
Texture classification using ART-based neural networks and Fractals

Dimitrios Charalampidis, Takis Kasparis, Michael Georgiopoulos

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, Florida, 32816

ABSTRACT

In this paper texture classification is studied based on the fractal dimension (FD) of filtered versions of the image
and the Fuzzy ART Map neural network (FAMNN). FD is used because it has shown good tolerance to some image
transformations. We implemented a variation of the testing phase of Fuzzy ARTMAP that exhibited superior performance
than the standard Fuzzy ARTMAP and the 1-nearest neighbor (1-NN) in the presence of noise. The performance of the above
techniques is tested with respect to segmentation of images that include more than one texture.
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1. INTRODUCTION

Texture classification is an important task in many applications in computer vision and pattern recognition. It is a
process that involves classification of the feature vectors that are extracted from a textured image. Features are parameters
that characterize the texture and feature vector is a set that consists of more than one feature. The selection of this set is very
important because it must sufficiently identify different textures; otherwise the classification results will not be good
independently of the classification algorithm. Classification usually involves training of a system so that it will be able to
identify textures. A class can be defined as a collection of objects that have the same characteristics. Textures that belong to
the same class are given the same label. The system is trained using feature vectors that correspond to textures with already
known label. The performance of the algorithm can be tested by studying the classification for textures that were not used in
the training process but they have known labels. Also, the performance can be tested by studying the classification for the
training set when it is subjected to noise. Neural networks (NN) are often used for classification purposes, such as Back
Propagation NN, Radial Basis Function NN, Fuzzy ART Map neural network (FAMNN)', etc. Other common classification
methods such as stochastic models and Nearest Neighbor techniques are also used.

2. BACKGROUND

2.1 Fractal Dimension

There are many definitions of the FD of an object, including box dimension, intersection dimension and Bouligand-
Minkowski dimension. FD has been characterized as a measure of irregularity of an object. Any curve is an object with one
topological dimension that occupies some part of a surface. FD defines how much area of this surface is occupied by the
curve. For instance, a highly irregular curve will have larger FD than a straight line. The FD of a curve can be between 1,
which is equal to its topological dimension, and 2 which is equal to the topological dimension of the surface that it can
occupy. The concept of PD can be extended to surfaces. The PD of a surface can be between 2, which is its topological
dimension, and 3, which is the topological dimension of the "box" that the surface can occupy.

Variation2 is a method that is used to compute the PD of an object. It has been shown that the variation method gives
accurate and robust estimation of the PD of a surface. An image Z(x, y) of size R x R can be considered as a surfaceof size R
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x R, where its value at position (xe, Yo) is Z(X,, Yo). The variation method can be applied on an image so that its PDcan be
computed.

The definition of the PD for surfaces using the variation method, is that if a surface Z is a fractal, there exists at least
one part of the interval [0, 1] where Z is nowhere or almost nowhere differentiable. If P(x, y, x', y') is the slope of theline
passing through points (x, y, Z(x, y)) and (x', y', Z(x', y')), then this IP(x, y, x', y')I goes to infinity as the point (x',y tends
toward (x, y). PD is defined as the rate in which IP(x, y, x', y)I goes to infinity. The variation of Z can be defined as:

VE(x, i) = maxZ(s, t) - mm Z(s, t) (1)
dist((x, y),(s, t)) � e dist((x, y),(s, t)) � e

where dist((x, y),(s, t))=max(Ix-sI, ly-ti) and c > 0. The integral of V(x, y) tends to zero as tends to 0. The rate of growth of
this integral is directly related to the FD of Z. The FD of the surface Z is given by:

I log JSV(x, y)dxdy
PDz = Lv(Z) urn j 3 - (2)

4oL. logc

I log SOlO [ V(x, y)/e3 I dxdy

=limI (3)
—4oL log(1/E)

The slope of the log-log plot of the line that is defined by log $ofo[ V(x, y)/c3 ] dxdy and log(1/E) gives the PD of thesurface.
The computation of the PD of a discretized surface involves substitution of the integrals with summations.

