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Abstract 

 Machine Learning has traditionally been a topic of research and instruction in computer science 

and computer engineering programs. Yet, due to its wide applicability in a variety of fields, its 

research use has expanded in other disciplines, such as electrical engineering, industrial 

engineering, civil engineering, and mechanical engineering. Currently, many undergraduate and 

first-year graduate students in the aforementioned fields do not have exposure to recent research 

trends in Machine Learning. This paper reports on a project in progress, funded by the National 

Science Foundation under the program Combined Research and Curriculum Development 

(CRCD), whose goal is to remedy this shortcoming. The project involves the development of a 

model for the integration of Machine Learning into the undergraduate curriculum of those 

engineering and science disciplines mentioned above.  The goal is increased exposure to 

Machine Learning technology for a wider range of students in science and engineering than is 

currently available. Our approach of integrating Machine Learning research into the curriculum 

involves two components.  The first component is the incorporation of Machine Learning 

modules into the first two years of the curriculum with the goal of sparking student interest in the 

field.  The second is the development of new upper level Machine Learning courses for advanced 

undergraduate students. The paper will focus on the details of the integration of a machine 

learning module (related to neural networks) applied to a Numerical Analysis class, taught to 

sophomores and juniors in the Engineering Departments at the University of Central Florida. 

Furthermore, it will report results on the assessment and evaluation of the effectiveness of the 

module by the students taking the class. Finally, based on the assessment results some 

conclusions will be drawn regarding the potential of the modules in attracting undergraduate 

students into research, specifically machine-learning research.  

 

1. Introduction  

 

This paper reports on the progress of a grant supported by the National Science Foundation 

under the auspices of the program entitled Combined Research and Curriculum Development 

(CRCD). The title of the grant is “Machine Learning Advances for Engineering Education” and 

its purpose is to introduce Machine Learning research into the undergraduate science and 

engineering curriculum. Our proposal relies on two simple ideas to achieve its goals. The first 

idea is the introduction of machine learning modules in the sophomore and junior level required 

classes. A machine-learning module is a homework assignment that has a machine learning 
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flavor to it, while at the same time achieves the goals of the homework assignment for the class 

under consideration. The objective of the machine-learning module is to spark the interest in 

machine learning of a large number of undergraduate students at the early stage of their studies. 

This way a number of them will be motivated to take our senior-level Machine Learning classes. 

Introducing senior-level Machine Learning classes is the second idea of our proposed work in the 

effort to achieve the goals of this grant. These senior Machine Learning classes are called 

Current Topics in Machine Learning I (CTML-I) and Current Topics in Machine Learning II 

(CTML-II). In CTML-I the PIs in this grant (2 from CS, 2 from CpE, 1 from EE, and 1 from 

IEMS) have the opportunity to expose the students to current machine learning research topics 

related to their research experiences. After the students are exposed to the PIs’ research in the 

CTML-I class they have the opportunity to work on an appropriately assigned machine-learning 

project in CTML-II. Through the combined work in CTML-I and CTML-II classes we are 

anticipating that the students will not only learn about current machine learning research topics 

but they will also be exposed to “hands-on” research in this field. The belief is that through the 

CRCD’s cumulative experiences undergraduate students will be offered the opportunity to 

appreciate machine learning research, produce results of their own in an appropriately assigned 

research project, and hopefully be motivated to pursue graduate studies in this research area, or 

other research areas of interest to them.  

 

This paper focuses on the work conducted towards the creation and delivery of a Machine 

Learning module in the Numerical Methods class taught for EE and CpE majors at the 

University of Central Florida. The module deals with the perceptron and pocket machine 

learning algorithms. Both algorithms were designed to solve classification problems that are 

linearly separable (i.e., problems for which the decision boundaries between data belonging to 

different classes are hyperplane structures).  The lecture produced to explain this assignment 

focuses on a quick overview of the neural network field, a concise discussion of the perceptron 

and the pocket learning algorithms and an elaboration of their differences. The students were 

requested to write code (in MATLAB
®
) that implements each one of these algorithms. They 

were also asked to experiment with these algorithms on some simple problems (e.g., XOR, parity 

problem) to compare their performances. Performance comparison measures used in this study 

were the convergence speed of the algorithm to a solution, and the accuracy of the solution 

obtained. The students were also requested to evaluate the effectiveness of the module in 

achieving the goals of the class and the goals of the CRCD project. This module was taught and 

evaluated twice (Spring 03 and Summer 03). The paper elaborates on the material taught for this 

module, the details of the module assignment, the work that the students had to complete, and the 

evaluation of this experience by the students 

 

