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Abstract

A novel approach to the problem of finding the weights of an adaptive array is presented. In cellular and satellite
mobile communications systems, desired as well as interfering signals are mobile. Therefore, a fast tracking
system is needed to constantly estimate the directions of those users and then adapt the radiation pattern of the
antenna to direct multiple beams to desired users and nulls to sources of interference. In this paper, the
computation ofthe optimum weights is approached as a mapping problem which can be modeled using a suitable
artificial neural network trained with input output pairs. A study of a three-layer Radial Basis Function Neural
Network (RBFNN) is conducted. RBFNN were used due to their ability for data interpolation in higher
dimensions. The network weights are modified using the normalized cumulative delta rule. The performance of
this network is compared to the Wiener solution. It was found that networks implementing these functions were
successful in tracking mobile users as they move across the antenna's field of view .

I. Introduction:
As the number of users in wireless and personal communications systems increase, the likelihood of

interfering with one another increases and more efficient use of the available spectrum is required . Multiple
access techniques are therefore used to maximize the number of users a system can accommodate. However,
bandwidth limitations in a Frequency Division Multiple Access (FDMA) system, or time limitations in a Time
Division Multiple Access (TDMA) or limitations on the number of good codes in a Code Division Multiple
Access (CDMA) system, limit the number of users that a system can accommodate simultaneously. Hence,
frequency reuse is used to increase the capacity of a cellular system. With frequency reuse the same frequency is
used in two different cells separated far enough so that users in one cell do not interfere with the users in the other
cell. In satellite-based Personal Communication Systems (PCS), geosynchronous satellites can interfere with each
other as well as with Low Earth Orbit satellites, which limits their capacity. Global Positioning Systems (GPS)
applications will also experience narrowband and broadband interferences. lnterference rejection is therefore
essential, and often represents an inexpensive way to increase the system capacity by allowing closer proximity of
cofrequency cells or beams providing additional frequency reuse1 in a cellular system. Interference rejection can
be accomplished in two steps. First, an Angle Of Arrival (AOA) estimation algorithm is used to locate desired as
well as cochannel mobile users . Then an adaptive array can be designed so that it directs the maxima of its
radiation pattern toward the mobiles of interest while it directs nulls of its radiation pattern toward the interfering
sources 5; this adaptive array is able to track the mobiles of interest in real-time.

Neural networks are gaining momentum in the field of signal processing 6,7 mainlybecause oftheir general-
purpose nature, fast convergence rates, and new VLSI implementations. Motivated by these inherent advantages,
this paper presents the development of a neural network-based algorithm to compute the weights of an adaptive
array antenna . In this new approach, the adaptive array can detect and estimate mobile users' locations, track
these mobiles as they move within or between cells, and allocate narrow beams in the directions of the desired
users while simultaneously nulling unwanted sources ofinterference. This adaptive antenna results in an increased
system capacity for the existing cellular and mobile communications systems. The organization ofthe paper is as
follows: In section II a brief derivation of the optimum array weights in l-D adaptive beamforming is presented.
In Section III the method is applied to 2-D arrays. The RBFNN approach for the computation of the adaptive
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array weights is introduced in section IV. Finally, Section V presents the simulation results and Section VI offers
conclusive remarks.

II. Adaptive beamforming using 1-Dimensional linear arrays
Consider a linear array composed of M elements as shown in Figure 1 . Let K (K<M) be the number of
narrowband plane waves, centered at frequency oo impinging on the array from directions {e1 82 • • • eK
Using complex signal representation, the received signal at the th element can be written as,

xi (t) = Sm (t)m + n (t) ; i = 1,2, • • • M
(1)

where s(t) is the signal ofthe mth wave, n1(t) is the noise signal received at the ith sensor and

km -2-sin(8m) (2)

where d is the spacing between the elements of the array, and c is the speed of light in free space. Using vector
notation we can write the array output on the matrix forms:

X(t)=AS(t)+N(t) (3)
Where, X (t), S(t) and N(t) are given by:

X(t) = [x (t) X2 (t) .. . XM(t)]T (4)

N(t) = [n (t) (t) .. . M(t)]T (5)

SQ) = [s () 2 (t) •. . K (t)]T (6)
In (4) and (5) and (6) the superscript "T" indicates the transpose ofthe matrix. Also in (3) A is the MxK steering
matrix ofthe array towards the direction ofthe incoming signals defined as:

A = [a(e1 ) a(e2) . . . a(OK)] , (7)
where a(O) is defmed as

a(81 ) = [i ejkl e_12k1 •. . e_.(M_
} (8)

Assuming that the noise signals {n1(t), i =1:M), received at the different sensors are statistically independent,
white noise signals, of zero mean and variance a2 and also independent of S(t) , then the received spatial
correlation matrix, R, of the received noisy signals can be expressed as:

R = E{X(t)X(t)' }= A E[S(t)S" (t)]A" + E[N(t)N (t)]
Al (9)= AFAR +a21

In the above equation, P = ES(t)S(t)" designates the signal covariance matrix and I is the identity matrix.