The PD of an image can be computed locally in all different regions of size R x R of the image, so that a PDspace
can be created. This PD space will be mapped one-to-one to the pixels of the image. The algorithm for computing the PD
space of an image is implemented as follows: The difference VE between the maximum and the minimum grayscale values is
computed in a small window of size T x T, where T =2c+1 . This window is centered at the pixel with coordinates (x, y). This
computation is repeated for all pixels (x, y) of the image, for = 1, 2, 3, . . . , V(x, y) is the variation located at (x, y).
If we define E as the average of V(x, y) over a window W of size R x R, then the FD located at thewindow W is the slope
of the line that better fits the points (Iog(R/e), log{(RJc)3E,}) where = 1 , 2, 3 . The line that better fits these points
can be found using the least mean square approach. This PD is mapped to the central pixel of the window W. The next step is
to shift the window W and map its PD to the central pixel of the new window. The previous steps are repeated for all pixelsof
the image and the PD space is created.

2.2 Gabor Filters

Multi-channel Gabor 6 is an approach to texture characterization and segmentation. The frequency
spectrum of a signal, texture in this case, is decomposed into its spectral components using two dimensional Gabor filters with
specified bandwidths and center frequencies. The filters can have constant or octave bandwidth. Two-dimensional directional
symmetric Gabor filters can be defined in the spatial and the frequency domain respectively as:

h(x, y)=g(x', y') [cos(2it fo x') + j sin(2ic fo x')} (4)
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Every node i (i 1 2 . 2Ma}) in F1 field is connected via a bottom-up weight with every node j(j e { 1, 2, . .

, Na)) in the F2 field; this weight is denoted Waij. Also, every node j in F2 field is connected via a top-down weight with
every node i in the F1 field; this weight is denoted waji. The vector whose components are equal to the top-down weights
emanating from node j in the F2 field is designated by wj = (wail Waj2Ma) and it is called ARTa template. The vector
whose components are equal to the bottom-up weights converging to node j in the F2 field is designated by W = {Waj1
Waj2Ma }. FAMNN operates in two distinct phases: the training phase and the testing phase. These phases can be described by
referring only to the top-down weights of the ARTa. Before discussing the two phases it is important to present the Fuzzy
ARTMAP parameters of ARTa module.

1 . 1a: This parameter is called the ARTa choice parameter, and takes values in the interval (0, oo). Its value affects the
bottom-up inputs that are produced at the F2 nodes due to a pattern representation at F1.

2. p: This parameter, called the baseline vigilance parameter, determines the initial value of the vigilance parameter Pa in
ARTa. The range ofp, is the interval [0,1]. Small values of result in coarse clustering, while large values of result in
fine clustering of the input patterns presented in ARTa.

3. Pa: This parameter is called the vigilance parameter. Prior to an input/label pair presentation it is set equal to p. During
training, it is allowed to increase. It is set back to p when a new input pair is presented.

4. Na: This parameter corresponds to the number of committed nodes +1 uncommitted in F2a during the training phase. A
committed node is a node that has coded at least one input pattern. An uncommitted node is a node that is not committed.

5. E: This parameter is used to evaluate the value of Pa when it is required to increase above p. It is usually taken to be a
very small positive constant.

The training phase works as follows: Given a list of training input/label pairs, such as {I', L1 ), {12, L2} , {1MP LMP},
we want to train FAMNN to map every input pattern of the training list to its corresponding label. In order to achieve this
goal, the training set is presented repeatedly to the architecture. The input patterns are presented to ARTa module. The
training list is presented as many times as it is necessary for FAMNN to correct classify all the input patterns. The learning is
complete when the weights do not change during a list presentation. This training scenario is called off-line learning. The
testing phase works as follows: A test input pattern is mapped to label L, if L is the label of the node whose bottom-up inputis
the largest among all nodes in F2.

The templates a that are formed at the F2 field during training are compressed representations of the training input
patterns. Template 2a has an interesting geometrical interpretation. It can be presented by a hyper-box in the Ma
dimensional space. This hyper-box includes within its boundaries all the training input patterns that were coded by the
template. A hyper-box can be defined by its endpoints. These are the endpoints of the hyper-box points with the smaller and
larger coordinates of the hyper-box points. The first Ma elements of the template define the lower endpoint and the last Ma
elements define the upper endpoint. The size of the hyper - box is defined by the vigilance parameter Pa. The larger the
vigilance parameter the smaller will be the size of the hyper-box.

