ( f

�
(0.2).

If the Gabor "lters that we used in our experiments
isolated narrow frequency bands in all directions, the FD
would have an approximately speci"c value according to
Fig. 1. For this reason, the "lters we are using isolate
a relatively small frequency band only in one direction.
The result in Fig. 1 does not imply that the FD depends
only on frequency * it shows that the FD is related to
frequency, and it gives an indication why the "lters
should not be narrowband in all directions.

For the computation of the FD, the slope of the
line that passes through two points (log(R/�),
log�(R/�)
E��), �"(1, 2) is considered. The reason for se-
lecting only two points is that the main interest is not the
exact value of the FD, but the robustness of the feature
and its power to discriminate between di!erent textures.
Larger values of � involve larger windows for computing
the variations. The larger the window is, the higher the
probability of including regions of more than one texture.
We used windows of size R�R with R"16. A larger
window size gives a more robust feature set, but at the
same time it blurs the boundaries between textures. Also,

larger windows increase the sensitivity of FD to image
intensity.

There are certain advantages of using FD over other
features. One advantage is that the FD is independent of
the overall intensity of the image [14}16] meaning that
the FD is invariant to a constant o!set C. Practically, the
o!set value C could be slowly varying since it is su$cient
to be almost constant within a window of size
(2�#1)�(2�#1). The FD is also insensitive to multipli-
cative noise. The proof is evident considering that if the
gray-scale values in a region around a pixel with coordi-
nates (x, y) are multiplied by a constant factor M, the new
maximum and minimum values are simply multiplied by
the same constant M. If the average variation around
(x, y) was E����� , then the new average variation is
E������ "M E����� . The FD is equal to the slope of the line
that better "ts the points (log(R/�), log�(R/�)
M E��) or
(log(R/�), log�(R/�)
E��#logM). The presence of the
constant term logM does not change the slope of the
line, thus the FD remains unchanged. Practically, M can
slowly vary because it is su$cient to be fairly constant in
a relatively small window (like 16�16). This implies that
if di!erent regions of the image are multiplied by di!erent
constant factors, the segmentation results will not change
signi"cantly. In contrast, energy is sensitive to multiplica-
tive noise, since the output Z

�
of a "lter is the convolu-

tion Z
�
(x, y)"h(x, y)*Z�

(x, y), where Z
�

is the original
image and h( ) ) is the two-dimensional impulse response
of the Gabor "lter. If the gray-scale values of the original
image are multiplied by a constant factor M, then the
"ltered image is also scaled by M. Therefore, the energy
will change and it is possible that an otherwise homo-
geneous region will be segmented incorrectly.

3.2. Clustering of the feature vectors

3.2.1. Feature reduction
All 12 FD features that are mapped to the pixel with

coordinates (x, y) form a feature vector. There is a total of
S�S feature vectors of size 12, where S is the width of the
image.

Eliminating features that possess small variability over
the textured image can reduce the size of the feature
vectors. Let us de"ne the residual sum of squares (RSS) as

RSS"�
	

(x
	
!m)�, (10)

where x
	

are the values of the feature in this region and
m is the mean of the feature at this region. One way of
measuring the variability of a feature is to separate the
image in smaller, equally sized regions. Then, we com-
pute the RSS in each one of the regions and the sum of all
the calculated RSSs. The sum represents the total RSS and
will be denoted as RSS

�
. The RSS

�
is then compared

to the RSS of the feature for the whole image, which

1966 T. Kasparis et al. / Pattern Recognition 34 (2001) 1963}1973



we denote as RSS
�
. If RSS

�
is close to RSS

�
of the whole

image, then we know that the feature does not provide
local information.

The measure F we used to identify signi"cant features
is similar to the F-test used in statistics which is de"ned
as

F"

(n!k)(RSS
�
!RSS

�
)

(k!1)RSS
�

, (11)

where n is the total number of pixels, and k is the number
of regions in the image. Values of F above a threshold
U

�
indicate that the feature is signi"cant, whereas smaller

values indicate non-signi"cant features. The threshold
U

�
is determined from the feature corresponding to the

largest F value.

