
A Partitioned Fuzzy ARTMAP Implementation for Fast Processing of Large
Databases on Sequential Machines ∗

José Castro and Michael Georgiopoulos and Ronald Demara and Avelino Gonzalez
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, Florida

{jcastro, demara, gonzalez}@pegasus.cc.ucf.edu
michaelg@mail.ucf.edu

Abstract

Fuzzy ARTMAP (FAM) is a neural network architec-
ture that can establish the correct mapping between real
valued input patterns and their correct labels. FAM
can learn quickly compared to other neural network
paradigms and has the advantage of incremental/online
learning capabilities. Nevertheless FAM tends to slow
down as the size of the data set grows. This problem is
analyzed and a solution is proposed that can speed up
the algorithm in sequential as well as parallel settings.
Experimental results are presented that show a consid-
erable improvement in speed of the algorithm at the cost
of creating larger size FAM architectures. Directions for
future work are also discussed.

Introduction
Neural Networks have been used extensively and success-
fully for a variety of problems. As computing capacity
and electronic databases grow, there is an increasing need
to process considerably larger databases. Most learning al-
gorithms are not up to the challenge because their compu-
tational complexity is high and their convergence time be-
comes prohibitive as the size of the database grows. An
exception to this rule are tree learning algorithms such as
CART and C4.5. Variations of these tree learning algo-
rithms, such as SPRINT (Shafer, Agrawal, & Mehta 1996)
and SLIQ (Mehta, Agrawal, & Rissanen 1996) have been
successfully adapted to handle very large data sets.

One neural network architecture that holds promise in
handling large databases is the family of ART neural net-
works. This family of neural networks is considerably faster
than the backpropagation neural network architecture, one
of the most popular neural network models. Furthermore,
ART neural networks have the added advantage over the
backpropagation neural network and decision trees that they
can learn online. We will see though, that ART Neural Net-
works suffer from scalability issues, which amounts to stat-
ing that their computational complexity does not scale well

∗This work was partially supported by the NSF grant
CRCD:0203446, and by the Link Foundation Fellowship on simu-
lation and training.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

as the size of the problem increases. This paper addresses
this topic and recommends a solution for it.

The paper is organized as follows: First we review the
Fuzzy ARTMAP architecture introduced by (Carpenter et
al. 1992). Then we examine the computational complexity
of FAM and a partitioning solution is proposed to speed up
the training process in FAM, when FAM deals with large
databases. Furthermore, experimental results are presented
that illustrate the merit of our approach. We close the paper
with a summary of the findings and suggestions for further
research.

The Fuzzy ARTMAP Architecture
The Fuzzy ARTMAP architecture consists of four layers or
fields of nodes (see Figure 1). The layers that are worth
describing are the input layer (F a

1
), the category representa-

tion layer (F a
2

), and the output layer (F b
2

). The input layer
of Fuzzy ARTMAP is the layer where an input vector of di-
mensionality 2Ma of the following form is applied

I = (a,ac) = (a1, a2, . . . , aMa
, ac

1
, ac

2
, . . . , ac

Ma
) (1)

where:
ac

i = 1− ai; ∀i ∈ {1, 2, . . . ,Ma} (2)

The assumption here is that the input vector a is such
that each one of its components lies in the interval [0, 1].
The layer F a

2
of Fuzzy ARTMAP is referred to as the cat-

egory representation layer, because this is where categories
(or groups) of input patterns are formed. Finally, the output
layer is the layer that produces the outputs of the network.
An output of the network represents the output to which the
input applied at the input layer of FAM is supposed to be
mapped to.

There are two sets of weights worth mentioning in FAM.
The first set of weights are weights from F a

2
to F a

1
, des-

ignated as wa
ji, (1 ≤ j ≤ Na, 1 ≤ i ≤ 2Ma), and

referred to as top-down weights. The vector of weights
w

a
j =

(

wa
j1, w

a
j2, . . . , w

a
j,2Ma

)

is called a template. Its
functionality is to represent the group of input patterns that
chose node j in the category representation layer of Fuzzy
ARTMAP as their representative node. The second set of
weights, worth mentioning, are weights that emanate from
every node j in the category representation layer to every
node k in the output layer. These weights are designated as

a

6

Field F a
0

-

6

��
��
ρa

6I = (a,ac)

Field F a
1

- ~reset
node

@
@

@
@

@
@I

w
a
jv

W
a
j

v
Field F a

2

W
ab
j

v
Field F b

2

Attentional Subsystem Orienting
Subsystem

Figure 1: Fuzzy ARTMAP Diagram

W ab
jk (called inter–ART weights). The vector of inter–ART

weights emanating from every node j in Fuzzy ARTMAP
(

i.e.,Wab
j =

[

W ab
j1 ,W ab

j2 , . . . ,W ab
j,Nb

])

corresponds to the
output pattern that this node j is mapped to.