2.4 K-Nearest Neighbor (K-NN)

K-NN is a classification technique that uses directly the training data. A pattern belongs to class A if the majority of
the K training patterns that are closer to it belong to this class. The closeness between two patterns is based on a distance
measure. A very common distance measure is the Euclidean distance. l-NN is a special case of K-NN for K = 1 . In this case,
a pattern belongs to class C if the training pattern that is closer to it, belongs to this class.

3. A CLASSIFICATION TECHNIQUE

3.1 Feature extraction

Before training takes place, the feature vectors for the training set must be extracted. The feature vectors consist of
twelve FD-based features. FD has been used before for texture characterization and segmentation6' . The features that are
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used in this paper are the FD of the twelve filtered versions of the original image. The variation method is used to compute the
FD. Directional non - symmetric Gabor filters are used for filtering for four directions (00, 450 900, 135°) and three central
frequencies (0, 0.05, 0. 1). The standard deviations are y,= 6 and =0.01. In our previous work this set has been shown to be
sufficiently good to characterize texture since it has good discriminatory power, it is independent of the image intensity and it
is insensitive to multiplicative noise. Also, it has enough tolerance to noise.

Each FD feature is computed over a shifting window of size 16 x 16 for all filtered versions of the image. The
computed feature is mapped to the central pixel of the window. Since each pixel of the filtered versions of the image can be
mapped to the pixel of the original image with the same coordinates, the twelve features that are computed for each pixel of
the filtered versions of the image can be mapped to the corresponding pixel of the original image. This feature extraction
technique is repeated for all pixels so that W x W feature vectors can be computed where W is the width of the image.

3.2 Classification algorithm

An approach that uses FAMNN and takes into consideration that the image can be contaminated by noise is
proposed. This approach takes into account the fact that the FD of an image tends to increase as the variance of the noise that
it is subjected to, increases. This fact has been shown experimentally. This approach is based on the assumption that smaller
PD values tend to increase more than larger FD values. This assumption seems reasonable since small FD means that the
surface of the image is smooth. If this image is subjected to uncorrelated additive noise, then it is going to be rougher. If FD
has a large value, then the surface of the image is already rough so that additive noise will not affect it so much. Of course
there is also a possibility that the FD value of the noisy image will be smaller than the FD of the noise-free image and
especially if FD has a very large value close to 3 .Generally, it has been noticed that the FD for most textures does not have
values very close to 3.

The FAN/INN is used because it is a fast algorithm that converges in a small number of iterations. The training
process is less time consuming than the training process of other common neural networks. The testing phase of FAMNN is
less time consuming than nearest neighbor techniques since only a compressed version of the original training data
information is used.

3.2.1 Training

The network is trained using 5120 feature vectors. These have been extracted from 20 images of size 256x 256 by
selecting the feature vector that is mapped to the pixel that is located at the center of a window of size 16 x 16. If all non-
overlapping windows are considered, then we have a total of 256 feature vectors selected from each image. This sampling of
the set of the feature vectors is necessary so that the size of the training set is decreased without loosing important information
since the values of the features that correspond to pixels that are close, are similar especially after smoothing of the features
has taken place. The total number of nodes that are created in F2 layer is 746.

For the training phase, features are smoothed by averaging them over a window so that their robustness to describe
texture is increased. The smoothing window has size 33 x 33. The feature vector that corresponds to pixel with coordinates x,
y is the smoothed feature vector over the window which is centered at x, y.