3.2.2. Iterative K-means clustering

A K-means-based algorithm was used to cluster the
feature vectors. This algorithm considers the boundaries
between textures so that a "ner segmentation at the
boundaries is possible. For better segmentation, the fea-
tures are smoothed over a window. The algorithm is
summarized into the following steps:

Step 0: Set the square window length equal to R"33,
and give to all pixels the label A.
Step 1: Smooth the features of the image by averaging

their values in a square window of size R�R and map
the result to its central pixel.
Step 2: Apply the original K-means algorithm for the

pixels with label A.
Step 3: A sliding window of size R�R merges small

regions to large regions. This window classi"es the fea-
ture vector that is mapped to its central pixel to class j, if
the number of feature vectors that are associated to class
j, is larger than the number of features that are associated
to any other class.
Step 4: Re-examine all pixels:

(a) If the pixel is an unambiguous pixel give it the label
U.

(b) If the pixel is an ambiguous pixel give it the label A.

Step 5: Examine two cases:

(a) If your previous window length is R where R'9
reduce it to R"R!8, and go to step 1.

(b) If your previous window length is 17 stop.

Consider a window R�R centered at a designated
pixel. This pixel is de"ned as ambiguous if any other pixel
in this window has a di!erent assigned classi"cation. The
labels A and U do not indicate the cluster in which the
pixel is clustered. They only indicate the pixel status, i.e.
they suggest if the pixel should be re-examined (label A)
or not (label U). We must also note that in the cases
where the smoothing or merging windows are centered at

a pixel close to the edges of the image, these windows
may exceed beyond the image limits. In that case, we
assume that the image continues beyond the edges, and it
is taken to be equal to the mirrored version of the
original image.

One disadvantage of the K-means algorithm is that the
random selection of centers can lead to a local minimum.
Applying the algorithm more than once for di!erent
selections of the initial centers increases the probability
to reach the global minimum. The criterion for determin-
ing which clustering is better is the minimization of the
square error, which is equivalent to minimizing the
quantity

SE"

�
�
	��

�
�

��

(x
	


!m
	


)�, (12)

where x
	


is the value of the ith feature of the jth feature
vector, and m

	

is the corresponding center (mean) of the

ith feature that has been computed for all feature vectors
that belong to the same cluster as the jth feature vector.
In Eq. (12), f is the size of the feature vector.

3.2.3. Modixed VRC index

Another disadvantage of theK-means algorithm is that
the number of clusters has to be prede"ned. Generally,
estimation of the number of clusters is a di$cult task. In
our work, we used a hierarchical approach based on the
index VRC that has been introduced by Calinski and
Harabatz [12] to select the number of clusters. Milligan
and Cooper [13] have classi"ed this index as the "rst,
among 30 indices. The clustering algorithm presented in
Section 3.2.2 is applied for two clusters, three clusters and
so on. In our experiments we tried up to nine clusters.
The index is given by

<RC"

(n!k)BCSS

(k!1)=CSS
, (13)

where BCSS is the `between-clusters sum of squaresa and
WCSS is the `within-cluster sum of squaresa, n is the total
number of pixels, and k is the number of clusters. The
within-cluster sum of squares is de"ned as

=CSS"

�
�
	��

�
�

��

(x
	


!m
	


)�, (14)

where x
	


is the value of the ith element of the jth feature
vector, and m

	

is the corresponding center. We notice

that WCSS is equivalent to the square error as it has been
de"ned in Eq. (12). For the de"nition of BCSS, it is useful
to de"ne the total sum of squares

¹SS"

�
�
	��

�
�

��

(x
	


!m
	
)�, (15)
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Fig. 2. Segmentation using FD: (a) original image, (b) using non-symmetric "lters (�
�
"6, �

�
"0.01), (c) using symmetric "lters (�

�
"6,

�
�
"6), (d) using symmetric "lters (�

�
"3, �

�
"3).

where x
	


is the value of the ith element of the jth feature
vector, and m

	
is the corresponding mean of the feature

through the whole image. Thus, BCSS is de"ned as

BCSS"¹SS!=CSS (16)

The selection of the number of clusters is based on the
maximization of the index VRC.