 

2. Machine Learning Module in EGN3420 (Engineering Analysis class) 

 

The EGN3420 Engineering Analysis is an applied numerical methods course at the University of 

Central Florida that concentrates on the topics of absolute and relative errors, Taylor series 

expansion, one–dimensional root finding techniques, introduction to matrices and determinants, 
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computer solutions to linear equations, Gauss–Jordan, curve fitting, numerical integration and 

differentiation, interpolation and solutions to differential equations. 

 

The course uses the MATLAB
®
 programming environment and expects that students registering 

for this course have had some previous programming experience. A series of homeworks are 

assigned to the students that have to be programmed in MATLAB
®
. The homework requires 

considerable amount of time investment from the student. It is worth noting though that these 

homeworks do not constitute a significant portion of the student’s grade.  

 

The module described in this paper uses a neural network learning technique, called perceptron 

learning (see Rosenblatt, 1962).  It learns to associate input patterns with their corresponding 

label, a feat that the neural network accomplishes through an appropriately designed learning 

process. During this process the neural network is taught to map certain input patterns to their 

associated labels. The module assignment, can be used to introduce the concepts of MATLAB
®
 

programming, matrix operations and gradient descent optimization methods and therefore is 

compatible with the learning objectives of the course. It was assigned for the first time in the 

spring semester of 2003, and then subsequently in the summer of 2003. In both instances the 

module was assessed and evaluated by the students, and the results of the spring 2003 assessment 

were used to modify the teaching materials and delivery from one semester to the next with the 

intent of improving the module’s usefulness. The main focus of the learning module is the pocket 

algorithm. A condensed version of the handout given to the students and an explanation of the 

pocket algorithm is given in the following section. 

 

4. Perceptron–Based Learning Algorithms Module:  

 

The sections below describe in sufficient detail the module assignment that was handed out to 

students and the associated teaching material. The teaching material was necessary for the 

students to understand perceptron learning algorithms, and eventually implement one of the 

perceptron learning variants, called “pocket algorithm”. Portions of the module were discussed in 

class.  

 

4.1 The Module Assignment 

 

1. Write the code for the single layer perceptron algorithm. Incorporate enough explanatory 
statements to explain what each part of your code is doing. Define the variables that you are 

using within your code at the beginning of your code. Test your code with the Parity-5 

problem.  

2. Write the code for the pocket algorithm in MATLAB®. Incorporate enough explanatory 
statements to explain what each part of your code is doing. Define the variables that you are 

using within your code at the beginning of your code. Test your code with the Parity-5 

problem. 

3. Compare the performance of the perceptron learning algorithm and the pocket algorithm on 
the Parity-5 problem, and another two-class classification problem of your choice.  
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What you should turn in (Deliverables) 

The deliverables for this homework are: 

• 3.5” 1.44 Mbyte disk containing  

o The source code in a file called hw?XXXX where ? is the number of your homework and 
XXXX should be the last four digits of your SS#. If you have more than one source file 

then name them hw?XXXXa, hw?XXXXb etc. The main function should be in 

hw?XXXXa. 

� Source code should have comments, guidelines for correct commenting of source 

code shall be given in class. 

o The executable (.exe) of the program.  

• A write up with: 

o A title page with your name and SS# and Homework number. 
o An index. 
o A problem statement (portions of this write up). 
o A program description stating the important algorithms in your homework. 
o A programmer’s log. 
o Comments (feedback) 

 

The programmer’s log is a table that displays the activities that you incurred in this homework 

and the time spent on each of the tasks, the format for the table should be: 

Activity Date/Time Start Date/Time End Total Time Comments 

Designing     

Coding     

Debugging     

Coding     

 

Try to be as honest as possible in the entries of this table, you will not be graded for it, it is for 

feedback purposes. 

Grading Policy 

• Program 70 % 

• Write up 30 % 

 

Sample student code that was submitted to the instructor of the class, as part of the requirements 

of this assignment, is included in Appendix I.  

