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Abstract 
Current indexing-based approaches build the hash 

table using either a large number of reference views or 3 0  
models. In this papel; we propose building the hash table 
using algebraic functions of views. During preprocessing, 
we consider groups of model points and we represent all the 
views (i.e., images) that they can produce in a hash table. 
These views are computed using algebraic functions of a 
small number of reference views which contain the group. 
Fundamental to this procedure is a methodology based on 
Singular Value Decomposition and In tend  Arithmetic for  
estimating the ranges of values that the parameters of alge- 
braic functions can assume. During recognition, scene 
groups are used to retrieve from the hash table the model 
groups that might have produced them. Using algebraic 
functions of views for indexing-based recognition offers a 
number of advantages. First of all, the hash table can be 
built easier; without requiring 3 0  models or a large number 
of reference views. Second, recognition does not rely on the 
similarities between new and reference views. Third, veriji- 
cation becomes simplel: Finally, the approach is more gen- 
eral and extendible. 

1. Introduction 
Recognizing 3D objects from 2D images is one of the 

most challenging problems in computer vision. The index- 
ing-based approach to object recognition has been given 
considerable attention lately [1]-[7]. It is based on the idea 
of using a-priori stored information about the models in 
order to quickly eliminate non-compatible model-scene fea- 
ture matches during recognition. Usually there are two 
steps: preprocessing and recognition. During preprocessing, 
groups of model features are considered and a description 
for each one of them is computed. These descriptions are 
then used to construct an index to a hash table where infor- 
mation about the group is stored. During recognition, 
groups of points are chosen from the scene and their 
descriptions are used to access the hash table. 

Ideally, one would like the index computed from a 
group of model features to remain invariant under view- 
point changes. Although affine [ 11 and projective [3] invari- 
ants have been proposed in the case of planar objects, no 
general-case invariants exist for single views of general 3D 
objects [ 6 ] .  As a result, model-based invariants [4] and 
probabilistic indexing [5] approaches have been proposed. 
Another approach is to model 3D objects with a large num- 
ber of views [2 ] .  m e n ,  indexing based on affine invariants 
can be used. Alternatively, a 3D model per object is 

assumed to be available. Then, the viewing sphere is sam- 
pled and a description about the views (Le., projections) 
that groups of model features can produce from each view- 
point is stored in a hash table [6]. In the case of ortho- 
graphic projection and 3D linea:. transformations, the hash 
table can actually be built using analytical formulas, with- 
out having to sample the viewing sphere (i.e., the images of 
groups of 3D points are represented as a pair of 1D lines in 
two high-dimensional spaces) [71. 

In this paper, a new indexing-based object recogni- 
tion approach is proposed using algebraic functions of 
views [8]-[12]. Algebraic functions of views are functions 
which express a relationship among a number of views of 
the same object in terms of their image coordinates alone. 
The key idea in using algebraic functions of views for 
indexing is that they allow us to compute all possible views 
that a group of model points can produce using only a small 
number of views which contain the group. We will be refer- 
ring to the space of views that a group of points can pro- 
duce as the space of transformed views of the group. During 
indexing, the space of transformed views is sampled and the 
sampled views are represented in a hash table. During. 
recognition, scene groups are used to retrieve from the hash 
table the model groups that might have produced them. To 
sample the space of transformed views, we first estimate the 
ranges of values that the parameters of algebraic functions 
can assume. This is performed using a methodology based 
on Singular Value Decomposition (SVD) [ 131 and Interval 
Arithmetic (IA) [14]. Then, we sample the space of trans- 
formed views by sampling the space of parameters. 