Generally, the feature values at the boundaries are not
the representative ones of the cluster in which they be-
long. For this reason, we modi"ed the index so that the
feature values at the boundaries will not be included. The
new index is of the form

<RC
�

"

(n!k)BCSS
�

(k!1)=CSS
�

(17)

where WCSS
�

is given by Eq. (14), without including the
terms that correspond to pixels that are close to bound-
aries. Similarly,

BCSS
�

"¹SS!

n

n
���

=CSS
�

(18)

where n is the total number of pixels and n
���

is the
number of pixels that are not close to the boundaries.
The normalization term n/n

���
is used because WCSS

�
does not include all pixels for the computation of the
within cluster sum of squares. The index was calculated
by not considering pixels that are closer than 6, 8 and 10
pixels to the estimated boundaries.

4. Experimental results

The segmentation algorithm that is presented in this
paper is automatic in the sense that the number of tex-
tures in the image does not have to be prede"ned. Also,
the number of features that are used varies, and features
that do not provide any useful information are elimi-
nated. Even though the algorithm is automatic, in the
experiments described in Sections 4.1}4.3 the number of
FD features is "xed to 12 and the number of textures is

also forced to be the correct one. The reason is that we
want to compare the segmentation performance between
the FD and energy as well as between the original and the
iterative K-means, with respect to the percentage of correct
clustering (PCC). In Section 4.4, we examine the perfor-
mance of the full algorithm. We test the performance of the
modi"cation of the index VRC that was presented in
Section 3.2. The test images used in the experiment were
mosaics of texture samples from Brodatz [18].

4.1. Comparison between symmetric and non-symmetric
xlters for FD

In this work, we use non-symmetric Gabor "lters be-
cause experiments have shown better performance when
the FD feature is used. Fig. 2 presents a comparison.
Fig. 2(a) is the original mosaic and Fig. 2(b) is the seg-
mentation using non-symmetric "lters (as described in
Section 3.1). For a comparison, Fig. 2(c) and (d) present
the segmentation using symmetric "lters, where it can be
seen that the performance with the non-symmetric "lters
is better.

4.2. Comparison between the FD and energy features

Three types of experiments were performed using two
di!erent mosaics. In the "rst type, the approach of Jain
and Farrokhnia [1] was followed, where symmetric
Gabor "lters and energy are used. In the second and
third types of experiments we used non-symmetric "lters
and either FD or energy as features. Fig. 3(a) presents an
original mosaic, Fig. 3(b) presents the segmentation using
the proposed method, and Fig. 3(c) is the segmentation
following the approach of Jain and Farrokhnia. It can be
observed that segmentation using the FD is slightly bet-
ter. In Fig. 3(b) the PCC is 93% and in Fig. 3(c) the PCC is
88%. Fig. 4(a)}(c) compare segmentation results using
energy features when non-symmetric "lters are used. The
PCC in Fig. 4(b) with FD features is 93% and in Fig. 4(c)
with energy features is 91%.
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Fig. 3. Segmentation: (a) original image, (b) using FD and non-symmetric "lters, (c) using symmetric "lters and energy.

Fig. 4. Segmentation: (a) original image, (b) using FD, (c) using non-symmetric "lters and energy.

Fig. 5. Segmentation: (a) image a!ected by multiplicative noise, (b) using FD, (f) using non-symmetric "lters and energy.

Fig. 5 demonstrates the robustness of the FD under
multiplicative noise. Fig. 5(a) is the original of Fig. 4(a),
corrupted by multiplicative noise. Fig. 5(b) shows the
segmentation using FD and Fig. 5(c) shows the segmenta-
tion using energy. It can be observed that the perfor-
mance using FD remains virtually the same as with the
noise-free case, whereas the segmentation using energy
degrades drastically. The PCC for Fig. 5(b) is 92.6%,
virtually the same as the PCC of the noise-free image in
Fig. 4(b).

