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Abstract 
In this paper we introduce a variation of the performance 
phase Of Fuzzy ARTMAP which is Fuzzy ART- 
Var. Experimental results have shown that FUZZY ART- 
Var exhibits superior generalization performance, com- 

ing databases. have 

e r ty  6: Independence from Tuning Parameters, Proper ty  
7:  Nonparametric Classification, and Proper ty  8: Over- 
lapping Classes. 

A neural network classifier that satisfies most of these 
properties is fizzy ARTMAP (pi). fizzy ARTMAP is a 
member of the class of neural network architectures re- 

Grossberg, and their colleaugues at Boston University. The 
ART-architectures are based on the ART theory introduced 

ARTEMAP (power ARTEMAPQ (Q-max and tion of the performance phase of the Fuzzy ARTMAP a lge  
Gaussian ARTMAP. What is worth noting is that the per- &hm that provides, in many instances, an improved per- 

pared to ARTMAP, for a variety Of machine learn- ferred to as ART-aRhitectums developed by Carpenter, 

demonstrated that fizzy ‘Ompares 
with other existing variations of ARTMAP, such as by Grossberg in ([3]). In this paper, we focus on a varia- 

fOI”ance Of ’s Of the tuning formance. We refer to this variation ofthe Fuzzy ARTMAP 
of network paraeters,  in contrast with the ARTEMAP> algorithm as Fuzzy ARTVar. It is also worth mentioning 
AmEMAPQ, and Gaussian ARTMAP whose 
performance depends on the choice of certain network pa- 
rameters. 

that recently, modifications of the performance phase of 
the fizzy ARTMAP algorithm have appeared in the liter- 
ature (e.g., ARTEMAP (power rule in [4]), ARTEMAPQ 
(Q-max rule in [4]>, and ARTMAP-IC [ 5 ] )  that improved 
the performance of Fuzzy ARTMAP. One of the impor- 
tant differences between F‘uzzy ARTVar and ARTEMAP, 
ARTEMAPQ and ARTMAP-IC is that the Performance 
Of the latter three algorithms depends on network param- 
eters ( P  for ARTEMAP, (2 for ARTEMAPQ, and 7 and Q 
for ARTMAP-IC), while Fuzzy ARTVar does not. Hence, 
fizzy ARTVar satisfies one of the important Properties 
of a classifier system, that is independence from tuning pa- 
rameters, while ARTEMAP, ARTEMAPQ, and MWMAP- 
IC do not. Note that in the simulations reported in this 
Paper the choice Parameter (pa) and the baseline Vi@- 
lance Parameter (Pa) of FUZZY ARTVar, ARTEMAP and 
ARTEMAPQ are chosen equal to zero. 

The organization of the paper is as follows: In Sec- 
tion 2, we discuss briefy the Fuzzy ARTMAP architec- 

1 Introduction 
Pattern classification is a key element to many engineer- 
ing solutions. Sonar, radar, seismic, and diagnostic appli- 
cations all require the ability to accurately classify data. 
Control, tracking and prediction systems will often use 
classifiers to determine input-output relationships. Be- 
cause of this wide range of applicability, pattern classifi- 
cation has been studied a great deal. Simpson in his Fuzzy 
Min-Max paper ( s e  [I]) identified a number of desirable 
properties that a pattern classifier should possess. These 
properties are listed below: Proper ty  1: On-Line Adap- 
tation, Proper ty  2: Non-Linear Separability, Proper ty  
3: Short Tminang Tame, Proper ty  4: Soft and Hard De- 
cisions, Proper ty  5: Verification and Validation, Prop- 
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ture, its training phase, and its performance phase In 
Section 3, we introduce the modification of the perfor- 
mance phase of the Fuzzy ARTMAP algorithm, that leads 
us to the algorithm that we called Fuzzy ARTVar. In 
Section 4, we experimentally demonstrate the superior- 
ity of Fuzzy ARTVar versus Fuzzy ARTMAP for a num- 
ber of databases. In the same section, we provide perfor- 
mance comparisons between Fuzzy ARTVar , ARTEMAP, 
ARTEMAPQ, and Gaussian ARTMAP for the same set 
of databases. Gaussian ARTMAP is an ART-based idge 
rithm ([SI) whose training phase and performance phase 
differ from the corresponding phases in Fuzzy ARTMAP, 
but Gaussian ARTMAP's operations in the training phase 
resemble the operations of Fuzzy ARTVar in its perfor- 
mance phase. We see in Section 4, that Fuzzy ARTVar 
compares very favorably with ARTEMAP, ARTEMA.PQ, 
and Gaussian ARTMAP, despite the fact that each one 
of these alsorithms depends on the choice of a parameter, 
whose optimum value is database dependent. In Section 
5, we provide a review of the paper and some conclusive 
remarks. 