Building the hash table using algebraic functions of 
views is more practical since 3D models are not required. In 
[7], for example, the lines which represent the images of the 
model groups can be found easily only if the 3D structure 
of the object is available. In addition, the proposed 
approach is different from [2] which requires a large num- 
ber of reference views to ensure that new views are similar 
to some of the reference views. This is not required by the 
proposed approach: all that is required for the new views is 
to contain common groups of points with a small number of 
reference views. Another advantage for using algebraic 
functions is that verification becomes simpler: candidate 
models can be back-projected onto the scene by combining 
a small number of their reference views. Finally, the fact 
that algebraic functions of views exist over a wide range of 
transformations and projections [SI-[ 121, makes the pro- 
posed methodology more general and extendible. 
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2. Background on algebraic functions of views 
Algebraic functions of views were first introduced,‘in 

the case of scaled orthographic projection, by Ullman and 
Basri [8][9]. Let us consider three reference views of the 
same object vi, v?,  and vi, which have been obtained by 
applying different rigid transformations, and three points 
p‘ = (x’, y’), p” = (U”. v”) .  and p”‘ = (x”’, y“’), one from each 
view, which are in correspondence. If v is a new view of the 
same object, obtained by applying a different rigid transfor- 
mation, and p = (,U. y)  is a point which is in correspondence 
with p’, p”,  and p‘”, then the coordinates of p can be 
expressed in terms of the coordinates of p’, p”, and p”’ as 
follows: 

x = a ,  x’ + a&’ + agx”’ + a4 (1) 

where the parameters a,, b,,  j = 1, . . . ,4, are the same for all 
the points which are in correspondence across the four 
views. The parameters actually satisfy certain constraints 
[8]. The above result can be simplified if we generalize the 
orthographic projection by removing the orthonormality 
constraint associated with the rotation matrix. In this case, 
the object undergoes a 3D linear transformation in space 
and only two reference views are required. The correspond- 
ing algebraic functions are shown below: 

It should be noted that (3) and (4) can be rewritten using the 
y-coordinates of the second reference view instead. The 
extension of algebraic functions of views in other cases can 
be found in [ 1014 121. 

Algebraic functions of views can be used to predict 
the image coordinates of points in a novel view by appropri- 
ately combining the image coordinates of the same points 
across a number of reference views. This idea can be used 
for recognizing unknown views of an object. There are, 
however, two stumbling blocks with this approach: first, we 
need to find which points from the reference views corre- 
spond to which points from the unknown view and second, 
we need to find the set of values for the parameters of the 
algebraic functions (i.e., a,’s, bj’s) .  Both problems can be 
very computationally intensive. Here, we propose the cou- 
‘pling of algebraic functions of views with indexing. The 
idea is to use algebraic functions of views to predict all 
images that groups of model points can produce. These pre- 
dictions are then represented in a hash table along with 
information about point correspondences and parameter 
values. During recognition, groups of points are chosen 
from the scene and the hash table is accessed to retrieve the 
model groups that might have produced them as well as 
information about point correspondences and parameter 
values. 

The first step in this approach is to compute the 
ranges of values that the parameters of algebraic functions 
can assume. Then, these ranges are sampled and for each 
sampled set of parameter values, a new view is obtained by 

3. A framework for indexing 
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combining a small number of views using algebraic func- 
tions. The image coordinates of the groups in the new views 
are then used to generate an index to a hash table where 
information about the model. the reference views, the 
group, and the sampled set of parameter values are stored. 
During recognition, groups of points are chosen from the 
scene and their image coordinates are used to generate an 
index. The entries stored in the indexed location indicate the 
model, reference views. model group, and parameter values 
that might have produced the scene group. Verification fol- 
lows to rejecvaccept candidate matches. Figure 1 illustrates 
these steps. 

Hwh Tdklinrnrr PREPROCESSIN0 

f n d d  cmwd rrl a2 I*bJ.bZ bk) 
vsmncm toy 

REcOGYmoY 

Figure 1. The steps involved during indexing. 

4. Estimating the parameters’ ranges of values 
Let us assume that we have M models and that each 

model is represented by a number of aspects A,,,, 
m=1,2, ..., M. In the case of convex 3D objects, six aspects 
should be enough, while in the case of general 3D objects, 
more aspects are necessary ‘to represent the object from dif- 
ferent viewing directions. Each aspect is represented by v 
different views (reference views). Here, V=2 since we 
assume orthographic projection and 3D linear transforma- 
tions. For each aspect, we assume a number of “interest” 
points m = 1.2 ,..., M, a = 1,2 ,.... A,,, (i.e., corners or 
junctions), which are common in a11 the views associated 
with the aspect and in correspondence. 