 

4.2 Objective 

 

One of the purposes of the perceptron machine–learning module assignment is for the students to 

understand the basics of neural networks, such as definition, neuronal models, popular neural 

network structures, and their utility. Another purpose is to understand the specifics of the single 

layer perceptron architecture, the perceptron learning algorithm and the pocket algorithm. 

Furthermore, they should be able to learn, if they do not know it already, how to read 
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vectors/matrices, compute inner products, use “for loops” and “if then else” statements in a 

programming language of their choice. Finally, they are supposed to run some experiments with 

the perceptron and pocket learning algorithms and compare their performance on appropriate 

data sets.  

 

4.3 Teaching Material: Preliminaries on Neural Networks 

A neural network (NN) is a network of many simple processors (units, nodes, neurons), each one 

of which has a small amount of local memory. Unidirectional channels (connections) that carry 

numerical data connect these processors. A neural network resembles the human brain in two 

respects:  

1. Knowledge is acquired by a network through a learning process. 
2. Interneuron connection strengths known as synaptic weights are used to store the knowledge.  
 

The model of a neuron is pictorially shown in Figure 1. We may describe neuron j through a set 

of equations that describe its net input ( jnet ) and output ( jy )as follows: 
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where Kxxx ,...,, 21 are the input signals; jKjj www ,..,, 21 are the synaptic weights converging to 

neuron j; jnet is the cumulative effect of all the neurons connected to neuron j and the internal 

threshold of neuron j; )(⋅g is the activation function of neuron j; and jy is the output signal of 

neuron j. Two examples of typical activation functions g are shown in Figures 2 and 3.  

 

Figure 1: Model of a neuron 
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4.4 Teaching Material: Single Layer Perceptron Neural Network  

The simplest possible layered neural network is the single layered neural network that consists of 

a layer of input nodes (input layer) and a layer of output nodes (output layer). Figure 4 depicts a 

single layered neural network architecture consisting of K input nodes and I output nodes. We 

call it a single-layered neural network (or single-layer perceptron) because only the nodes in the 

output layer are neurons.  
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Once the neuronal model has been defined and the neural network structure has been chosen an 

appropriate learning algorithm is needed. The goal here is to establish the correct mapping 

between a set of inputs PT

pp 1)}({ =x and a set of corresponding outputs PT

pp 1)}({ =d . This collection of 

Figure 2:  Threshold activation function Figure 3:  Sigmoid activation function 1/(1+e-ax) 

                with varying slope parameter a=1,2,3,4 

Figure 4: Single layer perceptron architecture 
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x’s and d’s is called a training collection and the phase that the network is going through to 

establish the correct mapping between x’s and d’s is called training phase. For the single layer 

perceptron NN, Rosenblatt (Rosenblatt, 1962) has introduced an algorithm that establishes all the 

required mappings, more than 40 years ago. This algorithm is known by the name perceptron 

learning algorithm. The assumption made with this algorithm is that the activation function is of 

the threshold type (e.g., the output of a neuron assumes two distinct values +1 or –1) and that the 

data given to us are linearly separable. It is worth mentioning that the constraint that the data 

need to be linearly separable is a strong constraint, and as a result there are many useful 

problems that the single-layer perceptron and the perceptron learning algorithm cannot solve (see 

Minsky and Papert, 1969). Nevertheless, the single layer perceptron is one of the simplest neural 

network architectures and capable of solving problems that are linearly separable or almost 

linearly separable.  

                   

4.5 Teaching Material: Perceptron Learning Algorithm, Pocket Algorithm 

 

The perceptron learning algorithm is described in a sequence of steps below.  

 

Step 1: Initialize the weights and the bias converging to node i (i.e., the weights 1

ikw ’s for 

Kk ≤≤0 ). The weights are initialized to small random values. The value of the index p is 

initialized to 1.  

 

Step 2: Present the input pattern )(px from the training collection.  

 

Step 3: Calculate the output of node i due to the presentation of pattern )(px , by using the 

following equation:  
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Step 4: Check to see whether the actual output )(1 pyi matches the desired output )(pd i . We now 

distinguish three cases:  

  

• Step 4a: If )()(1 pdpy ii = then move to Step 5.  