Fuzzy ARTMAP can operate in two distinct phases:
the training phase and the performance phase.
The training phase of Fuzzy ARTMAP can be de-
scribed as follows: Given a list of input/output pairs,
{

(I1,O1), . . . , (Ir,Or), . . . , (IPT ,OPT)
}

, we want to
train Fuzzy ARTMAP to map every input pattern of the
training list to its corresponding output pattern. To achieve
the aforementioned goal we present the training list to
Fuzzy ARTMAP architecture repeatedly. That is, we
present I

1 to F a
1

, O
1 to F b

2
, I

2 to F a
1

, O
2 to F b

2
, and

finally I
PT to F a

1
, and O

PT to F b
2

. We present the training
list to Fuzzy ARTMAP as many times as it is necessary
for Fuzzy ARTMAP to correctly classify all these input
patterns. The task is considered accomplished (i.e., the
learning is complete) when the weights do not change
during a list presentation. The aforementioned training
scenario is called off–line learning. The performance phase
of Fuzzy ARTMAP works as follows: Given a list of
input patterns, such as Ĩ

1, Ĩ2, . . . , ĨPS , we want to find the
Fuzzy ARTMAP output produced when each one of the
aforementioned test patterns is presented at its F a

1
layer.

In order to achieve the aforementioned goal we present the
test list to the trained Fuzzy ARTMAP architecture and we
observe the network’s output.

The operation of Fuzzy ARTMAP is affected by two net-
work parameters, the choice parameter βa, and the baseline
vigilance parameter ρ̄a. The choice parameter takes val-

ues in the interval (0,∞), while the baseline vigilance pa-
rameter assumes values in the interval [0,1]. Both of these
parameters affect the number of nodes created in the cate-
gory representation layer of Fuzzy ARTMAP. Higher values
of βa and ρ̄a create more nodes in the category represen-
tation layer of Fuzzy ARTMAP, and consequently produce
less compression of the input patterns. There are two other
network parameter values in Fuzzy ARTMAP that are worth
mentioning. The vigilance parameter ρa, and the number
of nodes Na in the category representation layer of Fuzzy
ARTMAP. The vigilance parameter ρa takes value in the in-
terval [ρ̄a, 1] and its initial value is set to be equal to ρ̄a. The
number of nodes Na in the category representation layer of
Fuzzy ARTMAP increases while training the network and
corresponds to the number of committed nodes in Fuzzy
ARTMAP plus one uncommitted node described below.

The Fuzzy ARTMAP Learning Algorithm
Prior to initiating the training phase of Fuzzy ARTMAP the
top–down weights (the wa

ji’s) are chosen equal to 1, and the
inter–ART weights (the W ab

jk ’s) are chosen equal to 0. There
are three major operations that take place during the pre-
sentation of a training input/output pair (e.g., (Ir,Or)) to
Fuzzy ARTMAP. One of the specific operands involved in
all of these operations is the fuzzy min operand, designated
by the symbol ∧. Actually, the fuzzy min operation of two
vectors x, and y, designated as x∧y, is a vector whose com-
ponents are equal to the minimum of components of x and
y. Another specific operand involved in these equations is
designated by the symbol | · |. In particular, |x| is the size of
a vector x and is defined to be the sum of its components.

Operation 1: Calculation of bottom up inputs to every
node j in F a

2
, as follows:

T a
j =

|Ir ∧w
a
j |

βa + |wa
j |

(3)

after calculation of the bottom up inputs the node jmax with
the maximum bottom up input is chosen.

Operation 2: The node jmax with the maximum bottom
up input is examined to determine whether it passes the vig-
ilance criterion. A node passes the vigilance criterion if the
following condition is met:

|Ir ∧w
a
j |

|Ir|
≥ ρa (4)

if the vigilance criterion is satisfied we proceed with oper-
ation 3 otherwise node jmax is disqualified and we find the
next node in sequence in F a

2
that maximizes the bottom up

input. Eventually we will end up with a node jmax that max-
imizes the bottom up input and passes the vigilance crite-
rion.