2 The Fuzzy ARTMAP Neural 
Network 

A detailed description of the Fuzzy ARTMAP neural net- 
work can be found in [2]. For completeness, in the follow- 
ing, we present only the necessary details. 

The Fuzzy ARTMAP neural network consists of two 
Fuzzy ART modules, designated as ART, and ARTI,, as 
well as an inter-ART module as shown in Figure 1. Inputs 
(1's) are presented at the ART, module, while their cor- 
responding outputs (0's) are presented at the ART& rnod- 
ule. The inter-ART module includes a MAP field whose 
purpose is to determine whether the correct mapping has 
been established from inputs to outputs. 

t j  

Match 
hactiog [ 

Figure 1: The Fuzzy ARTMAP Neural Network. 

3 The Fuzzy ARTVar Algorithm 
The training phase of the Fuzzy ARTVar algorithm is iden- 
tical with the training phase of the Fuzzy ARTMAP a lge  
rithm. After the training is over in Fuzzy ARTVar, we go 
through another phase that we call pre-performance phase. 
The purpose of the pre-performance phase is to compute, 
for every committed node in F t ,  the sample mean vector 
and the sample standard deviation vector of all the input 
training patterns that chose this node. The sample mean 
vector of node j in F t  and the sample standard deviation 
vector of the node j are denoted by my = (myl, my2, . . ., 
myMa) and sq = (syl, s ; ~ ,  . . . , sjOM,), respectively. These 
vectors are then used in the performance phase of Fuzzy 

~ 
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Fuzzy ARTMAP can operate in two distinct phases: the 
training phase and the performance phase. In this paper 
we focus on classification tasks, where many inputs are 
mapped to a single, distinct output. I t  turns out that for 
classification tasks , the operations performed at the ART' 
and inter-ART modules can be ignored, and the algorithm 
can be described by referring only to  the topdown weights 
and the parameters of the ART, module. 

The training phase of Fuzzy ARTMAP works as fol- 
lows: Given a list of training input/output pairs, such as 
{I' ,o~},  . . . {I', or} ,  . .. { I ~ ,  om}, we want to train 
Fuzzy ARTMAP to map every input pattern of the train- 
ing list to its corresponding output pattern. In order to 
achieve the aforementioned goal, we present the training 
list repeatedley to the Fuzzy ARTMAP architecture. That 
is present I1 to ART, and O1 to  ART', then I2 to ART, 
and O2 to ART&, and finally IPT to  ART, and OPT 
to ART'; this corresponds to  one list presentation. We 
present the training list as many times as it is necessary for 
Fuzzy ARTMAP to correctly classify all the input patterns. 
The classification task is considered accomplished (i.e., the 
learning is complete) when the weights do not change dur- 
ing a list presentation. The aforementioned training sce- 
nario is called off-line learning. Note that an input pattern 
I presented to module ART, of Fuzzy ARTMAP is comple- 
mentary encoded. That is I = (a, a"), where a is a pattern 
of arbitrary dimensionality with components in the interval 
[0,1], and a" = 1 - a, where 1 is the all ones vector of the 
same dimensionality as a and a". 

The performance phase of Fuzzy ARTMAP works as fol- 
lows: Giyen a list of test input patterns, such as i', . . ., 
i2, . . ., IPS, we want to find the Fuzzy ARTMAP output 
produced when each one of the aforementioned test pat- 
terns is presented at its Ff field. In order to achieve the 
aforementioned goal, we present the test list once to the 
trained Fuzzy ARTMAP architecture. 