• Step 4b: If 1)(1 =pyi and 1)( −=pd i , then modify the weight vector iw converging to 

node i by iwΔ , where  

)(pi xw −=Δ  

• Step 4c: If 1)(1 −=pyi and 1)( +=pd i , then modify the weight vector iw converging 

to node i by iwΔ , where  

)( pi xw +=Δ  
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Step 5: We now distinguish two cases: (a) If PTp ≠ , go to step 2 and present the next in 

sequence input pattern, and (b) If PTp = and the weights did not change in the last PT 

presentations of the input patterns, then the training is complete. If on the other hand, the weights 

changed at least once in the previous PT list presentations, then we go to step 2 to present the 

first in sequence input pattern corresponding to index p=1.  

 

As Gallant points out in his paper (Gallant 1990) perceptron learning is not very well behaved 

for non-separable problems. While it will eventually visit an optimal set of weights, it will not 

converge to any set of weights. Even worse the algorithm can go from an optimal set of weights 

to a worst-possible set in one iteration, regardless of how many iterations have been taken 

previously. The pocket algorithm makes perceptron learning well behaved by adding positive 

feedback in order to stabilize the algorithm.  

 

The basic idea of the pocket algorithm is to run perceptron learning while keeping an extra set of 

weights “in your pocket”. Whenever the perceptron weights have a longest run of consecutive 

correct classifications of randomly selected training patterns than the pocket weights, these 

perceptron weights replace the pocket weights. The pocket weights are the outputs of the 

algorithm.  

 

4.6 Teaching Material: Perceptron Learning Algorithm, and Pocket Algorithm on the XOR 

Problem 

 

As an example of the perceptron learning and the pocket algorithm consider the XOR problem 

with the following training examples:  

 

1)1()111()1( −=−−+= dx  

1)2()111()2( +=+−+= dx  

1)3()111()3( +=−++= dx  

1)4()111()4( −=+++= dx  

 

The first entry of every training example above is +1 because it corresponds to the constant bias 

input. Figure 5 gives a typical sequence of iterations. At iteration 8 both pocket and perceptron 

weights are optimal, classifying three out of the four examples correctly. But at iteration 9 the 

initial perceptron weights (0,  0,   0)  have been reached. These misclassify every training 

example whereas the pocket weights, (1  -1  -1), still get three out of the four correct. As 

iterations continue changes to the pocket weights will become less and less frequent. The pocket 

algorithm can operate in an off-line training mode or an in an on-line training mode. In the off-

line training mode we have a fixed collection of input/output pairs that is given to us and data 

from this collection are picked randomly to be presented at the input nodes of the SLP-NN 

architecture. In the on-line training mode we do not have a fixed collection of input/output pairs 

and the data come in, one at a time. The SLP-NN is trained on the data as they come in and no 

storage of data is feasible in the on-line training mode. In the original paper by Gallant the on-

line training mode is referred to as training with ∞of training data. The pseudo-code of the 
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“pocket algorithm” for the on-line training phase is given below. The off-line training phase can 

be found in Gallant, 1990. Note that π stands for the vector of current perceptron weights, W 
stands for the vector of pocket weights, πrun  stands for the number of consecutive correct 

classifications using the perceptron weights π , Wrun is the number of consecutive correct 

classifications using the pocket weights W. 

 

Start with an initial current weight vector )0,...,0,0(=π   

 

Randomly pick a training example x(p) with desired classification d(p) 

If π correctly classifies x(p) then 
 1+= ππ runrun  

 If wrunrun >π then  

   

   π

π

runrun

W

W =

=

            

Otherwise, form a new vector π of perceptron weights by following the perceptron algorithm.  
Set 0=πrun . 

End of this iteration. If the specified number of iterations has not been taken then proceed with 

the presentation of another randomly chosen training example. The above procedure is repeated.  

 

4.6 Teaching Material: Verification of the Pocket Calculations for the XOR Problem  

 

Iteration 1:   Present pattern x (4). Current initial weight vector is )0,0,0(=π . Is x (4) 

correctly classified ?  No, because 0)4( =πTx , while it should have been negative. Hence, 

π changes to )1,1,1()4( −−−=− xπ .  