Operation 3: This operation is implemented only after
we have found a node jmax that maximizes the bottom-up
input of the remaining nodes in competition and that passes
the vigilance criterion. Operation 3 determines whether this
node jmax passes the prediction test. The prediction test
checks if the inter–ART weight vector emanating from node
jmax

(

i.e.,Wab
jmax

=
[

W ab
jmax1

,W ab
jmax2

, . . . ,W ab
jmax,Nb

])

matches exactly the desired output vector O
r (if it does this

is referred to as passing the prediction test). If the node does
not pass the prediction test, the vigilance parameter ρa is

increased to the level of
|Ir∧wa

j |

|Ir| + ε where ε is a very small
number, node jmax is disqualified, and the next in sequence
node that maximizes the bottom-up input and passes the
vigilance is chosen. If, on the other hand, node jmax passes
the predictability test, the weights in Fuzzy ARTMAP are
modified as follows:

W
a
jmax

←W
a
jmax

∧ I
r, W

ab
jmax

← O
r (5)

Fuzzy ARTMAP training is considered complete if and
only if after repeated presentations of all training in-
put/output pairs to the network, where Operations 1-3 are
recursively applied for every input/output pair, we find our-
selves in a situation where a complete cycle through all the
input/output pairs produced no weight changes. In some
databases noise in the data may create over-fitting when we
repeat the presentations of the input/output pairs, so a single
pass over the training set may be preferable, this situation
also happened when we do online training of the network
with an unlimited data source.

In the performance phase of Fuzzy ARTMAP only Oper-
ations 1 and 2 are implemented for every input pattern pre-
sented to Fuzzy ARTMAP. By registering the network out-
put to every test input presented to Fuzzy ARTMAP, and by
comparing it to the desired output we can calculate the net-
work’s performance (i.e., network’s misclassification error).

Fuzzy ARTMAP learning has an interesting geometrical
interpretation. The templates (wa

j) of nodes in the category
representation layer of Fuzzy ARTMAP can be represented
as hyper rectangles (rectangles in 2-D). The meaning of this
hyper rectangle is that it encloses within each boundaries
all the input patterns that chose this node (template) as their
representative node (template) and were encoded by it (see
Figure 2). This hyper rectangle starts from its trivial size of
0, corresponding to the case where it has encoded a single
pattern and it grows as more patterns are encoded by it. The
size of the hype rectangle is limited by the value of the vigi-
lance parameter (ρa). The maximum size hyper rectangle is
equal to Ma(1− ρa) .

Partitioned FAM
In this section we start with the presentation of the FAM
pseudo-code (training portion of the algorithm) that allows
us to better understand what really contributes to FAM’s
complexity. Based on this understanding we propose the
partitioned FAM approach to reduce the complexity of FAM
training when it deals with large databases.

FAM-LEARNING-PHASE(Patterns, ρ̄a, βa,maxEpochs)
1 templates← {}
2 iter ← 0
3 repeat
4 modified← false

5 for each I in Patterns
6 do ρa ← ρ̄a

7 LEARN-PATTERN(I, templates, ρa, βa)
8 iterations← iterations + 1

Figure 2: Hyper rectangle representation of a template

9
10 until (iter = maxEpochs)or(modified = false)
11 return templates

Where the procedure LEARN-PATTERN is:

LEARN-PATTERN(I, templates, ρa, βa)
1 repeat
2 status← FoundNone

3 jmax ← GET-MAX-ARG(I, templates, ρa, βa)
4 if status = FoundOne

5 then if class(I) = class(wa
jmax

)
6 then
7 status← ThisIsIT

8 else
9 status← Matchtracking

10 ρ← ρ(I, wa
jmax

) + ε
11
12 until status 6= Matchtracking

From the pseudocode we can see that the FAM-
LEARNING-PHASE computational complexity is propor-
tional to the number of epochs, number of patterns presented
per epoch, and number of templates in the category repre-
sentation layer of FAM. The LEARN-PATTERN procedure’s
computational complexity is proportional to the amount of
matchtracking loops, The GET-MAX-ARG function’s com-
putational complexity is proportional to the total number of
templates in the FAM neural network. It is therefore reason-
able to consider that the computational complexity of FAM
algorithm can be improved by reducing any one of these pa-
rameters: the number of epochs, the amount of matchtrack-
ing or the number of templates in the data set.

We chose to follow a data partitioning approach that al-
lows to reduce the number of patterns presented to FAM,
and consequently the number of templates created in FAM.
Through the data-partitioning scheme that we are proposing
the dataset is split into smaller datasets, each one of which
trains a different FAM network. This approach has the ad-
vantage that it can reduce the computational complexity of

the algorithm and lends itself well to parallel implementa-
tion. Under the fairly reasonable assumption that the num-
ber of templates in the ART neural network is proportional
to the number of training patterns we can state that the ART
convergence time is quadratic O(n2) where n is the number
of patterns in the data set. Partitioning the data set will re-
sult in a significant improvement. For instance, if we divide
the data set into p equal partitions of size n

p
the partitioning

will theoretically produce a speedup in the order of p2. So
we should theoretically expect a quadratic improvement in
speed as we increase the number of partitions in the data set.