4.3. Comparison between standard and iterative K-means

The standard K-means algorithm is compared to the
proposed iterative K-means algorithm. For the standard,
two sizes of the smoothing window were chosen: a small
window of size 17�17 and a large window of size 33�33.
When the standard K-means is used with large feature
smoothing and merging windows, irregular boundaries
are smoothed out. On the other hand, if a smaller win-
dow is used, small isolated regions may be produced
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Fig. 6. Segmentation using iterative and standard K-means for FD. Images: (a) original, (b) segmented by iterative K-means,
(c) segmented by standard K-means and smoothing window of size 17�17, (d) segmented by standard K-means and smoothing window
of size 33�33.

Fig. 7. Segmentation using iterative and standard K-means for FD. Images: (a) original, (b) segmented by iterative K-means,
(c) segmented by standard K-means and smoothing window of size 17�17, (d) segmented by standard K-means and smoothing window
of size 33�33.

within otherwise homogeneous regions. The proposed
iterative K-means minimizes these problems by starting
the iterations with a large window and gradually reduc-
ing the size.

Fig. 6 compares segmentation results using the iter-
ative and standard K-means. Fig. 6(a) is the original
image, and Fig. 6(b) is the segmentation using the iter-
ative K-means. Fig. 6(c) presents segmentation using the
standard K-means with a smoothing window of size
17�17, where it can be noticed that there is some mis-
classi"cation at the upper left corner of the image. In
Fig. 6(d) the standard K-means with a smoothing window
of size 33�33 was applied. Here, it can be seen that
the boundaries are excessively smoothed. Comparing
Fig 6(b)}(d), we can conclude that the iterative K-means
produced better segmentation. Fig. 7 is another segmen-
tation example where similar comments apply. The PCC
was 94.4% for the iterative K-means and around 91% for
the standard K-means.

4.4. Feature reduction

For the segmentation experiments described in
Sections 4.1}4.3, we used all 12 FD features for the

segmentation. In Section 3.2.1, we described an approach
of eliminating some of the less signi"cant features by
applying a threshold U

�
, which was selected equal

to F

��

/4.5, where F

��

is the maximum F value
over all other features. This approach was tested
for a number of textured images, and the results using
less features were almost identical to the ones where
all 12 features were used (the change in PCC was less
than 1%). Elimination of some of the features is
important because the method that is used for estimat-
ing the number of clusters is hierarchical which
is generally time-consuming, and elimination of some
of the features reduces computation. For our experi-
ments, the average number of features that were used
was 9.95. In Fig. 8, an example is presented. Fig. 8(a)
is the original image, Fig. 8(b) is the segmented
image where 12 features are used, and Fig. 8(c) is the
segmented image where 8 features above the U

�
thre-

shold were used. From Fig. 8, we can conclude that 12
features and 8 features result in almost identical segmen-
tations.

A rough calculation of the computational complexity
of our technique shows that the feature extraction
algorithm is of the order of O(N

�
N

�
) where N

�
is the

1970 T. Kasparis et al. / Pattern Recognition 34 (2001) 1963}1973



Fig. 8. Segmentation: (a) original image, (b) segmented using 12 features, (c) segmented using 8 features.

Table 1
Number of correct and incorrect cluster estimations

Correct
estimation

Incorrect
by one
cluster

Incorrect
by 2
clusters

Incorrect
by more than
2 clusters

VRC 13 5 1 1
VRC�

�
14 4 1 1

VRC�
�

15 4 1 0
VRC


�
14 5 1 0

number of pixels in the image, and N
�

is the number of
features associated with each pixel. The clustering algo-
rithm, which is the most time consuming step, is of the
order of O((N

��
)�#4N

��
N

��
), where N

��
is the max-

imum number of clusters assumed, and N
��

is the num-
ber of features associated to a pixel, after feature
reduction.

4.5. Estimating the number of textures in the image

In Section 3.2.3, we described an approach for estima-
ting the number of clusters in an image. The index VRC,
as well as the modi"ed index VRC

�
(see Section 3.2.3)

where pixels close to the boundaries were not included in
the estimation of the number of clusters, were tested. In
our experiments, we tested four cases. In the "rst case, all
pixels in the image were used, and in the other three,
pixels that are closer than 6, 8 and 10 pixels to the
boundaries are not included in the computation of the
index. The indices are denoted as <RC,<RC�

�
,<RC�

�
and <RC


�
, respectively. We tested the performance of

the four indices by estimating the number of clusters in 20
di!erent images.