Note that an input pattern I presented to module ART, 
of Fuzzy ARTMAP is complementary encoded. That is 
I = (a, a"), where a is a pattern of arbitrary dimensionality 
with components in the interval [0,1], and ac = 1-a, where 
1 is the all ones vector of the same dimensionality as a and 
ac . 



ARTVar to produce the outputs of the test patterns. 
The main difference between Fuzzy ARTVar and Fuzzy 

AFUMAP is that in Fuzzy ARTMAP every node (cate- 
gory) j in F,” is represented by a weight w;, or the two 
endpoints u; and v: of its corresponding hyperectangle 
(for more details see [7]). On the other hand, in Fuzzy 
AItTVar every node j is represented by its mean vector 
m;, and its standard deviation vector sjo. It is therefore, 
very reasonable to refer to these values as weight values 
during the performance phase of Fuzzy ARTVar. 

Performance Phase of h z z y  ARTVar 

1. Initialize the values of the committed weight vectors 
in F,” (Le, the mjQ’s and sjd’s for 0 2 j 5 N ,  - 1) 
to the values that they had at the end of the pre- 
performance phase. A node in F; is committed if it 
has coded at least one training input pattern during 
the Fuzzy ARTVar training phase. 
Also, associate every committed node in F; of the 
trained Fuzzy ARTVar with the output pattern that 
it was mapped to  at the end of the Fuzzy ARTVar 
training phase. 
Initialize the index r to the value of one. 

2. Choose the r-th input pattern k = (2, (5‘)“) from 
the test list. 

3. Calculate the Mahalanobis distance of 2 from each 
m; in F,“, according to the following equation. When 
calculating the Mahalanobis distance consider only the 
committed nodes in F; (i.e., nodes with index j, such 
that 15 j 5 N ,  - 1). 

In the above equation Xj” represents the covariance 
matrix of the members of node j in F,O, with diag- 
onal elements equal to the aforementioned variances 
S?~’S (calculated in the preperformance phase), and 
off-diagonal elements equal to zero. 

4. Choose the node in F$ that produces the minimum 
Mahalanobis distance. Assume that this node has in- 
dex j,,,. That is, 

d M ( g r ,  ma min d M  (2, m;) 

Designate the output of the presented input pattern 
equal to the output pattern that node j,,, was as- 
sociated to at the end of the Fuzzy ARTVar training 
phase. 

5. If this is the last input/output pair in the test list the 
performance phase is considered complete. Otherwise, 
go to Step 2, to present the next in line input pair, by 
increasing the value of the index r by one. 

1 6! 

4 Experimental Results - Com- 
parisons 

In order to demonstrate the superior performance of Fuzzy 
ARTVar compared to Fuzzy ARTMAP we chose to conduct 
experiments on a number of databases extracted from the 
UCI repository database ([SI). The databases chosen from 
the repository were: Iris, Wine, Sonar, Diabetes, Breast, 
Balance and Bupa. It is worth noting that the data in each 
of the above datasets were split into a training set (2/3 of 
the data) and a test set (1/3 of the data). A description of 
each one of these databases is provided in [8]. 

One of the measures of performance that we used in com- 
paring Fuzzy ARTVar and Fuzzy ARTMAP is the gener- 
alization performance of these networks. The generaliza- 
tion performance of a network is defined to be the per- 
centage of patterns in the test set that are correctly classi- 
fied by a trained network. Since the performance of Fuzzy 
ARTMAP and Fuzzy ARTVar depends on the order of pat- 
tern presentation in the training set, ten different random 
orders of pattern presentation will be investigated, and per- 
formance measures such as the average generalization per- 
formance, the minimum generalization performance, the 
maximum generalization performance, and the standard 
deviation of the generalization performance will be pro- 
duced. 

Also, another measure of performance for comparing 
neural networks is the size of the networks created. In order 
to compare the sizes of the networks that Fuzzy ARTVar 
and another algorithm create (e.g., Fuzzy ARTMAP) we 
compare the average compression ratio of the other algo- 
rithm versus the average compression ratio of Fuzzy ART- 
Var. The average compression ratio for Fuzzy ARTVar 
(other algorithm) is defined to be the ratio of the aver- 
age number of nodes created in F t  versus the number of 
patterns used in the training of Fuzzy ARTVar (other al- 
gorithm). 