Figure 3: Boxing with neighbors, each patterns can see tem-
plates in the contiguous boxes, this creates overlap and re-
duces the number of templates created.

Many different approaches can be proposed to partition
the data set between the processors. The key to success of
any of these techniques is being able to divide the data set
into equally sized data partitions that do not interfere with
each other. The difficulty is that there is no fast and easy
way to divide the data set into equally sized partitions with-
out analyzing the data set, and this can be a time consum-
ing task (usually O(n2)). Our approach is inspired by the
projective clustering approach proposed and implemented
in (Procopiuc et al. 2002), and by the natural properties
of the FAM algorithm. We project the data contained in
the Ma-dimensional hypercube to M̂a dimensions, where
M̂a � Ma, and we partition the data set by a grid in this
projected space. If, for example, we use M̂a = 3 dimensions
and a grid size of 10 divisions per dimension, we would di-
vide the 3-dimensional space, on which we projected the
original data, into 1000 boxes of side length equal to 0.1.
If each set of data within a box trains a different FAM archi-
tecture (partitioned-FAM) we are guaranteed that the num-
ber of templates created by each such FAM is not going

to be large (especially if the number of boxes is large). It
is likely though that total number of templates created by
the partitioned FAM is larger than the number of templates
created by the non-partitioned FAM. Classification perfor-
mance may be negatively affected by this partitioning ap-
proach. To avoid this unwelcome side effect we take advan-
tage of the natural partitioning imposed by the FAM algo-
rithm. We know that templates in FAM are geometrically
represented by hyper-rectangles. Furthermore each hyper-
rectangle size is restricted by the vigilance parameter ρa and
by the dimensionality Ma of the input patterns. In particular,

size
(

w
a
j

)

≤Ma(1− ρa) (6)
If we assume that templates grow more or less evenly

across every dimension, then by choosing boxes in the pro-
jected space of size (1 − ρa) across every dimension, we
are actually restricting the template size to the size that the
FAM algorithm enforces. This partitioning approach is most
effective when the value of the vigilance parameter is large,
and this is the case when the number of templates grows the
most, and tends to slow down the training of the algorithm.

Figure 4: Forest covertype data projected to first 3 dimen-
sions.

Since the partitioning of the data into boxes is imple-
mented after the projection of the data on the fewer (M̂a)
than the available dimensions (Ma) dimensions, choosing
the right set of dimensions to project is an issue of impor-
tance. One way of choosing these fewer dimensions on
which to project the data is based on an entropy measure cri-
terion. This criterion is used extensively with decision trees
(Quinlan 1993) when a determination needs to be made re-
garding the next to be chosen data attribute (dimension) with
respect to which to split the tree into smaller subtrees. This
criterion is defined below:

Gain(Dimesion) = E(PART)− E(¬PART) (7)

where E(¬PART) is defined to be the entropy of the data
without partitioning, and E(PART) is defined to be the av-
erage entropy of the datasets that the data are split into after

Figure 5: Forest covertype data projected to first 3 dimen-
sions and partitioned using boxing scheme.

the partitioning with respect to a certain dimension takes ef-
fect. The entropy of a labeled dataset is defined as

∑

k

−pk log(pk) (8)

where pk represents the probability that the data will have
label k.

Figure 6: Letters recognition database error rate by training
set size.

Experimental Results
To prove the feasibility of our approach a number of tests
were conducted using 2 databases from (University of Cali-
fornia): the letter recognition database from David Slate and
the Covertype database by Jock A. Blackard (University of
California). On both databases the size of the data used for
training was increased by a factor of 2 starting from 1000
data points and ending with 16000 data points for the letters

Figure 7: Letters recognition duration in seconds against
training set size

database and starting with 1000 data points and ending with
512,000 for the covertype data. Classification performance
was evaluated with a fixed set of 4,000 patterns for the let-
ters database and with fixed set of 20,000 patterns for the
covertype data.

Figure 8: Forest covertype database error rate by training set
size (in 1000nd’s of patterns).