Also, in the above equation "H" denotes the conjugate transpose. Finally, ? (1� i � M) and e1 (1� i � M) stand for
the eigenvalues and eigenvectors ofthe matrix R, respectively. The weights ofthe array element outputs can be
represented as an M-dimensional vector:

W=[w1 w2 •. WMI (10)
Then the array output becomes

y(t) = wx(t) = WHX(t) (11)

The mean output power is thus given by:
P(W) = E[yQ)y(t)}= WRW (12)

where * denotes the conjugate. To derive the optimal weight vector, the array output is minimized so that the
desired signals are received with specific gain, while the contributions due to noise and interference are
minimized. In other words:
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minW" RW subject to W" Sd = r
In the above equation, r is the V x 1 constraint vector, where V is the number of desired signals, and Sd is the
steering vector associated with the look direction as defined in (8). The method of Lagrange multipliers is used to
solve the constrained minimization problem in (13). It can be shown that the optimum weight vector is given by
the following equation:

'opt =R_1Sd[SdHR_1Sd]_lr (14)
Since the above equation is not practical for real time implementation, an adaptive algorithm must be used to
adapt the weights of the array in order to track the desired signal and to place nulls in the direction of the
interfering signals.
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III. Adaptive beamforming using 2-D rectangular arrays
Consider a general M x N rectangular array as shown in Figure 1 receiving K signals and let the received signal

data matrix be given by :

Xmn(t) = Si (t)A,(m)A (n)+ mn (t) (15)

where

1. 2icd.
A1 (m) = exp1j(m —1)

U sin e. cos4j (16)

A (n) = exp{f(n _ 1) 2id , sin} (17)

In the above equation ,d and d are the spacings between the elements along the column and row directions,

respectively, while e, and are the elevation and azimuth angles ofthe thsource, respectively, and m=1,2,. .

n=1,2, . . .,N; and i1,2, ...,K.
The received signal data can be arranged in a lx MN vector given by

X(t)=s1(t)A +N(t) (18)

In (16) the matrices X(t), and N(t) are defined as
XQ) = [x11(t) x21 (t) •• • XMl (t) x12 (t) •• • x

(1)1T (19)

N(t) = [n11 (t) n21 (t) •• ' M1(t) n2 (t) n (t)]T (20)

while the ith signal direction vector A = A ® A1 is defined in terms ofthe Kronecker product ofA1 and A

,which are given by
A1 = [An,(1) A1 (2) • • A,(M)}T and

A, = [A(1) A(2) ••• A(M)]T (21)
The Kronecker product oftwo matrices B (ofsize p x q) and C (ofsize m x n) is defmed as

b11C b12C •. .
bjqC

b2C b22C ••• b2CB®C= : : (22)

b1C b2C • . . bpqC

where B®C is an pm x qn matrix and b1 are the elements ofthe matrix B. It can be shown that in this case, the
vector ofoptimum weights is given by

'opt R_1Sd[SdHR_1Sd]1r (23)

where R is defined as E{X(t) XH(t)} and Sd is the steering vector associated with the desired signals given by
Sd = S, 0 SdU where Sd and Sd are vectors defined as

s = [s (1) S (2) (M)]T (24)s = [s(1) S(2) ... S(N)]T (25)

whose elements are given by
2icd. 1

Sd (i) = exp1j(m —1) "sin 9. cos4, (26)

I 27rd . . 1

S(i)= exp j(n —1)
V srn sin 4 (27)
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Iv. Neural Network —based interference cancellation:

This section describes a new implementation for the problem of beamforming using neural networks.

The optimum weight vector is a nonlinear function of the correlation matrix and the constraint matrix (see

equations (14) and (23)). Therefore it can be approximated using a suitable architecture such as a Radial Basis

Function Neural Network [11]. Note that a Radial Basis Function Neural Network can approximate an arbitrary

function from an input space of arbitrary dimensionality to an output space of arbitrary dimensionality'°. The

block diagram of a RBFNN is shown in Figure 2. As it can be seen from Figure 2,the RBFNN consists of three

layers ofnodes, the input layer, the output layer and the hidden layer.In our application the input layer consists of