In some of the databases that we experimented with we 
ended up, for some of the categories in F,”, with a standard 
deviation of zero across a certain dimension. Since in Fuzzy 
ARTVar, the criterion of choosing a node in F,” during the 
presentation of a test pattern is the minimization of (l), 
nodes with zero variances across some dimension will never 
be chosen (because then the corresponding covariance ma- 
trix inverses will be infinite). To alleviate this problem if 
some node variances were found to be zero, we substituted 
these zero variances with the minimum of the positive vari- 
ance corresponding to this node. The resulting algorithm, 
we named Fuzzy ARTVArc. From now, when we refer in 
the main text to f i z z y  ARTVar we will imply either Fuzzy 
ARTVar or Fuzzy ARTVarc. 

4.1 Comparisons of Fuzzy ARTVar and 
Fuzzy ARTMAP 

Table 1 shows a comparison of the generalization perfor- 
mances of Fuzzy ARTMAP and Fuzzy ARTVar for the 
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seven databases described above. Observing the results 
depicted in Table 1, we can draw the following conclusions. 

1. 

2. 

In all of the databases the maximum generaliza- 
tion performance of Fuzzy ARTVar is better than 
the maximum generalization performance of Ftizzy 
ARTMAP. In particular, for the Bupa, Diabetes, and 
Balance databases the maximum generalization per- 
formance of Fuzzy ARTVar is better than the maxi- 
mum generalization performance of Fuzzy ARTh4AP 
by 4.3896, 4.71% and 6.73%, respectively. 

The generalization performance in Fuzzy ARTMAP can 
be improved by increasing the value of the baseline vigi- 
lance parameter (pQ). Table 2, illustrates the generaliza- 
tion performance comparisons between ihe optimum Fuzzy 
ARTMAP (Fuzzy A MAP with the optimum pQ value) 
and Fuzzy ARTVar. In Table 2, the entries 
E deliver the information that, with respect t 
ciated performance measure (e .  
Fuzzy ARTVar performs Better 
the best Fuzzy ARTMAP does. 
ratio in Table 2 is always in favor of Fuzzy ARTVar. Nu- 
merical comparisons between the Fuzzy ARTVar and the 
optimum Fuzzy ARTMAP are not included due to lack of 
space. 

eratge g e ~ e r a ~ i z a t i l ~ ~ ~ ,  

4.2 Comparisons of Fuzzy ARTVar, with 
ARTEMAP, ARTEMABQ, and Gaus- 
sian ARTMAP 

As we have emphasized in the Introduction, the per- 
formance of ARTEMAP, ARTEMAPQ, and Gaussian 
ARTMAP depend on the values of the network parame- 
ters p ,  Q and y, respectively. Furthermore, the optimum 
parameter value for these algorithms is database depen- 
dent. Finally, sometimes, the performance of these algo- 
rithms for the same database varies widely for different 

In all of the databases the average generalization per- 
formance of Fuzzy ARTVar is better than the av- 
erage generalization performance of Fuzzy ARTMAP. 
In particular, for the Bupa, Balance, Diabetes, Sonar 
the average generalization performance improvement 
is 2.9%, 4.04%, 6.04%, and 6.96%, respectively. What 
makes the above statement even stronger is that the 
standard deviation of the generalization performances 
is better for Fuzzy ARTVar for five out of the seven 
databases (Iris, Wine, Sonar Diabetes, and Breast), 
while it is worse for the other two (Balance and Bupa). 

In all of the databases the minimum generalization 
performance of Fuzzy ARTVar is equal or better 
(equal only in one database) than the minimum gen- 
eraliz>tion performance of Fuzzy ARTMAP. In partic- 
ular, for the Bupa, Diabetes, and Sonar databases the 
minimum generalization performance of Fuzzy ART- 
Var is better than the minimum generalization per- 
formance of Fuzzy ARTMAP by 4.38%, 7.45% and 
11.59%, respectively. 