Iteration 2:  Present pattern x (4). Current weight vector is )1,1,1( −−−=π . Is x (4) correctly 

classified?   Yes, because 03)4( <−=πTx , as it should be to produce an output of 1− . Hence, 

π remains unchanged at )1,1,1( −−−=π . Furthermore, πRun increases by one, thus becoming 

equal to 1. Also, since 01 =>= WRunRunπ , W becomes equal to )1,1,1( −−−=π , and also 

WRun  becomes equal to .1=πRun  

Iter.              π             πrun             W           wrun   Choice   OK?     Action 

x(4) no 

0

)4(

=

−=

π

ππ

Run

x
 

1. < 0    0     0 >     0 

 

 

2. <-1  -1    -1 >     0 

 

 

< 0     0     0 >      0 

 

 

< 0     0     0 >      0  

 

 

x(4) yes 

π

ππ

π

RunRun

W

RunRun

w =

=

+= 1
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x(2) no 

0

)2(

=

+=

π

ππ

Run

x
 

x(3) no 

0

)3(

=

+=

π

ππ

Run

x
 

x(4) yes 1+= ππ RunRun  

x(2) yes 

π

ππ

π

RunRun

W

RunRun

w =

=

+= 1

 

x(3) yes 

π

ππ

RunRun

RunRun

w =

+= 1
 

x(1) no 

0

)1(

=

−=

π

ππ

Run

x
 

 

3. <-1   -1   -1 >     1 

 

 

4. < 0   -2    0 >     0 

 

5. < 1   -1  -1 >     0 

 

6. < 1   -1  -1 >     1 

 

 

 

7. <1    -1  -1 >     2 

 

 

8. <1    -1  -1 >     3 

 

9. <0    0     0 >     0 

 

<-1   -1    -1 >      1 

 

 

<-1   -1    -1 >      1 

 

<-1   -1    -1 >      1 

 

<-1   -1    -1 >      1 

 

 

 

<1     -1   -1 >      2 

 

 

<1     -1   -1 >      3 

 

< 1    -1   -1 >      3 

… 

 

Figure 5: Perceptron and Pocket algorithm iterations for the XOR problem 

 

Iteration 3: Present pattern ).2(x Current weight vector is )1,1,1( −−−=π . Is )2(x correctly 

classified ? No, because 01)2( <−=πTx , while it should have been positive to produce an 

output of +1. Hence, π changes to )0,2,0()2( −=+ xπ , and πRun is reset back to the value of 0.  

Iteration 4: Present pattern ).3(x Current weight vector is )0,2,0( −=π . Is )3(x correctly 

classified ? No, because 02)3( <−=πTx , while it should have been positive to produce an 

output of +1. Hence, π changes to )1,1,1()3( +−+=+ xπ , and πRun is reset back to the value of 

0.  

Iteration 5:  Present pattern x (4). Current weight vector is )1,1,1( +−+=π . Is x (4) correctly 

classified?  Yes, because 01)4( <−=πTx , as it should be to produce an output of 1− . Hence, 

π remains unchanged at )1,1,1( −−+=π . Furthermore, πRun increases by one, thus becoming 

equal to 1. Also, since 1=πRun is not greater than 1=WRun , W stays equal to )1,1,1( −−−=π . 

Iteration 6:   Present pattern x (2). Current weight vector is )1,1,1( −−+=π . Is x (2) correctly 

classified?  Yes, because 01)2( >−=πTx , as it should be to produce an output of +1. Hence, 

π remains unchanged at )1,1,1( −−+=π . Furthermore, πRun increases by one, thus becoming 

equal to 2. Also, since 12 =>= WRunRunπ , W becomes equal to )1,1,1( −−+=π , and also 

WRun  becomes equal to .2=πRun  

Iteration 7:  Present pattern x (3). Current weight vector is )1,1,1( −−+=π . Is x (3) correctly 

classified?  Yes, because 01)3( >+=πTx , as it should be to produce an output of 1+ . Hence, 
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π remains unchanged at )1,1,1( −−+=π . Furthermore, πRun increases by one, thus becoming 

equal to 3. Also, since 23 =>= WRunRunπ , WRun  becomes equal to .3=πRun No need to 

change W because W is already equal to )1,1,1( −−+=π . 

Iteration 8: Present pattern ).1(x Current weight vector is )1,1,1( −−+=π . Is )1(x correctly 

classified ? No, because 03)1( >+=πTx , while it should have been negative to produce an 

output of -1. Hence, π changes to )0,0,0()1( =− xπ , and πRun is reset back to the value of 0. 