3.2.2 Testing

We have implemented a variation of the testing phase of FAMNN. The bottom-up input for every node in the F2
field is modified so that preference is given to nodes whose corresponding hyper-boxes have upper endpoints with smaller
coordinates. Nodes that are created from feature vectors that have smaller elements are given more power since the values of
these elements are expected to increase in the presence of noise, tending to be mapped to hyper-boxes with larger coordinates.
The reason why only the coordinates of the upper endpoint of the hyper - box are considered is that the coordinates of the
upper endpoint are indicative of the tolerance of this node to noise. If a feature vector is located in the feature space close to
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the lower endpoint then it has space to move that depends on the upper endpoint since it is expected to move to higher
coordinates in presence of noise.

The modification is expressed as multiplication of the input with a term equal to G(F) = Ma I (Ma + CCF), where M is
equal to the number of elements of the feature vectors. F is the summation of the coordinates of the upper corner of the hyper-
box that is defined by the node, and it is equal to:

F= (1-w) (13)
i=M +1

and a is a constant that has the largest possible value, so that the correct classification of the training set will not be less than
99.5%. This value was found to be equal to 0.3. G(F) is a non-linear function of F and does not change very rapidly if F is
large. This is desired since the FD for the pure noise surface might be large but not larger than a certain value. This value
depends on the type of noise. If the FD of the noise-free signal was greater than the FD of the noise surface, then it would not
be good to assume that the FD of the noisy image will be greater than the PD of the noise-free image. Since it is assumed that
the type of the noise and its variance are not known it is appropriate not to affect very much the input to the F2 layerfor the
nodes with corresponding large hyper - boxcoordinates.

The testing phase works as follows: Initially, the features are smoothed by averaging them over a window of size 33
x 33. Then, an initial classification of the smoothed feature vectors takes place according to the testing phase of the
architecture. The next step is to use a sliding window of size 1 8 x 1 8 to classify very small regions to the sameclass as the
large region that surrounds them. This window classifies the feature vector that is mapped to the central pixel of the window,
to the class that is dominant in this window. A class is dominant if the number of feature vectors that are classified as such are
larger than the number of feature vectors that are classified as any other class. The next step is to consider the regions around
the boundaries as an ambiguous class. It is possible that these regions are misclassified because the window that is used for
smoothing averages features that correspond to different textures and exist on the different sides of the boundary. Smoothing
windows whose central pixel is far away from the estimated boundaries more that half the width of the window, do not consist
of more than one texture. The classification for feature vectors that are mapped to these pixels remains the same. The above
algorithm is iteratively applied for every new estimated ambiguous classes for smoothing windows of sizes 25 x 25, 17 x 17, 9
x 9 and finally for the case that no smoothing windows are used. Using this iterative algorithm the boundaries between
textures are not blurred significantly.

4. RESULTS

The method that is proposed in this paper is compared with the standard FAMNN with total number of nodes in the
F2a field equal to 357 and 746. For the first FAMNN was chosen to be 0, while for the second was chosen to be 095.
The proposed model is also compared to the 1-NN algorithm. The described iterative classification algorithm that was
presented in 3.2.2 is applied in all classification methods. All four methods are compared with respect to classification of a
testing set and the classification of the training set when it is subjected to uniform noise. The proposed method and 1-NN are
compared with respect to the segmentation of images that consist of textures selected from the training set. The set that is
referred as training set is the twenty textures from which the feature vectors that were used to train the networks are created.

The testing set consists of twenty textures. Each texture of the testing set is a different realization of the
corresponding texture of the training set. The percentage of correct classification (PCC) for the testing set is given in Table 1.
In this case all algorithms perform well with PCC close to 95%. The difference between the best and the worst PCC is 1 .5 %.
This difference is not significant especially because the selection of the testing set was based on visual estimation of similarity
with the training set. In Figure 2 four of the textures of the training set and the corresponding ones from the testing set are
presented.

217



The four algorithms are compared with respect to the classification performance in the case that the textures are
subjected to additive uniform noise. The results are presented in Table 2 and in Figure 3. In the absence of noise and when the
standard deviation of the noise is 7.2 the PCC is similar for all methods and it is close to 100%. The PCC is better for the
proposed method if the standard deviation is 13, 18.8 and 24.5. The PCC of the proposed method is larger than the PCC of
the 1-NN and the difference is almost constant and close to 4.5% for these cases. The difference between the PCC for the
proposed method and the other two methods is even larger and it increases as the standard deviation of the noise increases.