~ 
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parameter values. Hence, a fair comparison between Fuzzy 
ARTVar, and the aforementioned algorithms is not pos- 
sible since the Fuzzy ARTVar performance does not de- 
pend on any network parameter value. Nevertheless, we 
performed a comparison of Fuzzy ARTVar and the o p  
timum ARTEMAP (ARTEMAP with optimum p value), 
ARTEMAPQ (ARTEMAPQ with optimum Q value), and 
Gaussian ARTMAP (Gaussian ARTMAP with optimum 
y value). Our results illustrate that Fuzzy ARTVar com- 
pares favorably with the optimum ARTEMAP, optimum 
ARTEMAPQ, and optimum Gaussian ARTMAP. For il- 
lustration purposes we only show (in Table 3) the compar- 
ison between Fuzzy ARTVar and optimum ARTEMAPQ. 
In Table 3, the entries B, W, and E deliver the informa- 
tion that, with respect to the associated performance mea- 
sure (e.g., average generalization) , Fuzzy ARTVar performs 
Better, Worse, or Equally well as optimum ARTEMAPQ 
does. Numerical comparisons between the Fuzzy ARTVar 
and the optimum ARTEMAPQ are not included due to 
lack of space. 

5 Review - Conclusions 
We introduced a variation of the performance phase of 
Fuzzy ARTMAP, that we called Fuzzy ARTVar. We 
demonstrated that for a number of classification problems 
the performance of Fuzzy ARTVar is superior to the per- 
formance of Fuzzy ARTMAP (see Table 1). We have also 
implemented other variations of the performance phase of 
Fuzzy ARTMAP that have appeared in the literature (such 
as ARTEMAP, ARTEMAPQ), as well as the Gaussian 
ARTMAP algorithm. In comparing the existing algorithms 
ARTEMAP, ARTEMAPQ, and Gaussian ARTMAP with 
Fuzzy ARTVar we observed khat f izzy ARTVar compares 
favorably with each one of these algorithms despite the fact 
that the performance of these a l g o r ~ t ~ ~ s  was optimized 
with respect to an appropriate network p~rameter. It is 
dso worth noting that we discovered 
ionosphere database) for which Fuzzy 
worse than fizzy ART 
very few instances that a. new classification algorithm will 
outperform existing classification algorithms for every pos- 
sible classification problem, we believe that Fuzzy ARTVar 
is a good algorithm to consider in conjuction with or in- 
stead of algorithms such as Fuzzy ARTMAP, ARTEMAP, 
ARTEMAPQ, or Gaussian ARTMAP. 
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Table 1: Comparison of Fuzzy ARTMAP and Fuzzy ARTVar generalization performances 

Database 
Iris 

network minimum maximum average std. dev. 
Fuzzy ARTMAP 89.58 95.83 95.00 1.91 
Fuzzv ARTVar 93.75 97.92 96.67 1.38 

I I I I I I 

I Wine I Fuzzy ARTMAP I 91.38 I 98.28 I 95.69 I 2.70 

Sonar 
Fuzzy ARTVar 94.83 100 97.93 1.69 

Fuzzy ARTMAP 63.77 78.26 70.58 4.15 
Fuzzy ARTVar 75.36 79.71 77.54 1.75 

Table 2: Comparison of the optimum Fuzzy ARTMA P and Fuzzy ARTVar in terms of the generalization performance 
and compression ratio 

1 Database minimum maximum average std. dev. Compression Ratio 
Iris E E B B B 

Diabetes Fuzzy ARTMAP 61.57 
Fuzzy ARTVar 67.06 
Fuzzy ARTVarc 69.02 

Fuzzy ARTVar 90.09 

Balance Fuzzy ARTMAP 71.63 

Bupa Fuzzy ARTMAP 47.37 
Fuzzy ARTVar 51.75 

i 
Fuzzy ARTVar 71.63 

70.98 66.63 2.57 
75.69 72.51 2.15 
75.69 72.67 1.65 
96.12 94.35 0.95 
96.55 94.61 2.23 
96.55 95.39 0.75 
78.85 75.91 2.42 
85.58 79.95 4.75 
63.16 56.84 4.22 
67.54 59.74 5.51 

Database 
Iris 

Wine 
Sonar 

minimum maximum average std. dev. 
B €3 B B 
B B B B 
B B B B 
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Diabetes 
Breast 

W B 
B W 

I B  B W --. 
E W W 