Under the assumption of orthographic projection, the 
following system of equations should be satisfied (see (3) 
and (4)): 

Splitting the above system in two subsystems we have: 

pel= Pr (6) 

pc2 = Py  (7) 

where P is the matrix formed by the x-  and y-coordinates of 
the reference views (plus a column of l’s), c1 and c2 are vec- 
tors corresponding to the a, and b j  parameters and p x ,  py are 
vectors corresponding to the x- and y-coordinates of the 
new view. Since both (6) and (7) are overdetermined, they 
can be solved using a least-squares approach such as SVD 
[13]. Using SVD, P=UPwPvpT where both UP and vP are 



orthonormal matrices, while W, is a diagonal matrix whose 
elements W: are called the singular values of P. The solution 
of the above two systems is c l  = p+p, and c2 = p+p,, where P' 
is the pseudoinverse of P defined as P+ = v,w$; (w: is also 
a diagonal matrix with elements I/W: if W: greater than zero 
and zero otherwise). In specific, the solutions are given by 
the following equations [ 131: 

model1 

model2 

(9) 

ceed by splitting the above problem into two subproblems: range ofal  range of a2 range of a3 range of a4 

[-25.321 25.3211 [-10.154 10.1541 1-23.173 23.1731 [-5.913 6.943) 

[-27.771 27.771) [-10.154 10.1541 1-24.328 24.3281 I-8.496 9.4961 

p y  that belong to p i  and p{  [15].?Thus, p(x& and ~ ~ E P C ; .  
We call these "invalid solutions". Clearly, views corre- 
sponding to invalid solutions can be easily detected and 
rejected by testing whether the image coordinates of a 
transformed group lie inside the unit square. 

5. Preconditioning the reference views 
As Table 1 illustrates, the width ofthe range of values 

varies from parameter to parameter. Wide ranges are not 
desirable because more sets o€ values must be considered. 
In this section, we present a methodology lo "precondition" 
the original reference views. By "preconditioning" we 
imply a transformation that will transform the original ref- 
erence views to new reference views, yielding very narrow 
ranges. We define the "condition" of a reference view as the 
ratio of the maximum to minimum singular values of matrix 
P in (6) or (7) (this ratio can be regarded as the condition 
number of P [16]). By performing a number of experiments, 
we have found that large condition numbers yield wide 
ranges of values for c1 and c2 [171. This should not be con- 
sidered coincidental since it is well known that the relative 
error in the solution of a linear system of equations, like (6) 
or (7), depends on the condition number of the coefficients' 
matrix ( P )  [16]. Using (3, we can write the preconditioning 
transformation as follows: 

where UP denotes the i-th column of matrix U,, V P  denotes 
the i-th column, of matrix vp. 

To determine the range of values for c I  and c2, first 
we assume that the views to be recognized have been scaled 
such that their X, y-coordinates lie i n  [ O , l l .  Then, we com- 
pute all possible solutions of (6) and (7) assuming that p x ,  
p y  belong to [0,1]: The idea is to use Interval arithmetic 
(IA) [14]. In IA, each variable is represented as an interval 
of possible values. Given two interval variables t = [t l ,  t2] 

and r = [ r l , r 2 ] ,  then the sum and the product of these two 
interval variables is defined as follows [ 141: 

f + r = [ t l  + rl , 12 + rz] (10) 

~n ~n ..n t * r = [ m i n ( t l r l ,  t l r 2 ,  t z r l ,  f2r2). mau(rlr1 ,  flr2, t z r l ,  t2r2)1 (11 )  

In interval notation, we want to solve the systems P C ~  = p i  
and pc2 = p;, where the superscript I denotes an interval 

, 
a1 b l  a5 0 X!, Y ! ,  XI ,," 

x 2  Y2 X2 

... . . . . . . . . . b 3  a 7  0 ... ... ... .. I I' b 2  a6 ~~=~ 

vector, given that pi=p;=[O,l]. The solutions ci and ci n '  

should be understood to mean C: = [cl: pcl = p,, p X ~ p ~ ]  and xNm(o) '"(a) xNm(4)  a4 b 4  a8 x k 4  Y & p )  X;;"m(n) 1 

or PC=P"  (12) 

where c is the desired transformation matrix, P is the matrix 
corresponding to the old reference views, and P" is the 
matrix corresponding to the new reference views. Let us 
consider the singular value decomposition of P ,  c and P": 
p = upwpv$, C = ucwcv~, and p" = C J ~ ~ W ~ ~ V $ ~ .  Substituting 
these expressions in (12) we have: 