W remains intact and equal to )1,1,1( −−+ , and WRun  remains unchanged and equal to 3.  

Iteration 9:  At this iteration the current weight vector of the perceptron learning algorithm is 

equal to the all zeros vector, thus misclassifying all patterns, while the stored pocket weight 

vector )1,1,1( −−+=W  correctly classifies 3 out of the 4 vectors. This is the advantage of the 

pocket algorithm, compared to the perceptron algorithm.  

 

4.7 Discussion Issues 

 

The module allowed discussion of various issues related to Machine Learning including: (a) 

Gradient descent mathematical procedures for optimization, (b) Neural network training and 

testing.  (c) Linearly separable versus non–linearly separable problems, and (d) Convergence 

issues in neural network training.   

 

5. Assessment and Evaluation of the Module 

 

A questionnaire was handed out to the students at the end of the Spring 2003 semester. This 

questionnaire served the purpose of evaluating and assessing the effectiveness of the module. A 

copy of this questionnaire is included in Appendix II. The questionnaire was divided into two 

major sections. The first section assessed the knowledge that was transferred to the students 

pertaining to what neural networks are, what they can do, the specifics of perceptron learning 

and pocket learning algorithms, and their similarities and differences. The second section asked 

the students to assess the effectiveness of the module in terms of difficulty, usefulness in helping 

them learn the material of the class, and whether it sparked their interest in learning more about 

machine learning. The results of the second section of the questionnaire were tabulated, and 

provided below.  

Results for Spring 2003 
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0 0

Very

Hard

Hard Normal Easy Very

Easy

0
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                 Figure 6: How hard did you find it?      Figure 7: Did you like the module? 
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            Figure 8: How useful did you find it?       Figure 9: Did it show you ML (1/No–5/Yes))?  

2

9
10

9

0

2

4

6

8

10

12

Very

Interested

Interested Curious Not

Interested

 
Figure 10: Are you interested in ML? 

In review, students seemed to find the module very hard, and this reflected negatively on how 

much they liked it. Strangely enough, they did grade the module well in terms of its relationship 

with machine learning and about a third of the class demonstrated interest in learning more about 

the subject. 

 

Modifications were applied to the module to try to make it more palatable to the students for the 

summer of 2003. The original module specification was broken down into 3 sections:  

 

1. A theoretical neural networks handout. 
2. A detailed explanation of the perceptron learning and pocket algorithm. 
3. A module handout specifying grading and deliverables. 

 

Originally (in Spring 2003) all these sections were lumped together and the students were handed 

a 10-12 pager handout, as part of their homework assignment. After reviewing the feedback from 

the spring 2003 experience we felt that it was best to separate the handout in 3 different sections, 

as described above. Furthermore, more time was dedicated in class to explain the concepts of 

neural networks and the corresponding pocket and perceptron learning algorithms. Despite these 

efforts the perception of the students regarding the module’s difficulty did not change 

substantially. Since, the Spring 2003 student feedback, illustrated in the graphs above, was very 

similar with the Summer 2003 student feedback, we are omitting the details of the Summer 2003 

student feedback. Once more, the students rated the module high in terms of how much it is 
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related to Machine Learning and more than a third said they would be interested or very 

interested in knowing more about the subject of Machine Learning.  

 

6. Comments/Conclusions 

 

While the sample data is small at this time, students seemed to indicate concern about the 

complexity of the homework. There seems to be a correlation between the programming 

experience of the students and their acceptance of the module. The students of the numerical 

methods course come from various backgrounds and not all of them feel comfortable with 

programming. We feel that this has impacted negatively on the students’ perception of the 

module. Nevertheless their overall interest in the subject was positive, even though most of them 

found it challenging. One has to keep in mind that the purpose of the module is to make students 

aware of Machine Learning and its potential of solving engineering problems, with the ultimate 

intent of convincing some of these students to register for the Current Topics in Machine 

Learning I (where the learn a lot more about Machine Learning) and eventually to register for the 

Current Topics in Machine Learning II, where they will have a hands-on experience with 

Machine Learning research. Based on the module evaluation we feel that this module served this 

purpose (of generating student interest in Machine Learning).  