The segmentation performance was also tested for the l-NN and for the proposed method. The results are presented
in Figures 4 and 5 and in Table 3. The purpose of this experiment is to show that the smoothing window and the window that
is used for feature extraction are sufficiently large, so that more than one texture in the same image can be identified. The
results were slightly better for the proposed method. It has been shown experimentally that iterative algorithms that use
different sizes of smoothing window can help to avoid blurring at the regions close to the boundaries between textures. Here it
is shown that there is about 2-3% misclassification at the boundaries because of the existence of more than one different
texture in the same image.

5. CONCLUSIONS

In this paper a FAMNN variation is proposed. A modification of the input that defines the cluster, in which an input
feature vector belongs, improves the PCC in the case where the textures are subjected to noise. This modification is feature
dependent since it takes advantage of the characteristic that the FD feature values increase in the presence of noise. The PCC
of the proposed variation is better than the original FAMNN and the 1-NN in a noisy environment. In the absence of noise the
performance of the proposed variation is identical with the performance of the standard FAMNN. If the variance of the noise
that contaminates the textures could be estimated, then the FAMNN could adapt so that the classification results could be
further improved.

Also, the segmentation results show that the different parameters such as the size of the smoothing window and the
size of the window where the feature vectors are computed are sufficient with the help of the iterative algorithm, so that
different textures can be identified in the same image.
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Inter -ART module

Figure 1: Block diagram of the ARTMAP architecture
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TABLE 2: Percentage Of Correct Classification % (PCC) With Respect To St. Deviation Of Noise

1-NN FAMNN

367 nodes

FAMNN

746 nodes

FAMNN
(Suggested)
746 nodes

______ Dcvii,

3 100.0 100.0 100.0 100.

I-tv/v AMIWV

367nodes

IAMNN

14
PAM/WV

(Suggested)
746 nodes

1 =13
AMIVN ?AMPIN

367 nodes 746 nodes
._T 1 3 100 0 100.

190. 99. 100.0 100. 1 90.9 95.2 99.

IAMNN
(Suggested)
746 nodes

100. 100. 100.0 100. 1 100.0 100.0 100.
4 100. 100.0 100. 100. 100. 100. 1000 100

98
100
99.7

I 100.0 1000 100
7 818 936 98

-
1000 99 1000 96 100 97 1000

1 100.0 100.0 100.'1000 1000 1000 100 100 100. 100.0
100.0 99. 100.0 99. 100. 98.7 100. 95.4 99. 98.
100.0 100.0 100.0 100. 100. 100. 100.0 99. 1 100.0 100.0 100.'

9 100.0 100. 100.0 98.7 99 97. 96 100. 4 7 438 41 82
10 1000 1000 1000 100 100 1000 1000 100 1 1000 1000 100'
11 1000 1000 1000 100 100 100.0 100.0 100. 1 98.6 100.0 100.
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Figure4 : Segmentationof animage thatconsists of fourTextures from theTraining Set. Textures 1,3. 11 (t)p-lett.tJp-righl. Down

left, down-right respectively). (a) Original image, (b) Segmented image using Fractals and l-NN, (c) Segmented image using Fractals
and the suggested FAMNN

Figure 5 : Segmentation of an image that consists of four Textures from the Training Set. Textures 20, 16. 4. 15 (Up-left. Up-right.
Down-left, down-right respectively). (a) Original image, (b) Segmented image using Fractals and l-NN, (C) Segmented image using
Fractals and the suggested FAMNN

TABLE 3 : Percentage of correct classification % (PCC) with respect to segmentation (a) for image in Figure 3, (h) for image in Figure 4

Texture #

Suggested
3 8 11 ALL

FAMNN 98.1 99.7 97.2 98.8 98.4

Texture #

Suggested 20 t6 4 15 ALL
FAMNN 98.3 %.3 95.5 98.8 97

l-NN 96.5 97(1 99.2 94 97

—... t..'. .- ri-.

(b)

(a) (b)

I NN I 98.8 I 97.8 I 98.6 53 1 97.6

(a) (b)