C: = [cZ:  P C ~  = p y .  p y ~ p $ .  As an example, let us consider the 
3D objects shown in Figure 2. Table 1 shows the range of 
values computed for c1. 

modell-ref1 - 

0.5 

0.4 

0.3 (UpWpV,T)(U,W,V,T) = (up" W p n  VJ") (13) 
0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7 

First, since both (6)  and (7) involve the Same matrix and 
Px.  PY are equal, Ihen c:=c:. Second* not every in ': 
and C: satisfies the interval system of equations. In other 
words, not every solution in C: and ci corresponds to p x  and 

vP is known from the SVD analysis of P.  The procedure is 
to solve for z first (Eq. (16)) and then to solve for ( v f f  (Eq. 
(15)). In solving (15), we need to consider an additional 
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constraint: the magnitude of the solution vector (vJCf must 
be equal to one (a direct consequence of the orthonormality 
of vc). Assuming that the elements of wc are WE, i = 1,2,3,4,  
the solutions of (15) must satisfy the following condition: 

range of a1 

From (14), W $  = R/w:, i = 1,2,3,4. Substituting W E  in the 
above equation and solving for a we have: 

range of a2 range o l  a3 range oi a4 

4 

modell [-04540.4541 

where only the positive R value has been considered since 
the sign of R determines the sign of the singular values. 
Next, the rest elements of v, need to be detcrmined. The 
details can be found in [ 171. 

Figure 3 shows the preconditioned views correspond- 
ing to the views shown in Figure 2 (only one preconditioned 
reference view is shown since only the x-coordinates of the 
second reference view were used in preconditioning). Table 
2 shows the computed ranges of values for the parameters 
in this case. 

[-0.4170.4171 [-0.392 0.3921 1 (0.0 1.01 

2.5 , , , 
3 madelz-rsfl - 2.5 , , , 

d e l l - r e f l -  

model2 [-0.439 0.4391 

I 

0 

I 

1.5 

0.5 

as 

-1.5 -1.5 

[-0.413 0.4131 1-0.423 0.4231 10.0 1.01 

Figure 3. The preconditioned views. 

Table 2. The computed ranges for the preconditioned views. 

6. Decoupling the image coordinates 
As discussed in section 4, both al and b, assume val- 

ues from the same ranges. Taking also into consideration 
that the same basis vector is involved in thg’computation of 
both x- and y-coordinates (i.e., ( x ’ , ” , ~ ’ ’ ) ) ,  it  turns out that 
the transformation which generates -the x-coordinates is 
exactly the same to the transformation which generates the 
y-coordinates. Since it is not necessary to represent the 
same transformation twice over the hash table, only one of 
the two coordinates (the x-coordinates here) are used during 
indexing. This simplification offers great computational and 
memory savings, however, it makes recognition slightly 
more complicated. The hash table needs to be accessed 
twice now: first, the x-coordinates of the scene group are 
used to give rise to hypotheses which predict ais and sec- 
ond, the y-coordinates of the scene group are used to give 
rise to hypotheses which predict bls. Then, the intersection 
of the hypotheses needs to be considered. We further dis- 
cuss this in section 9. 

7. Predicting the parameters 
Given a scene group, the goal of recognition is to pre- 

dict the model group and the parameters that have produced 
the scene group. As discussed in the previous section, the 
prediction of the parameters is performed in two steps. 
However, it is important to understand that there will be 
some error in the prediction of the parameters. This is 
because the hash table was built using a finite number of 
images per model group (obtained by sampling the space of 
parameters). As a result, if a scene group is not very similar 
to one of the transformed groups used during preprocessing, 
then the predicted parameters will not be very accurate. 