 
In this paper, we presented an overview of some of our experiences with an NSF project in 

progress, whose goal is to integrate research results in Machine Learning into the undergraduate 

and first year graduate engineering and science curriculum. We focused on one of the methods 

that we have pursued to achieve this goal (that of the machine learning modules). This method 

relies on incorporating simple but effective Machine Learning modules in appropriate 

introductory computer programming classes of the engineering and computer science curriculum 

with the goal of attracting some of these students into the senior (newly introduced) machine 

learning classes. In the senior classes the students will be exposed to machine learning research 

and they will also be requested to participate in machine learning research. It has been our 

experience that despite the inherent difficulties of incorporating modules (of machine learning 

content) in existing sophomore and junior classes, difficulties that were conveyed to us by the 

students exposed to the pocket algorithm module, this approach is one of the many working 

approaches that we are currently pursuing to attract undergraduate students in our machine-

learning research. 
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Appendix I 

Student Sample Code for the Pocket Algorithm Homework 

 
function parity5(); 
% Runs the pocket algorithm for the parity5 problem. 

 
% Initialize the values 
weight = [0 0 0 0 0 0]; 
pi = [0 0 0 0 0 0]; 

runPi = 0; 
runW = 0; 
% Parity5 function as an array (truth table) 
% where d(x) is the desired output. 

%    [bias  x1  x2  x3  x4  x5  d(x)] 
X = [1 -1 -1 -1 -1 -1  1 
     1 -1 -1 -1 -1  1 -1 
     1 -1 -1 -1  1 -1 -1 

     1 -1 -1 -1  1  1  1 
     1 -1 -1  1 -1 -1 -1 
     1 -1 -1  1 -1  1  1 

     1 -1 -1  1  1 -1  1 
     1 -1 -1  1  1  1 -1 
     1 -1  1 -1 -1 -1 -1 
     1 -1  1 -1 -1  1  1 

     1 -1  1 -1  1 -1  1 
     1 -1  1 -1  1  1 -1 
     1 -1  1  1 -1 -1  1 
     1 -1  1  1 -1  1 -1 

     1 -1  1  1  1 -1 -1 
     1 -1  1  1  1  1  1 
     1  1 -1 -1 -1 -1 -1 
     1  1 -1 -1 -1  1  1 

     1  1 -1 -1  1 -1  1 
     1  1 -1 -1  1  1 -1 
     1  1 -1  1 -1 -1  1 
     1  1 -1  1 -1  1 -1 

     1  1 -1  1  1 -1 -1 
     1  1 -1  1  1  1  1 
     1  1  1 -1 -1 -1  1 
     1  1  1 -1 -1  1 -1 

     1  1  1 -1  1 -1 -1 
     1  1  1 -1  1  1  1 
     1  1  1  1 -1 -1 -1 
     1  1  1  1 -1  1  1 

     1  1  1  1  1 -1  1 
     1  1  1  1  1  1 -1]; 
 
iter = input('Choose how many iterations: '); 

r_menu = input('Type "1" for Interactive, "2" for Computer only: '); 
 
while (iter > 0) 
         

    % Select rows interactively or randomly. 
    if (r_menu == 1) 
        row = input('Choose a row for input (1-32): '); 
    else 

        row = ceil(mod(randn(1)*1000, 32)); 
    end 
     
    w_transpose = calc_weight(pi, X(row,1:6), 6); 
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    % Good classification, set our pocket values to the 

    % current values. 
    if ((w_transpose > 0) & (X(row,7) > 0)) | ((w_transpose < 0) & (X(row,7) < 0)) 
        disp('Good classification'); 
        runPi = runPi + 1; 

        if (runPi > runW) 
            weight = pi; 
            runW = runPi; 
        end 

    % Bad classification, reset runPi to 0 and adjust pi 
    % based on input values. 
    else 
        disp('Bad classification'); 

        if w_transpose > 0 
            pi = pi - X(row, 1:6); 
        else 
            pi = pi + X(row, 1:6); 

        end 
        runPi = 0; 
    end    
    iter = iter - 1; 

end 
format compact; 
 
 

 
 
 
 

 
function result = calc_weight(weight, x_input, size); 
result = 0; 
for i=1:size; 

        result = result + (weight(1,i) * x_input(1,i)); 
end 
if result >= 0 
    result = 1; 

else 
    result = -1; 
end
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% Runs the pocket algorithm for the xor funciton. 