Table 1 presents the results of the experiments, where
we notice an improvement when the pixels that are close
to the boundaries are not included. The maximum num-
ber of correct cluster estimations is given by the index

<RC�
�

where pixels that are closer to the boundaries
than 8 pixels are not included. From the results presented
in Table 1, we can conclude that ignoring some of the
feature vectors that are close to the boundaries can
improve the estimation since these vectors are not the
most representative ones of the cluster that they are
associated with. On the other hand, ignoring more vec-
tors leads to omitting useful information, especially for
small clusters.

5. Conclusions

In this paper, we extended previous work on Gabor
"lter-based texture segmentation by using a feature vec-
tor that consists of fractal-based features. Gabor "lter
decomposition of images o!ers a solution to the problem
of "nding a large number of features. Since the number of
"lter banks can be adjusted, texture characterization can
be improved by increasing the number of "lters in the
case of di$cult segmentation problems. It has been
shown in the literature that FD is insensitive to linear
transformations of image intensity. Therefore, FD can be
used for real applications where images have been ob-
tained in di!erent or badly illuminated environment. On
the other hand, one or a few FD features may not be
enough for successful segmentation. In the proposed fea-
ture extraction scheme, "lter decomposition allows the
important properties of FD to be of use, since a large
number of FD features can be produced in a systematical
manner. In our experiments, we found that the proposed
FD vector has certain advantages over traditional energy
measures since it is insensitive to changes in the image
intensity and to multiplicative noise.

Experiments have shown that when boundary regions
are irregular, the iterative K-means is superior to the
standard K-means algorithm. The iterative K-means
preserves nicely the textural boundaries in most segmen-
tation cases. The feature vectors are initially extracted in
relatively small windows of the image and then they are
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smoothed using di!erent window sizes depending on
how close we are to the boundary between the estimated
textural regions. There is an advantage in using our
technique over the technique where features are extracted
in windows of variable size. Feature extraction is gener-
ally a time-consuming process compared to smoothing in
that it is not e$cient to extract new features each time
a boundary region needs to be further re"ned.

The previously proposed Calinski and Harabatz index
that is used for the estimation of the number of clusters
was modi"ed so that the feature vectors that are close to
the boundaries are not used for the estimation of the
number of textures. Generally, features extracted from
texture boundaries represent a mixture of textural char-
acteristics of the di!erent regions. If the area of boundary
regions to be ignored is large, small textural regions will
also be ignored. Hence, the number of regions in the
image will be underestimated. It is important to note that
in our experiments we found that the number of textural
regions is satisfactorily estimated when the areas closer
than 8 pixels to the texture boundaries are ignored. This
is half the width of the smallest smoothing window that is
used in the iterative K-means algorithm. If a smoothing
window of size 16�16 is at least 8 pixels away from the
boundary it includes a part of only one textural region.
Therefore, if we consider only pixels far away from the
boundaries by at least 8 pixels, then the smoothing win-
dow represents information extracted from a pure tex-
tural region.

6. Summary

We have proposed a new approach for the segmenta-
tion of textured gray-scale images based on image "lter-
ing and fractal features. The original image is "ltered
using 12 di!erent Gabor "lters of four orientations and
three di!erent normalized center frequencies. Some justi-
"cation on the speci"c choice of "lters has been present-
ed. The fractal dimension extracted from the "ltered
images is used as one of the features that are computed
within a window and mapped to the central pixel.
A method of eliminating insigni"cant features is also
proposed. An iterative K-means-based algorithm which
includes feature smoothing and takes into consideration
boundaries is used to segment an image into a number of
clusters. The iterations begin with a large window size
and it is gradually reduced during each iteration. The
number of clusters is estimated using a hierarchical ap-
proach and a modi"ed index that improves the estima-
tion of the number textures in an image. Experimental
comparisons show that the fractal features outperform
the commonly used energy-based features, especially

under certain types of image distortion. The iterative K-
means is found to produce more precise segmentation
when the textural boundary shapes are irregular.
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