In a recent work [181. we studied the problem of 
learning to predict the parameters of the affine transforma- 
tion between known and unknown views of a planar object. 
A neural network was used to learn the mapping. This work 
has been extended in the case of 3D objects, assuming 
orthographic projection and 3D linear transformations [ 191. 
First, a number of training views is generated using alge- 
braic functions of a small number of reference views. Then, 
these views are used to train a neural network to predict the 
parameters of the algebraic functions used to generate the 
training views from the reference views. Motivated from 
these ideas, we have assigned a different neural network to 
each model group (group speciJic neural networks). Then, 
when an entry is made to the hash table during preprocess- 
ing, instead of storing the parameters of the algebraic func- 
tions we store a pointer to the neural neural network associ- 
ated with the model group. It should be noted that the neu- 
ral network approach has lower space and time require- 
ments compared to other least-square approaches [ 17][18]. 

8. Group size, condition, and ordering 
An important issue when we consider groups of 

points is how to choose the number of points G in the 
group. Obviously, in order for the groups to be useful for 
matching, G must be chosen in a way such that every scene 
group may have been produced only by one model group. 
In the case of orthographic projection and 3D linear trans- 
formations, the algebraic functions of views involve eight 
parameters. This means that we need to match at least four 
scene points to four model points in order to determine the 
parameters. Thus, the minimum group size which provides 
discrimination is five. 

Considering all possible model groups of a given size 
during preprocessing is not practical since this would 
require a lot of space. Here, we consider only well- 
conditioned model groups. The definition of the condition 
of a model group is similar to the definition of the condition 
of a model view: it is the condition of the matrix formed by 
the x- and y-coordinates of the group, across the reference 
views, plus a column of 1’s (see Eq. (5)). Obviously, if we 
assume noise in the location of the points of a group (right 
hand-side of (5)), then the error in the solution of (5 )  will 
proportional to the condition of the group (matrix P )  [16]. 
Thus, although a scene group might have been matched cor- 
rectly to a model group, verification might not be able to 
verify this if the parameters of the algebraic functions have 
not been recovered accurately. To avoid such hypothetical 
matches from the beginning, unstable model groups are dis- 
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qualified during preprocessing. This is performed by apply- 
ing a simple thresholding on the condition of the groups. 
We must ensure, however, that most model points are repre- 
sented in the groups chosen and that the same model point 
does not appear in every model group to allow tolerance to 
occlusions. 

Another important issue is the order of the points in 
the group. If we do not make any assumptions about the 
order, either all possible orderings must be considered dur- 
ing preprocessing or all possible orderings must be consid- 
ered during recognition. Since the second approach will 
increase recognition time, the first approach is considered 
only. To avoid considering all possible orderings during pre- 
processing, we apply a canonical ordering to the points of 
the model groups. The canonical ordering procedure uti- 
lized here is very simple: we order the points by sorting the 
coordinates (X or y )  of the group in an increasing order. 
During recognition, the same canonical ordering is applied 
to the scene groups. Information about the ordering of the 
model group is stored in the hash table during preprocess- 
ing. 

9. Evaluating hypotheses 
Considering only well-conditioned groups during 

preprocessing restricts ourselves to a small set of model 
groups. As a result, many invalid matches are expected to 
be established during recognition. To reject as many invalid 
matches as possible without having to apply the expensive 
verification step first, each hypothetical match is evaluated 
using a number of easy to test conditions. As mentioned 
earlier, each hypothesis is formed by combining entries 
retrieved by the x-coordinates of a scene group with entries 
retrieved by the y-coordinates of the scene group. However, 
before a hypothesis is verified, it has to satisfy a number of 
conditions. These conditions ensure that (i) both X- and y- 
coordinates predict the same model, (ii) the same aspect, 
(iii) the same model group, (v) the parameters predicted by 
the neural network belong to the ranges computed during 
preprocessing, and (iv) the predicted model group is well- 
conditioned. Rrnges of VPIUCS 

range of a l  range of  a2 range of a3 I range of ad - 
modell 14.41933 0.41933] [-0.3h231(1.36?34] [-0.12926 0.429261 r0.0 1.01 

mode12 [-0.44177 0.441771 k-0.15138 0 441381 1 l-1).41368 0.433681 10.0 1.01 

model3 1-0.42321 0.323211 [-0.4l114041IlJJ 1 I-0.37975 0.379751 (0.0 1.01 

__- 

In this section, we demonstrate the proposed 
approach through a number of experiments. The group size 
chosen in these experiments is G=5. A 5-dimensional hash 
table of size 10 x 10 x 10 x 10 x 10 was utilized. First, we 
performed a number of experiments using the artificial 
objects shown in Figure 2. For each object, we generated a 
number of random views and we added some random noise 
in the location of the model points to simulate sensor noise. 
In all cases, recognition was successful and the parameters 
of the algebraic functions were predicted accurately. The 
number of hypotheses verified in four different cases are 
shown in Table 3. To demonstrate the significance of the 
tests discussed in section 9, Table 3 shows the number of 
hypotheses verified with (second column) and without test- 
ing (first column) these conditions. 