 
weightfunction my_xor(); 
% Initialize the values 
weight = [0 0 0]; 

pi = [0 0 0]; 
runPi = 0; 
runW = 0; 
 

% xor function as an array (truth table) 
% where d(x) is the desired output. 
%    [bias  x1  x2  d(x)] 
X = [1 -1 -1 -1 

     1 -1  1  1 
     1  1 -1  1 
     1  1  1 -1]; 
 

iter = input('Choose how many iterations: '); 
r_menu = input('Type "1" for Interactive, "2" for Computer only: '); 
 
while (iter > 0) 

     
    % Select rows interactively or randomly. 
    if (r_menu == 1) 
        row = input('Choose a row for input (1-4): '); 

    else 
        row = ceil(mod(randn(1)*1000, 4)); 
    end 
         

    w_transpose = calc_weight(pi, X(row,1:3), 3); 
         
    % Good classification, set our pocket values to the 
    % current values. 

    if ((w_transpose > 0) & (X(row,4) > 0)) | ((w_transpose < 0) & (X(row,4) < 0)) 
        disp('Good classification'); 
        runPi = runPi + 1; 
        if (runPi > runW) 

            weight = pi; 
            runW = runPi; 
        end 
    % Bad classification, reset runPi to 0 and adjust pi 

    % based on input values. 
    else 
        disp('Bad classification'); 
        if w_transpose > 0 

            pi = pi - X(row, 1:3); 
        else 
            pi = pi + X(row, 1:3); 

        end 
        runPi = 0; 
    end    
    iter = iter - 1; 

end 
format compact; 
weight 
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Appendix II 

Assessment and Evaluation Form for the Pocket Algorithm 

Purpose:  
One of the purposes of this machine learning module is for the students to understand the basics 

of neural networks, such as definition, neuronal models, popular neural network structures, and 

their utility. Another purpose is to understand the specifics of the single layer perceptron 

architecture, the perceptron learning algorithm and the pocket algorithm. Furthermore, they 

should be able to learn (if they do not know already) how to read vectors/matrices, compute 

inner products, use “for loops” and “if then else” statements in a programming language of their 

choice. Finally, they are supposed to run some experiments with the perceptron and pocket 

learning algorithms and compare their performance on appropriate data sets.  

 

Learner Outcomes:  
1. Understand the basics of neural networks.  
2. Understand the perceptron learning algorithm.  
3. Understand the pocket algorithm.  
4. Understand that the pocket algorithm is a type of gradient descent algorithm. 
5. Appreciate the differences of the perceptron learning and the pocket algorithm.   
 

Activity: 
a. How Hard did you find the Homework ? 

Very Hard []     Hard []    Normal []   Easy []   Very Easy [] 

b. Did you enjoy working on this homework? 

A Lot []    Yes  []   A bit []    No []   Not at all[] 

c. Was the assignment useful to exercise your programming abilities ? 

Very Useful []    Useful []  A bit Useful []   Not Useful []  No, it was Detrimental [] 

d. On a scale of 1 to 5, 1 meaning not at all and 5 meaning a lot, how much to you think that the 

homework was related to machine learning? 

5   []   4 []    3[]     2[]    1[] 

e. Would you be interested in knowing more about Machine Learning?  

Very Interested []   Interested []   Just Curious []   Not Interested []    

 

Evaluation, related to Learner Outcomes:   
1. Did you understand the basics of neural networks? If you found it difficult to understand the 

basics what was the reason? Please explain.  

2. Did you understand the single layer perceptron (SLP) neural network ? If you found it 
difficult to understand the SLP-NN what was the reason? Please explain.  

3. Did you understand the perceptron learning algorithm?  If you found it difficult to understand 
the perceptron learning algorithm what was the reason? Please explain.  

4. Did you understand the pocket algorithm and its difference from the perceptron learning 
algorithm? If you found it difficult to comprehend the pocket algorithm  what was the 

reason? Please explain.  
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5. Did you understand what gradient descent is and how it relates to the pocket algorithm? 
Please explain.  

6. Did you acquire some appreciation of the perceptron learning and pocket algorithms and  
their applicability to real-world problems? Please explain.  

 

Demographics:  
Gender:   Male []   Female [] 

Level: Sophomore []   Junior []    Senior [] 

Have you had any previous programming experience recently? Please explain.  

What is the length of the longest program that you wrote? In what programming language? 
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