J=2Mnodes (1D array case), or J=2A4Nnodes (2-D array case) to accommothte both the real and the imaginary

part ofthe input vector (i.e., X(t)). The output layer consists of 2M nodes (1-D case) or 2MN nodes (2-D case) to

accommodate the output vector (i.e., As it is the case, with most neural networks the RBFNN is designed to

perform an input-output mapping trained with examples (X'(t); W',) ;l 1,2,. . . ,NT, where NT stands for the

number ofexamples contained in the training set. The purpose ofthe hidden layer in a RBFNN is to transform the

input data X(t) from an input space ofdimensionality Jto a space ofhigher dimensionality L (see Figure 2).There

are a lot of learning strategies that have appeared in the literature to train a RBFNN. The one used in this paper

was introduced in ", where an unsupervised learning algorithm (such as the K-Means12) is initially used to

identify the centers of the Gaussian functions used in the hidden layer. Then, an ad-hoc procedure is used to

determine the widths (standard deviations) ofthese Gaussian functions. According to this procedure the standard

deviation of a Gaussian fimction of a certain mean is the average distance to the first few nearest neighbors of the

means of the other Gaussian functions. The aforementioned unsupervised learning procedure allows you to

identify the weights (means and standard deviations of the Gaussian functions) from the input layer to the hidden

layer. The weights from the hidden layer to the output layer are identified by following a supervised learning

procedure, applied to a single layer network (the network from hidden to output layer). This supervised rule is

referred to as the delta rule. The delta rule is essentially a gradient decent procedure applied to an appropriately

defined optimization problem. For more details about the delta rule, and how it is applied to single layer networks

see'°. Once training of the RBFNN is accomplished, the training phase is complete, and the trained neural

network can operate in the performance mode (phase). In the performance phase, the neural network is supposed

to generalize, that is respond to inputs (X(t)'s) that it has never seen before, but drawn from the same distribution

as the inputs used in the training set. One way of explaining the generalization exhibited by the network during

the performance phase is by remembering that after the training phase is complete the RBFNN has established an

approximation of the desired input/output mapping. Hence, during the performance phase the RBFNN produces

outputs to previously unseen inputs by interpolating between the inputs used (seen) in the training phase. The

step-by-step procedure to produce the training data {X'(t); W ;l = 1,2,... ,N }for the RBFNN in this application

is provided below.
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Figure 2 Architecture of a three layer RBFNN.

Generation of Training Data

1. Generate array output vectors {X'(t); 1 1,2,. . .,Nr} using equations (3) [1D case] or (18) [2D case].

2. Normalize each one ofthe above array output vectors by its norm. For simplicity of notation we still refer to

these vectors by X(t)'s.

3. Evaluate the correlation matrix R' (1 1,2,. . ., NT) for each of the array output vectors generated in Step 1; to

do so use equation (9). Using the calculated R' 's calculate the vectors {W; 1 = 1,2,. . ., NT }from equation

(14) [1-D case] and equation (23) [2-D case].

4. Produce the required training input/output pairs ofthe training set, that is {(X'(t); W') ;l =1,2,. . .,NT}

In this application, the training data were generated by assuming that sources were located at elevation angles e

ranging from _900 to +900 with increments of e for the 1-dimensional case. In the 2-dimensional array, in
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addition to angles 0, azimuth angles 4 can be made to range from 00 to 3600 in order to span the field of view of

the antenna.

As we have emphasized before, once the RBFNN is trained with a representative set of training

inputloutput pairs it is ready to function in the performance phase. In the performance phase, the RBFNN

produces estimates of the optimum weights for the array outputs, through a simple, computationally inexpensive,

two-step process, described below.

Performance Phase of the RBFNN

1 . Generate the array output vector X(t) . Normalize this array output vector by its norm.

2. Present the normalized array output vector at the input layer of the trained RBFNN. The output layer of the

trained RBFNN will produce as an output the estimates of optimum weights for the array outputs (i.e., W0).

V. Simulation results

Figures 3 and 4 show the adapted pattern of a 10 element linear array obtained from the RBFNN and how it

compares with the optimum Wiener solution for angular signal separations of 15° and 100,respectively. It can be

concluded from these figures that the RBFNN produced a solution for the beamforming weight vector that is very

close to the optimum solution. In Figure 5, an 8 x 8 array is used to track 10 different users, with e= 15° and =
30°. The adapted pattern obtained from a RBFNN with 150 nodes in the hidden layer is compared with the

optimum solution. The network successfully, tracked the desired signals and placed nulls in the direction of the

interfering users. Finally, an array of 10 x 10 elements was simulated to track 19 signals consisting of 10 desired

users and 9 co-channel interferences. Figure 6 shows the adapted pattern as the network tracked all mobile users.

The number of inputloutput pairs used in the training set for the 2-dimensional arrays was 181.

VI. Conclusion

A new approach to the problem of adaptive beamforming was introduced. The weights were computed using

an RBFNN that approximates the Wiener solution. The network was successful in tracking multiple users while

simultaneously nulling interference caused by cochannel users. Both 1-D and 2-D arrays were simulated and the

results have been very good in every case. Comparison of the adapted pattern obtained by the RBFNN and the

optimum solution proved the fast convergence rate of this approach as well as its high degree of accuracy. Future

work will concentrate on (i) the effects of element patterns and (ii) finding the maximum number of simultaneous

users that can be tracked by the antenna array using this new approach.
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