Next, we performed a number of experiments using 
the real 3B objects shown in Figure 4. We have considered 
only one aspect per object in these experiments. The views 

~ 
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used to model these aspects are shown in Figure 4 ((a)-(0). 
A corner detector [201 w a q  used to extract a number of 
interest points. Then, we manudly selected the most impor- 
tant interest points. which be rc  also common in both views, 
and we established their correspondences. Figure 4 ((g)-(1)) 
shows the points chosen (the lines have been drawn just for 
visualization). 

Table 3. Verified hypotheses. 

-t---df - - 
~ _ I _ - .  

Figure 4. The real objects. 

Table 4. The computed ranges for the real objects. 

Then, the reference views were preconditioned, the 
range of values of the parameters o f  the algebraic functions 
were estimated, and the hash table was built. Table 4 shows 
the ranges computed for each object. Some of the scenes 
used in our recognition experiments are shown in Figure 5. 
The interest points were detected using the same corner 
detector. Since we have not tried to optimize the selection 
of promising scene groups during recognition, for example 
by using some kind of grouping, we manually removed 
interest points that were not corresponding to strong corners 
to limit the number of groups to be examined during recog- 
nition. Then, groups of scene points were formed randomly, 
using the remaining points, and hypotheses were formed. 
The recognition results are shown in Figure 5 (recognized 
objects have been superimposed on the scene). Table 6 
shows the actual and predicted parameters in each case. 



Figure 5. Recognition results. 

' Actual paramcten (Figure S(a)) 

a l  , u ~ , u ~ , N ~  

bl,b2,b3hJ 
0.03704 0.19696 0.04488 0.63449 

-o 1 2 3 ~ 8  005752 n n w 6  0.53638 

Actual parameters (Figure 5(b)) 

Table 6. Actual and predicted parameters. 

Predicted parameters (Figure 5(d) 
0.03700 0 19692 0.04485 0.63446 

-0.12353 0.05757 0.01051 0.53644 

Predicted parameters (Figure S(b)) 

b l , b 2 , b 3 , b 4  

al ,az.aS;a; 
bl ,bz,b-,,b4 

a,  .ag.a2.a4 I -0.041474 0.22793 0.02362 0.57797 I -0.04145 0.22798 0.02365 0.57802 

-0.08168 0.03142 0.~)01500.68023 -0.08168 0.031460.000180.68026 

Actual parameters (Figure S(d)) Predicted parameters (Figure S(d)) 

-0oxJxi 0.06358 -0.03732 0.61571 -0.08480 0.06357 -0.03733 0.61572 

-0.05666 -0.01054 0.01670 0.52448 -0.05660 -0.0404Y 0.01673 0.52454 

b l , b 2 , b 3 , b 4  I 0.123646-0.05775 -0.00653 0.50611 I 0.12360-0.05781 -0.W6580.50606 
I Actual parameters (Figure 5(c)) I Predicted parameters (Figure S(d) 
I 

at.a,.al.aA I 0016820.13225 -0.006020.62491 I 0.01682 0.13228 -0.W601 0.62492 

11. Conclusions 
In this paper, we introduced a new indexing-based 

ibject recognition approach based on algebraic functions of 
iiews. The proposed approach has the advantage that it 
.equires only a small number of views per object to build 
he hash table. Thus, it is more practical than other 
ipproaches which either require too many views or the 3D 
itructure of the object. For future research, we are planning 
o extend the proposed approach in the case of perspective 
xojection. We are also exploring ways to build the hash 
able using analytical formulas, like in [7], without having 
o sample the parameter space. 
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