Comparisons of the training performance of the parti-
tioned FAM approach and the non-partitioned FAM ap-
proach on the aforementioned databases were conducted.
The training performance was based on two measures. Time
that it took for the networks to undergo one epoch of train-
ing and generalization performance of the trained networks
on the chosen test sets (see Figures 6 to 9). The dimensions
to project the data in the partitioned-FAM approach were
chosen manually by simply observing the range, variation
of the values of the datasets across the chosen dimensions.
Automatically choosing the dimensions on which to project

(using the entropy measure) was also investigated but the re-
sults were not that different from the hand-picked approach.
Due to lack of space we are only reporting the results of the
hand-picked approach. For the letters database a baseline
vigilance parameter value of 0.85 for was used. This cre-
ates a partitioning scheme where the reduced input space of
3 dimensions was partitioned into boxes of side length equal
to 0.15; this results in a total of 343 = 73 boxes. For the
covertype database a vigilance value of 0.96 was used in the
training. This gives a partitioning scheme with boxes of side
size of 0.04 or 253 = 15625 boxes in the three dimensions
that we used to project the data.

Figure 9: Forest covertype database duration in seconds
against training set size (in 1000nd’s of patterns).

Some of the observations from the results (error rate and
training time) of the FAM and partitioned FAM with these
databases are: (a) the partitioned FAM reduces the training
time compared to FAM, and at times significantly, especially
when the size of the training set is large (e.g., covertype
database where the training time is reduced by a factor of 78
for the largest training set size) (b) the generalization perfor-
mance of the partitioned FAM is inferior to FAM especially
for training sets of smaller size. This effect can be coun-
tered by allowing each FAM in the partitioning approach to
be influenced not only by data within its associated boxed
region but also by the boxed regions that are neighbors to
its associated region (referred to in the figures as the boxed
with neighbors approach). This creates an overlapping FAM
approach that is feasible in the sequential machine but cre-
ates communication issues in the parallel approach. Figure
3 shows a representation of boxing with neighbors in 2 di-
mensions. The improvement obtained in generalization of
the partitioned FAM with neighbors is made at the expense
of increasing its computational complexity.

Conclusions
The Fuzzy ARTMAP algorithm is a good, general-purpose
classifier that can learn online and achieve good generaliza-
tion capabilities on most databases. When the data set grows

though, its required training time increases proportionally
with the square of the datapoints used for training. A mecha-
nism for accelerating the convergence of the algorithm when
it deals with large databases was proposed. This mechanism
appears to work well on the 2 databases tested, especially
for the largest of the 2 databases. More experimentation is
needed to increase confidence in the results reported here.
This is the topic of our on-going investigation. The speed
up observed was impressive, especially for the larger size
database. We believe that the proposed partitioning tech-
nique can facilitate the usage of the FAM algorithm for very
large databases. It is worth noting that the proposed parti-
tioning scheme does not affect the desirable ART feature of
training in an on-line fashion. The partitioning scheme pro-
posed is also amenable to parallel implementation but does
not require parallelization to speed up the algorithm.

References
Carpenter, G. A.; Grossberg, S.; Markuzon, N.; Reynolds,
J. H.; and Rosen, D. B. 1992. Fuzzy artmap: A neural net-
work architecture for incremental learning of analog multi-
dimensional maps. IEEE Transactions on Neural Networks
3(5).
Mehta, M.; Agrawal, R.; and Rissanen, J. 1996. SLIQ:
A fast scalable classifier for data mining. In Extending
Database Technology, 18–32.
Procopiuc, C. M.; Jones, M.; Agarwal, P. K.; and Murali,
T. 2002. A monte carlo algorithm for fast projective clus-
tering. ACM SIGMOD, 418–427.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. San Mateo, California: Morgan Kaufmann.
Shafer, J. C.; Agrawal, R.; and Mehta, M. 1996. SPRINT:
A scalable parallel classifier for data mining. In Vijayara-
man, T. M.; Buchmann, A. P.; Mohan, C.; and Sarda, N. L.,
eds., Proc. 22nd Int. Conf. Very Large Databases, VLDB,
544–555. Morgan Kaufmann.
University of California, I. Uci machine learning reposi-
tory. http://www.icf.uci.edu/m̃learn/MLRepository.html.

This document is an author-formatted work. The definitive version for citation appears as:

J. Castro, M. Georgiopoulos, R. F. DeMara, and A. J. Gonzalez, “A Partitioned Fuzzy ARTMAP
Implementation for Fast Processing of Large Databases on Sequential Machines,” in Proceedings
of the Seventieth International Florida Artificial Intelligence Research Symposium (FLAIRS’04),
Miami Beach, Florida, U.S.A., May 17 – 19, 2004.

